Modern Algebra

Supplement. Quaternions—An Algebraic View

- Theorem A. H [is a Noncomutative Division Ring](#page-2-0)
- 2 [Theorem B. The Nature of the Zeros of a Quaternionic Polynomial](#page-5-0)
- 3 [Prop. 16.2 of Lam. The Factor Theorem in a Ring with Unity](#page-9-0)
- 4 [Proposition 16.3 of Lam. Zeros of Products of Polynomials](#page-12-0)
- 5 [Proposition 16.4 of Lam. Gordon-Motzkin Theorem](#page-14-0)
- 6 [Lemma A. Conjugate of a Product](#page-18-0)

[Theorem 16.14 of Lam. Fundamental Theorem of Algebra for](#page-21-0) H

Theorem A

Theorem A. The quaternions form a noncommutative division ring.

Proof. Tedious computations confirm that multiplication is associative and the distribution law holds. We now show that every nonzero element of H has a multiplicative inverse. Consider $q = a_0 + a_1i + a_2i + a_3k$. Define $d = a_0^2 + a_1^2 + a_2^2 + a_3^2 \neq 0$.

Theorem A

Theorem A. The quaternions form a noncommutative division ring.

Proof. Tedious computations confirm that multiplication is associative and the distribution law holds. We now show that every nonzero element of H has a multiplicative inverse. Consider $q = a_0 + a_1i + a_2i + a_3k$. **Define** $d = a_0^2 + a_1^2 + a_2^2 + a_3^2 \neq 0$ **.** Notice that

$$
(a_0 + a_1i + a_2j + a_3k)((a_0/d) - (a_1/d)i - (a_2/d)j - (a_3/d)k)
$$

= $(a_0(a_0/d) - a_1(-a_1/d) - a_2(-a_2/d) - a_3(-a_3/d))$
+ $(a_0(-a_1/d) + a_1(a_0/d) + a_2(-a_3/d) - a_3(-a_2/d))i$
+ $(a_0(-a_2/d) + a_2(a_0/d) + a_3(-a_1/d) - a_1(-a_3/d))j$
+ $(a_0(-a_3/d) + a_3(a_0/d) + a_1(-a_2/d) - a_2(-a_1/d))k$
= $(a_0^2 + a_1^2 + a_2^2 + a_3^2)/d = 1$.
So $(a_0 + a_1i + a_2j + a_3k)^{-1} = (a_0/d) - (a_1/d)i - (a_2/d)j - (a_3/d)k$

where $d = a_0^2 + a_1^2 + a_2^2 + a_3^2$. Therefore every nonzero element of $\mathbb H$ is a unit and so the quaternions form a noncommutative division ring.

Theorem A

Theorem A. The quaternions form a noncommutative division ring.

Proof. Tedious computations confirm that multiplication is associative and the distribution law holds. We now show that every nonzero element of H has a multiplicative inverse. Consider $q = a_0 + a_1i + a_2i + a_3k$. Define $d = a_0^2 + a_1^2 + a_2^2 + a_3^2 \neq 0$. Notice that

$$
(a_0 + a_1i + a_2j + a_3k)((a_0/d) - (a_1/d)i - (a_2/d)j - (a_3/d)k)
$$

= $(a_0(a_0/d) - a_1(-a_1/d) - a_2(-a_2/d) - a_3(-a_3/d))$
+ $(a_0(-a_1/d) + a_1(a_0/d) + a_2(-a_3/d) - a_3(-a_2/d))i$
+ $(a_0(-a_2/d) + a_2(a_0/d) + a_3(-a_1/d) - a_1(-a_3/d))j$
+ $(a_0(-a_3/d) + a_3(a_0/d) + a_1(-a_2/d) - a_2(-a_1/d))k$
= $(a_0^2 + a_1^2 + a_2^2 + a_3^2)/d = 1$.
So $(a_0 + a_1i + a_2j + a_3k)^{-1} = (a_0/d) - (a_1/d)i - (a_2/d)j - (a_3/d)k$

where $d = a_0^2 + a_1^2 + a_2^2 + a_3^2$. Therefore every nonzero element of $\mathbb H$ is a unit and so the quaternions form a noncommutative division ring.

