# Modern Algebra

#### **Direct Products and Semidirect Products**

5.4 Recognizing Direct Products, 5.5 Semidirect Products —Proofs of Theorems



Modern Algebra

March 16, 2021 1 / 28

Modern Algebra

March 16, 2021 3 / 28

#### Theorem DF.5.7 (continued 1)

**Proposition DF.5.7.** Let G be a group, let  $x, y \in G$ , and let H < G. Then

> (5) If  $\varphi: G \to A$  is any homomorphism of G into an abelian group A, then  $\varphi$  factors through G', i.e.,  $G' \leq \ker(\varphi)$  and the following diagram commutes:



#### Theorem DF.5.7

**Proposition DF.5.7.** Let G be a group, let  $x, y \in G$ , and let H < G. Then

- (1) xy = yx[x, y].
- (2)  $H \subseteq G$  if and only if  $[H, G] \subseteq H$ .
- (3) For any automorphism  $\sigma$  of G, we have  $\sigma[x,y] = [\sigma(x),\sigma(y)]$ . Also, G' is a characteristic subgroup of G (denoted "G" char G"; this means that every automorphism of G maps G' to itself, i.e.,  $\sigma(G') = G'$ ) and G/G' is abelian.
- (4) G/G' is the largest abelian quotient group of G in the sense that if  $H \triangleleft G$  and G/H is abelian, then  $G' \triangleleft H$ . Conversely, if G' < H, then  $H \triangleleft G$  and G/H is abelian.

# Theorem DF.5.7 (continued 2)

**Proposition DF.5.7.** Let G be a group, let  $x, y \in G$ , and let H < G. Then

- (1) xy = yx[x, y].
- (2)  $H \triangleleft G$  if and only if  $[H, G] \triangleleft H$ .

**Proof.** (1) We have  $yx[x, y] = yxx^{-1}y^{-1}xy = xy$ .

(2) We have  $H \subseteq G$  is and only if  $g^{-1}hg \in H$  for all  $g \in G$  and all  $h \in H$ by Theorem I.5.1. For  $h \in H$ , we have  $g^{-1}hg \in H$  if and only if  $h^{-1}g^{-1}hg = [h,g] \in H$ . So  $H \subseteq G$  is an only if  $[h,g] \in H$  for all  $h \in H$ and all  $g \in G$ . That is,  $H \subseteq G$  if and only if  $[H, G] \subseteq H$ . 

March 16, 2021 March 16, 2021 5 / 28

## Theorem DF.5.7 (continued 3)

**Proposition DF.5.7.** Let G be a group, let  $x, y \in G$ , and let H < G. Then

> (3) For any automorphism  $\sigma$  of G, we have  $\sigma[x,y] = [\sigma(x),\sigma(y)]$ . Also, G' is a characteristic subgroup of G (denoted "G' char G"; this means that every automorphism of G maps G' to itself, i.e.,  $\sigma(G') = G'$ ) and G/G' is abelian.

**Proof (continued).** (3) Let  $\sigma \in Aut(G)$  be an automorphism of G and let  $x, y \in G$ . Then

$$\sigma([x,y]) = \sigma(x^{-1}y^{-1}xy)$$

$$= \sigma(x^{-1})\sigma(y^{-1})\sigma(x)\sigma(y) \text{ since } \sigma \text{ is an automorphism}$$

$$= \sigma(x)^{-1}\sigma(y)^{-1}\sigma(x)\sigma(y) \text{ since } \sigma \text{ is an automorphism}$$

$$= [\sigma(x), \sigma(y)].$$

Modern Algebra

Thus for every commutator  $[x, y] \in G'$ ,  $\sigma([x, y]) \in G'$ .

#### Theorem DF.5.7 (continued 5)

**Proposition DF.5.7.** Let G be a group, let  $x, y \in G$ , and let H < G. Then

> (4) G/G' is the largest abelian quotient group of G in the sense that if  $H \subseteq G$  and G/H is abelian, then  $G' \subseteq H$ . Conversely, if G' < H, then  $H \triangleleft G$  and G/H is abelian.