Theorem B

Theorem B. Let $p(q) = \sum_{n=0}^{N} q^n a_n$ be a given quaternionic polynomial. Suppose that there exist $x_0, y_0 \in \mathbb{R}$ and $I, J \in \mathbb{S}$ with $I \neq J$ such that $p(x_0 + y_0) = 0$ and $p(x_0 + y_0) = 0$. Then for all $L \in \mathbb{S}$ we have $p(x_0 + y_0L) = 0.$

Proof. For any $n \in \mathbb{N}$ and any $L \in \mathbb{S}$ we have that $(x_0 + y_0 L)^n = \sum_{i=0}^n {n \choose i}$ $\int_{I_n}^{I_n} y_0^i L^i = \alpha_n + L\beta_n$ by the Binomial Theorem for a ring with identity (since $x_0y_0L = Lx_0y_0$ because $x_0, y_0 \in \mathbb{R}$; see Theorem III.1.6 of Hungerford) where

$$
\alpha_n = \sum_{i \equiv 0 \pmod{4}} {n \choose i} x_0^{n-i} y_0^i - \sum_{i \equiv 2 \pmod{4}} {n \choose i} x_0^{n-i} y_0^i
$$

and

$$
\beta_n = \sum_{i \equiv 1 \pmod{4}} {n \choose i} x_0^{n-i} y_0^i - \sum_{i \equiv 3 \pmod{4}} {n \choose i} x_0^{n-i} y_0^i
$$

Theorem B

Theorem B. Let $p(q) = \sum_{n=0}^{N} q^n a_n$ be a given quaternionic polynomial. Suppose that there exist $x_0, y_0 \in \mathbb{R}$ and $I, J \in \mathbb{S}$ with $I \neq J$ such that $p(x_0 + y_0) = 0$ and $p(x_0 + y_0) = 0$. Then for all $L \in \mathbb{S}$ we have $p(x_0 + y_0L) = 0.$

Proof. For any $n \in \mathbb{N}$ and any $L \in \mathbb{S}$ we have that $(x_0 + y_0 L)^n = \sum_{i=0}^n {n \choose i}$ $\left(\begin{array}{c} {n \choose i} {x_i^{n-i}} {y_0^i} L^i = \alpha_n + L\beta_n \end{array} \right)$ by the Binomial Theorem for a ring with identity (since $x_0y_0L = Lx_0y_0$ because $x_0, y_0 \in \mathbb{R}$; see Theorem III.1.6 of Hungerford) where

$$
\alpha_n = \sum_{i \equiv 0 \pmod{4}} {n \choose i} x_0^{n-i} y_0^i - \sum_{i \equiv 2 \pmod{4}} {n \choose i} x_0^{n-i} y_0^i
$$

and

$$
\beta_n = \sum_{i \equiv 1 \pmod{4}} {n \choose i} x_0^{n-i} y_0^i - \sum_{i \equiv 3 \pmod{4}} {n \choose i} x_0^{n-i} y_0^i
$$

Theorem B (continued 1)

Proof (continued). ... because $L^{0 \text{(mod } 4)} = 1$, $L^{1 \text{(mod } 4)} = L$, $L^{2 \text{(mod 4)}} = -1$, and $L^{3 \text{(mod 4)}} = -L$. We therefore have

$$
0 = 0 - 0 = \sum_{n=0}^{N} (\alpha_n + I\beta_n) a_n - \sum_{n=0}^{N} (\alpha_n + J\beta_n) a_n
$$

$$
=\sum_{n=0}^N((\alpha_n+l\beta_n)-(\alpha_n+l\beta_n))a_n=\sum_{n=0}^N(1-J)\beta_na_n=(1-J)\sum_{n=0}^N\beta_na_n.
$$

By hypothesis, $I-J\neq 0$ so (since $\mathbb H$ has no zero divisors) $\sum_{n=0}^{\mathcal N}\beta_n$ a $_n=0$ and so

$$
0 = p(x_0 + y_0 I) = \sum_{n=0}^{N} (x_0 + y_0 I)^n a_n = \sum_{n=0}^{N} (\alpha_n + I\beta_n) a_n
$$

=
$$
\sum_{n=0}^{N} \alpha_n a_n + I \sum_{n=0}^{N} \beta_n a_n = \sum_{n=0}^{N} \alpha_n a_n.
$$

Theorem B (continued 2)

Theorem B. Let $p(q) = \sum_{n=0}^{N} q^n a_n$ be a given quaternionic polynomial. Suppose that there exist $x_0, y_0 \in \mathbb{R}$ and $I, J \in \mathbb{S}$ with $I \neq J$ such that $p(x_0 + y_0) = 0$ and $p(x_0 + y_0) = 0$. Then for all $L \in \mathbb{S}$ we have $p(x_0 + y_0L) = 0.$

Proof (continued). Now for any $L \in \mathbb{S}$ we have that

$$
p(x_0 + y_0L) = \sum_{n=0}^{N} (x_0 + y_0L)^n a_n = \sum_{n=0}^{N} (\alpha_n + L\beta_n) a_n
$$

=
$$
\sum_{n=0}^{N} \alpha_n a_n + L \sum_{n=0}^{N} \beta_n a_n = 0 + 0 = 0.
$$

Proposition 16.2 of Lam

Proposition 16.2 of Lam. The Factor Theorem in a Ring with Unity. An element $r \in R$ is a left (right) root of a nonzero polynomial $f(t) = \sum_{i=0}^{n} t^i a_i \in R[t]$ if and only if $t - r$ is a left (right) divisor of $f(t)$ in $R[t]$.

Proof. We give a proof for left roots and divisors with the proof for right being similar. First, if

$$
f(t) = \sum_{i=0}^{n} t^{i} a_{i} = (t - r) \sum_{i=0}^{n-1} t^{i} c_{i} = \sum_{i=0}^{n-1} t^{i+1} c_{i} - \sum_{i=0}^{n-1} t^{i} r c_{i}
$$

then

$$
f(r) = \sum_{i=0}^{n-1} r^{i+1} c_i - \sum_{i=0}^{n-1} r^{i+1} c_i = 0.
$$

Proposition 16.2 of Lam

Proposition 16.2 of Lam. The Factor Theorem in a Ring with Unity. An element $r \in R$ is a left (right) root of a nonzero polynomial $f(t) = \sum_{i=0}^{n} t^i a_i \in R[t]$ if and only if $t - r$ is a left (right) divisor of $f(t)$ in $R[t]$.

Proof. We give a proof for left roots and divisors with the proof for right being similar. First, if

$$
f(t) = \sum_{i=0}^{n} t^{i} a_{i} = (t - r) \sum_{i=0}^{n-1} t^{i} c_{i} = \sum_{i=0}^{n-1} t^{i+1} c_{i} - \sum_{i=0}^{n-1} t^{i} r c_{i}
$$

then

$$
f(r)=\sum_{i=0}^{n-1}r^{i+1}c_i-\sum_{i=0}^{n-1}r^{i+1}c_i=0.
$$

Proposition 16.2 of Lam (continued)

Proposition 16.2 of Lam. The Factor Theorem in a Ring with Unity. An element $r \in R$ is a left (right) root of a nonzero polynomial $f(t) = \sum_{i=0}^{n} t^i a_i \in R[t]$ if and only if $t - r$ is a left (right) divisor of $f(t)$ in $R[t]$.