**Proof (continued).** (4) Suppose  $H \triangleleft G$  and G/H is abelian. Then for all  $x, y \in G$  we have (xH)(yH) = (yH)(xH) and so

 $1H = (xH)^{-1}(xH)(yH)^{-1}(yH)$  by the definition of the identity in G/H $= (xH)^{-1}(yH)^{-1}(xH)(yH)$  since G/H is abelian  $= (x^{-1}y^{-1}xy)H$  by the definition of coset mulitplication

= [x, y]H.

So  $[x,y] \in H$  for all  $x,y \in G$  and hence  $G' \leq H$ . So G/G' is the largest abelain quotient group.

#### Theorem DF.5.7 (continued 4)

**Proof continued.** Since  $\sigma$  has a two-sided inverse (because Aut(G) is a group), then  $\sigma$  maps the set of commutators bijectively onto itself. Since the commutators are a generating set for G', then  $\sigma(G') = G'$ . That is, G' char G.

We now show that G/G' is abelian. Let xg' and yG' be arbitrary elements of G/G'. We have

$$(xG')(yG') = (xy)G'$$
 by definition  
 $= (yx[xy])G'$  by (1)  
 $= (yx)G'$  since  $[x, y] \in G'$   
 $= (yG')(xG')$  by definition.

March 16, 2021

# Theorem DF.5.7 (continued 6)

**Proposition DF.5.7.** Let G be a group, let  $x, y \in G$ , and let H < G. Then

> (4) G/G' is the largest abelian quotient group of G in the sense that if  $H \triangleleft G$  and G/H is abelian, then  $G' \triangleleft H$ . Conversely, if G' < H, then  $H \triangleleft G$  and G/H is abelian.

**Proof (continued).** Conversely, if G' < H then, since G/G' is abelian (by (3)), every subgroup of G/G' is normal. In particular,  $H/G' \triangleleft G/G'$ . By Corollary I.5.12, this implies that  $H \triangleleft G$ . By the Third Isomorphism Theorem (Corollary I.5.10), we have that  $G/H \cong (G/G')/(H/G')$ . Therefore G/H is abelian since it is a quotient group of the abelian group G/G'. 

Modern Algebra March 16, 2021 Theorem DF.5.7

#### Theorem DF.5.7 (continued 7)

**Proposition DF.5.7.** Let G be a group, let  $x, y \in G$ , and let  $H \leq G$ . Then

(5) If  $\varphi: G \to A$  is any homomorphism of G into an abelian group A, then  $\varphi$  factors through G', i.e.,  $G' \leq \ker(\varphi)$  and the following diagram commutes:



Modern Algebra March 16, 2021 10

Theorem DF.3.1

## Corollary DF.3.15

**Corollary DF.3.15.** If H and K are subgroups of G and  $H \le N_G(K) = \{g \in G \mid gKg^{-1} = K\}$ , then HK is a subgroup of G. In particular, if  $K \triangleleft G$  then HK < G for any H < G.

**Proof.** Let  $h \in H$ ,  $k \in K$ . Since  $H \leq N_G(K)$  then  $hkh^{-1} \in K$  and so  $hk = hk(h^{-1}h) = (hkh^{-1})h \in KH$  and so  $HK \subset KH$ . Similarly  $kh = (hh^{-1})kh = h(h^{-1}kh) \in HK$ . Therefore KH = HK and by the previous not, HK is a subgroup of G.

#### Theorem DF 5.7

# Theorem DF.5.7 (continued 8)

**Proof (continued). (5)** With  $\psi$  as the canonical homomorphism mapping  $G \to G/G'$ , we have  $\ker(\psi) = G'$ . So for any given homomorphism  $\varphi: G \to A$ , by Theorem I.5.6, there is a unique homomorphism  $\theta$  mapping  $G/G' \to A$  such that  $\varphi = \theta \circ \psi$ . That is, the diagram commutes:



() Modern Algebra March 16, 2021 11 / 28

Theorem DF.5.1

#### Theorem DF.5.10

**Theorem DF.5.10.** Let H and K be groups and let  $\varphi$  be a homomorphism from K into Aut(H). Let  $\cdot$  denote action of K on H determined by  $\varphi$ . Let G be the set of ordered pairs (h, k) with  $h \in H$  and  $k \in K$  and define the binary operation  $(h_1, k_1)(h_2, k_2) = (h_1 \ k_1 \cdot h_2, k_1, k_2)$ .