Proof. Second, suppose $f(r) = \sum_{i=0}^{n} r^i a_i = 0$. By the Remainder Theorem (Hungerford's Corollary III.6.3 which is stated for $x - r$ on the right, but the result also holds for $x - r$ on the left; this result holds in rings with unity) there is a unique $g(t) \in R[t]$ such that

$$
f(t) = (t - r)g(t) + f(r) = (t - r)g(t) + 0 = (t - r)g(t).
$$

So $t - r$ is a left divisor of $f(t)$.

Proposition 16.3 of Lam

Proposition 16.3 of Lam. Let D be a division ring and let $f(t) = h(t)g(t)$ in D[t]. Let $d \in D$ be such that $a = h(d) \neq 0$. Then $f(d)=h(d)g(a^{-1}da)$. In particular, if d is a left root of f but not of h then the conjugate of d , $a^{-1}da$, is a left root of g .

Proof. Let $g(t) = \sum_{i=0}^{n} t^{i} b_{i}$. Then $f(t) = h(t)g(t) = \sum_{i=0}^{n} t^{i} h(t) b_{i}$ and so

$$
f(d) = \sum_{i=0}^{n} d^{i}h(d)b_{i} = \sum_{i=0}^{n} d^{i}ab_{i} = \sum_{i=0}^{n} aa^{-1}d^{i}ab_{i}
$$

=
$$
\sum_{i=0}^{m} a(a^{-1}da)^{i}b_{i} = ag(a^{-1}da) = h(d)g(a^{-1}da).
$$

If d is a left root of f but not a left root of h then, since D has no zero divisors, $a^{-1}da$ must be a left root of g .

Proposition 16.3 of Lam

Proposition 16.3 of Lam. Let D be a division ring and let $f(t) = h(t)g(t)$ in D[t]. Let $d \in D$ be such that $a = h(d) \neq 0$. Then $f(d)=h(d)g(a^{-1}da)$. In particular, if d is a left root of f but not of h then the conjugate of d , $a^{-1}da$, is a left root of g .

Proof. Let $g(t) = \sum_{i=0}^{n} t^{i} b_{i}$. Then $f(t) = h(t)g(t) = \sum_{i=0}^{n} t^{i} h(t) b_{i}$ and so

$$
f(d) = \sum_{i=0}^{n} d^{i}h(d)b_{i} = \sum_{i=0}^{n} d^{i}ab_{i} = \sum_{i=0}^{n} aa^{-1}d^{i}ab_{i}
$$

=
$$
\sum_{i=0}^{m} a(a^{-1}da)^{i}b_{i} = ag(a^{-1}da) = h(d)g(a^{-1}da).
$$

If d is a left root of f but not a left root of h then, since D has no zero divisors, $a^{-1}da$ must be a left root of g .

Proposition 16.4 of Lam

Theorem 16.4 of Lam. Gordon-Motzkin Theorem. Let D be a division ring and let f be a polynomial of degree n in $D[t]$. Then the left (right) roots of f lie in at most n conjugacy classes of D . If $f(t) = (t - a_1)(t - a_2) \cdots (t - a_n)$ where $a_1, a_2, \ldots, a_n \in D$, then any left (right) root of f is conjugate to some a_i .

Proof. We prove this using induction. In the base case, $n = 1$ and so f has exactly one left root and so the left roots lie in $n = 1$ conjugacy class. Now suppose that if a polynomial is of degree $n-1$, then its left roots lie in at most $n - 1$ conjugacy classes. Let f be degree n and let c be a left root of f. Then by Proposition 16.2, $f(t) = (t - c)g(t)$ where g is of degree $n-1$.

Proposition 16.4 of Lam

Theorem 16.4 of Lam. Gordon-Motzkin Theorem. Let D be a division ring and let f be a polynomial of degree n in $D[t]$. Then the left (right) roots of f lie in at most n conjugacy classes of D . If $f(t) = (t - a_1)(t - a_2) \cdots (t - a_n)$ where $a_1, a_2, \ldots, a_n \in D$, then any left (right) root of f is conjugate to some a_i .

Proof. We prove this using induction. In the base case, $n = 1$ and so f has exactly one left root and so the left roots lie in $n = 1$ conjugacy class. Now suppose that if a polynomial is of degree $n-1$, then its left roots lie in at most $n - 1$ conjugacy classes. Let f be degree n and let c be a left root of f. Then by Proposition 16.2, $f(t) = (t - c)g(t)$ where g is of **degree n – 1.** Suppose $d \neq c$ is any other left root of f. Then by Proposition 16.3, d is a conjugate to a left root of $g(t)$ (in particular, $(d-c)^{-1}d(d-c) = r$ is a left root of g so $d = (d-c)r(d-c)^{-1}$.

Proposition 16.4 of Lam

Theorem 16.4 of Lam. Gordon-Motzkin Theorem. Let D be a division ring and let f be a polynomial of degree n in $D[t]$. Then the left (right) roots of f lie in at most n conjugacy classes of D . If $f(t) = (t - a_1)(t - a_2) \cdots (t - a_n)$ where $a_1, a_2, \ldots, a_n \in D$, then any left (right) root of f is conjugate to some a_i .

Proof. We prove this using induction. In the base case, $n = 1$ and so f has exactly one left root and so the left roots lie in $n = 1$ conjugacy class. Now suppose that if a polynomial is of degree $n-1$, then its left roots lie in at most $n - 1$ conjugacy classes. Let f be degree n and let c be a left root of f. Then by Proposition 16.2, $f(t) = (t - c)g(t)$ where g is of degree $n-1$. Suppose $d \neq c$ is any other left root of f. Then by Proposition 16.3, d is a conjugate to a left root of $g(t)$ (in particular, $(d-c)^{-1}d(d-c) = r$ is a left root of g so $d = (d-c)r(d-c)^{-1}$).

Proposition 16.4 of Lam (continued)

Theorem 16.4 of Lam. Gordon-Motzkin Theorem. Let D be a division ring and let f be a polynomial of degree n in $D[t]$. Then the left (right) roots of f lie in at most n conjugacy classes of D . If $f(t) = (t - a_1)(t - a_2) \cdots (t - a_n)$ where $a_1, a_2, \ldots, a_n \in D$, then any left (right) root of f is conjugate to some a_i .

Proof (continued). Since by the induction hypothesis the left roots of g lie in at most $n-1$ conjugacy classes, then this arbitrary left root of f (arbitrary except that is is not c) must lie in one of these $n-1$ conjugacy classes. Adding in the conjugacy class containing c , we have that the left roots of f lie in at most n conjugacy classes. The result now follows in general by induction.

The proof of the second claim follows similarly by induction. The result for right roots is similar.

Lemma A

Lemma A. For $q_1, q_2 \in \mathbb{H}$ we have $\overline{q_1 q_2} = \overline{q_2} \, \overline{q_1}$.

Proof. Let $q_1 = a_1 + b_1i + c_1j + d_1k$ and $q_2 = a_2 + b_2i + c_2j + d_2k$. Then