- (1) The binary operation makes G a group of order |G| = |H||K|.
- (2) The sets  $\tilde{H} = \{(h,1) \mid h \in H\}$  and  $\tilde{K} = \{(1,k) \mid k \in K\}$  are subgroups of G and the maps  $h \mapsto (h,1)$  for  $h \in H$  and  $k \mapsto (1,k)$  for  $k \in K$  are isomorphisms of these subgroups with groups H and K.
- (3)  $H \subseteq G$  (associating H with its isomorphic copy of ordered pairs).
- (4)  $H \cap K = \{1\}.$
- (5) For all  $h \in H$  and  $k \in K$ , we have  $khk^{-1} = k \cdot h = \varphi(k)(h)$ .

 Modern Algebra
 March 16, 2021
 12 / 28
 ()
 Modern Algebra
 March 16, 2021
 13 / 28

#### Theorem DF.5.10 (continued 1)

**Theorem DF.5.10.** Let H and K be groups and let  $\varphi$  be a homomorphism from K into Aut(H). Let  $\cdot$  denote action of K on Hdetermined by  $\varphi$ . Let G be the set of ordered pairs (h, k) with  $h \in H$  and  $k \in K$  and define the binary operation  $(h_1, k_1)(h_2, k_2) = (h_1 \ k_1 \cdot h_2, k_1, k_2)$ .

(1) The binary operation makes G a group of order |G| = |H||K|.

**Proof.** (1) For  $1 \in K$  and  $\varphi$  a homomorphism from K into Aut(H), we have that  $\varphi(1)$  is the identity automorphism of H since a homomorphism maps an identity to an identity. So for  $h \in H$  the action is  $1 \cdot h = h$ . We use this to show that the identity is (1, 1):

$$(1,1)(h,k) = (1 \cdot 1 \cdot h, 1k)$$
  
=  $(1h, 1k)$  by above  
=  $(h,k)$ .

Modern Algebra

Now for any  $\varphi(k) \in Aut(H)$ , since  $\varphi(k)$  is an automorphism then  $k \cdot h = \varphi(k)(h)$  is the inverse of  $k \cdot h^{-1} = \varphi(k)(h^{-1})$ .

#### Theorem DF.5.10 (continued 3)

**Theorem DF.5.10.** Let H and K be groups and let  $\varphi$  be a homomorphism from K into Aut(H). Let  $\cdot$  denote action of K on Hdetermined by  $\varphi$ . Let G be the set of ordered pairs (h, k) with  $h \in H$  and  $k \in K$  and define the binary operation  $(h_1, k_1)(h_2, k_2) = (h_1, k_1 \cdot h_2, k_1, k_2)$ .

(1) The binary operation makes G a group of order |G| = |H||K|. Proof (continued).

$$((a,x),(b,y))(c,z) = (a(x \cdot (b(y \cdot c))), xyz)$$

$$= (a,x)(b \ y \cdot c, yz) \text{ by the definition}$$
of the binary operation
$$= (z,x)((b,y)(c,z)) \text{ by the definition}$$
of the binary operation.

So G is a group under the binary operation.

# Theorem DF.5.10 (continued 2)

**Proof (continued).** We use this to show that the inverse of (h, k) is

$$(k^{-1} \cdot h^{-1}, k^{-1})$$
:  
 $(k^{-1} \cdot h^{-1}, k^{-1})(h, k) = ((k^{-1} \cdot k^{-1})(k^{-1} \cdot h), k^{-1}k)$   
 $= (1, 1)$  by above.