$$
\overline{q_{1}q_{2}} = (a_{1} + b_{1}i + c_{1}j + d_{1}k)(a_{2} + b_{2}i + c_{2}j + d_{2}k)
$$
\n
$$
= \frac{(a_{1}a_{2} - b_{1}b_{2} - c_{1}c_{2} - d_{1}d_{2}) + (a_{1}b_{2} + b_{1}a_{2} + c_{1}d_{2} - d_{1}c_{2})i}{+(a_{1}c_{2} + c_{1}a_{2} + d_{1}b_{2} - b_{1}d_{2})j + (a_{1}d_{2} + d_{1}a_{2} + b_{1}c_{2} - c_{1}b_{2})k}
$$
\n
$$
= (a_{1}a_{2} - b_{1}b_{2} - c_{1}c_{2} - d_{1}d_{2}) - (a_{1}b_{2} + b_{1}a_{2} + c_{1}d_{2} - d_{1}c_{2})i
$$
\n
$$
- (a_{1}c_{2} + c_{1}a_{2} + d_{1}b_{2} - b_{1}d_{2})j - (a_{1}d_{2} + d_{1}a_{2} + b_{1}c_{2} - c_{1}b_{2})k
$$
\n
$$
= ((a_{2})(a_{1}) - (-b_{2})(-b_{1}) - (-c_{2})(-c_{1}) - (-d_{2})(-d_{1}))
$$
\n
$$
+((-b_{2})(a_{1}) + (-b_{1})(a_{2}) - (-d_{2})(-c_{1}) + (-c_{2})(-d_{1})j
$$
\n
$$
+((-c_{2})(a_{1}) + (a_{2})(-c_{1}) - (-b_{2}) - d_{1}) + (-d_{2})(-b_{1}))j
$$
\n
$$
+((-d_{2})(a_{1}) + (a_{2})(-d_{1}) - (-c_{2})(-b_{1}) + (-b_{2})(-c_{1}))k
$$

Lemma A

Lemma A. For $q_1, q_2 \in \mathbb{H}$ we have $\overline{q_1q_2} = \overline{q_2} \overline{q_1}$.

Proof. Let $q_1 = a_1 + b_1 i + c_1 j + d_1 k$ and $q_2 = a_2 + b_2 i + c_2 j + d_2 k$. Then

$$
\overline{q_{1}q_{2}} = \frac{\overline{(a_{1} + b_{1}i + c_{1}j + d_{1}k)(a_{2} + b_{2}i + c_{2}j + d_{2}k)}}{(\overline{a_{1}a_{2} - b_{1}b_{2} - c_{1}c_{2} - d_{1}d_{2}) + (a_{1}b_{2} + b_{1}a_{2} + c_{1}d_{2} - d_{1}c_{2})i}
$$
\n
$$
+ (a_{1}c_{2} + c_{1}a_{2} + d_{1}b_{2} - b_{1}d_{2})j + (a_{1}d_{2} + d_{1}a_{2} + b_{1}c_{2} - c_{1}b_{2})k
$$
\n
$$
= (a_{1}a_{2} - b_{1}b_{2} - c_{1}c_{2} - d_{1}d_{2}) - (a_{1}b_{2} + b_{1}a_{2} + c_{1}d_{2} - d_{1}c_{2})i
$$
\n
$$
- (a_{1}c_{2} + c_{1}a_{2} + d_{1}b_{2} - b_{1}d_{2})j - (a_{1}d_{2} + d_{1}a_{2} + b_{1}c_{2} - c_{1}b_{2})k
$$
\n
$$
= ((a_{2})(a_{1}) - (-b_{2})(-b_{1}) - (-c_{2})(-c_{1}) - (-d_{2})(-d_{1}))
$$
\n
$$
+ ((-b_{2})(a_{1}) + (-b_{1})(a_{2}) - (-d_{2})(-c_{1}) + (-c_{2})(-d_{1})i
$$
\n
$$
+ ((-c_{2})(a_{1}) + (a_{2})(-c_{1}) - (-b_{2}) - d_{1}) + (-d_{2})(-b_{1}))j
$$
\n
$$
+ ((-d_{2})(a_{1}) + (a_{2})(-d_{1}) - (-c_{2})(-b_{1}) + (-b_{2})(-c_{1}))k
$$

Lemma A (continued)

Lemma A. For $q_1, q_2 \in \mathbb{H}$ we have $\overline{q_1 q_2} = \overline{q_2} \, \overline{q_1}$.

Proof (continued). ...

$$
\overline{q_1 q_2} = ((a_2)(a_1) - (-b_2)(-b_1) - (-c_2)(-c_1) - (-d_2)(-d_1))
$$

+((-b_2)(a_1) + (-b_1)(a_2) - (-d_2)(-c_1) + (-c_2)(-d_1)i
+((-c_2)(a_1) + (a_2)(-c_1) - (-b_2) - d_1) + (-d_2)(-b_1))j
+((-d_2)(a_1) + (a_2)(-d_1) - (-c_2)(-b_1) + (-b_2)(-c_1))k
= ((a_2)(a_1) - (-b_2)(-b_1) - (-c_2)(-c_1) - (-d_2)(-d_1))
+((a_2)(-b_1) + (-b_2)(a_1) + (-c_2)(-d_1) - (-d_2)(-c_1))i
+((a_2)(-c_1) + (-c_2)(a_1) + (-d_2)(-b_1) - (-b_2)(-d_1))j
+((a_2)(-d_1) + (-d_2)(a_1) + (-b_2)(-c_1) - (c_1)(-b_1))k
= (a_2 + (-b_2)i + (-c_2)j + (-d_2)k)(a_1 + (-b_1)i
+(-c_1)j + (-d_1)k)

Theorem 16.14 of Lam

Theorem 16.14 of Lam. ("Niven-Jacobson" in Lam) Fundamental Theorem of Algebra for Quaternions.

The quaternions, $\mathbb H$, are left (and right) algebraically closed.

Proof. For $f(q) = \sum_{r=0}^{n} g^r a_r \in \mathbb{H}[q]$, define $\overline{f}(q) = \sum_{r=0}^{n} \frac{r^r \overline{q} a_r}{r^r \overline{q} a_r} \in \mathbb{H}[q]$. For $f,g\in\mathbb{H}[q]$ with $f(q)=\sum_{i=0}^n q^i a_i$ and $g(q)=\sum_{j=0}^m q^j b_j$ we have

$$
\overline{fg} = \left(\sum_{i=0}^{n} q^{i} a_{i} \right) \left(\sum_{j=0}^{m} q^{j} b_{i} \right)
$$

$$
= \left(\sum_{i=0,1,...,n; j=0,1,...,m} q^{i+j} a_{i} b_{j} \right)
$$

$$
= \sum_{i=0,1,...,n; j=0,1,...,m} q^{i+j} a_{i} b_{j}
$$

Theorem 16.14 of Lam

Theorem 16.14 of Lam. ("Niven-Jacobson" in Lam) Fundamental Theorem of Algebra for Quaternions.

The quaternions, $\mathbb H$, are left (and right) algebraically closed.

Proof. For $f(q) = \sum_{r=0}^{n} g^r a_r \in \mathbb{H}[q]$, define $\overline{f}(q) = \sum_{r=0}^{n} r^r \overline{q a_r} \in \mathbb{H}[q]$. For $f,g\in \mathbb{H}[q]$ with $f(q)=\sum_{i=0}^n q^i a_i$ and $g(q)=\sum_{j=0}^m q^j b_j$ we have

$$
\overline{fg} = \left(\sum_{i=0}^{n} q^{i} a_{i} \right) \left(\sum_{j=0}^{m} q^{j} b_{i} \right)
$$

$$
= \left(\sum_{i=0,1,...,n; j=0,1,...,m} q^{i+j} a_{i} b_{j} \right)
$$

$$
= \sum_{i=0,1,...,n; j=0,1,...,m} q^{i+j} \overline{a_{i}} \overline{b_{j}}
$$

Theorem 16.14 of Lam (continued 1)

Proof (continued). ...

$$
\overline{fg} = \sum_{i=0,1,\dots,n; j=0,1,\dots,m} q^{i+j} \overline{a_i b_j}
$$
\n
$$
= \sum_{i=0,1,\dots,n; j=0,1,\dots,m} q^{i+j} \overline{b_j} \overline{a_i} \text{ by Lemma A}
$$
\n
$$
= \left(\sum_{j=0}^m q^j \overline{b_j}\right) \left(\sum_{i=0}^n q^i \overline{a_i}\right)
$$
\n
$$
= \overline{g} \overline{f}.
$$

So, in particular, $\overline{f}\overline{f} = \overline{f}\overline{f} = f\overline{f}$, and so $f\overline{f}$ equals its own quaternionic conjugate. Therefore the coefficients of $f\bar{f}$ must be real and $f\bar{f} \in \mathbb{R}[q]$ for all $f \in \mathbb{H}[q]$.

Theorem 16.14 of Lam (continued 2)

Theorem 16.14 of Lam. Fundamental Theorem of Algebra for \mathbb{H} . The quaternions, $\mathbb H$, are left (and right) algebraically closed.

Proof (continued). We now use mathematical induction on $n = \deg(f)$ to prove that f has a left root in $\mathbb H$. For $n = 1$, f clearly has a left root. Suppose $n > 2$ and that every polynomial of degree less than n has a left root in H. Since $\mathbb{R}(i) = \mathbb{C} \subset \mathbb{H}$ is algebraically closed and $f\overline{f} \in \mathbb{R}[q]$ then $f\overline{f}$ has a root α in $\mathbb{R}(i) = \mathbb{C}$. By Proposition 16.3, either α is a left root or f or a conjugate β of α is a left root of \overline{f} . In the former case we are **done**. In the latter case, if $f(q) = \sum_{r=0}^{n} q^r a_r$ then $\overline{f}(q) = \sum_{n=0}^{n} q^r \overline{a_r}$ and so $\overline{f}(\beta) = \sum_{r=0}^{n} \beta^r \overline{a_r} = 0$ or $\sum_{r=0}^{n} \overline{a_r \beta}^r = 0$. That is, $\overline{\beta}$ is a right root of $f(q)$. By Theorem 16.2 (applied to a right roots) we can write $f(q) = (q - \overline{\beta})g(q)$ where $g(q) \in \mathbb{H}$ has degree $n - 1$. By the induction hypothesis, $g(q)$ has a left root $\gamma \in \mathbb{H}$. But then γ is also a left root of $f(q)$ and the general result now follows by induction. The result for right algebraic closure is similar.

Theorem 16.14 of Lam (continued 2)

Theorem 16.14 of Lam. Fundamental Theorem of Algebra for \mathbb{H} . The quaternions, $\mathbb H$, are left (and right) algebraically closed.

Proof (continued). We now use mathematical induction on $n = \deg(f)$ to prove that f has a left root in \mathbb{H} . For $n = 1$, f clearly has a left root. Suppose $n > 2$ and that every polynomial of degree less than n has a left root in H. Since $\mathbb{R}(i) = \mathbb{C} \subset \mathbb{H}$ is algebraically closed and $f\overline{f} \in \mathbb{R}[q]$ then $f\overline{f}$ has a root α in $\mathbb{R}(i) = \mathbb{C}$. By Proposition 16.3, either α is a left root or f or a conjugate β of α is a left root of \overline{f} . In the former case we are done. In the latter case, if $f(q)=\sum_{r=0}^n q^r a_r$ then $\overline{f}(q)=\sum_{n=0}^n q^r \overline{a_r}$ and so $\overline{f}(\beta) = \sum_{r=0}^{n} \beta^r \overline{a_r} = 0$ or $\sum_{r=0}^{n} \overline{a_r \beta^r} = 0$. That is, $\overline{\beta}$ is a right root of $f(q)$. By Theorem 16.2 (applied to a right roots) we can write $f(q) = (q - \overline{\beta})g(q)$ where $g(q) \in \mathbb{H}$ has degree $n - 1$. By the induction hypothesis, $g(q)$ has a left root $\gamma \in \mathbb{H}$. But then γ is also a left root of $f(q)$ and the general result now follows by induction. The result for right algebraic closure is similar.