Since we have established a left identity and left inverses, by Theorem I.1.3, we have a two sided identity and two sided inverses.

For associativity (using Dummit and Foote's notation):

$$((a,x),(b,y))(c,z) = (ax \cdot b, xy)(cz)$$

$$= ((ax \cdot b)((xy \cdot c), xyz)$$

$$= ((ax \cdot b)(x \cdot (y \cdot x)), xyz)$$

$$= (a((x \cdot b)(x \cdot (y \cdot c))), xyz)$$

$$= (a(x \cdot (b(y \cdot c))), xyz) \text{ since the action}$$
of x is an automorphism and so
$$(x \cdot b)(x \cdot (y \cdot c)) = x \cdot (b(y \cdot c))$$

# Theorem DF.5.10 (continued 4)

#### Theorem DF.5.10.

(2) The sets  $\tilde{H} = \{(h, 1) \mid h \in H\}$  and  $\tilde{K} = \{(1, k) \mid k \in K\}$  are subgroups of G and the maps  $h \mapsto (h, 1)$  for  $h \in H$  and  $k \mapsto (1, k)$  for  $k \in K$  are isomorphisms of these subgroups with groups H and K.

Modern Algebra March 16, 2021 15 / 28

**Proof (continued).** (2) Let  $\theta: H \to \tilde{H}$  and  $\psi: K \to \tilde{K}$  be defined as  $\theta(h) = (h, 1)$  and  $\psi(k) = (1, k)$ . Then "clearly"  $\theta$  and  $\psi$  are one to one and onto. Now

$$\theta(h_1h_2) = (h_1h_2, 1) = (h_1 \ 1 \cdot h_2, 11) = (h_1, 1)(h_2, 1) = \theta(h_1)\theta(h_2), \text{ and}$$
 
$$\psi(k_1k_2) = (1, k_1k_2) = (1 \ 1, k_1k_2)$$
 
$$= (1 \ k_1 \cdot 1, k_1k_2) \text{ since action on } 1$$
 by an automorphism yields  $1 \ (*)$  
$$= (1, k_1)(1, k_2) = \psi(k_1)\psi(k_2).$$

Modern Algebra

March 16, 2021

Theorem DF.5.10

## Theorem DF.5.10 (continued 5)

#### Theorem DF.5.10.

- (4)  $H \cap K = \{1\}.$
- (5) For all  $h \in H$  and  $k \in K$ , we have  $khk^{-1} = k \cdot h = \varphi(k)(h)$ .

**Proof (continued).** (4) "Clearly"  $\tilde{H} \cap \tilde{K} = \{(1,1)\}$ . Identifying H and K with  $\tilde{H}$  and  $\tilde{K}$  (as hypothesized) yields  $H \cap K = \{1\}$ .

**(5)** We now show that when k acts on h, the action is actually conjugation:  $k \cdot h = khk^{-1}$ . Notice that, in the notation of  $\tilde{H}$  and  $\tilde{K}$ ,

$$(1,k)(h,1)(1,k)^{-1} = ((1,k)(h,1))(1,k^{-1})$$

$$= (1 k \cdot h, k)(1, k^{-1})$$

$$= (k \cdot h k \cdot 1, kk^{-1})$$

$$= (k \cdot h, 1) \operatorname{since} k \cdot 1 = 1 \operatorname{as in} (1); \operatorname{see} (*).$$

Modern Algebra

"Identifying" H and K with  $\tilde{H}$  and  $\tilde{K}$  gives  $khk^{-1} = k \cdot h = \varphi(k)(h)$ .

#### Proposition DF.5.11

**Proposition DF.5.11.** Let H and K be groups and let  $\varphi : K \to Aut(H)$  be a homomorphism. The following are equivalent.

- (1) The identity set map between  $H \rtimes K$  and  $H \times K$  (both consisting of ordered pairs) is a group homomorphism (and hence  $H \rtimes K \cong H \times K$ ).
- (2)  $\varphi$  is the trivial homomorphism from K into Aut(H) (which maps all  $k \in K$  to the identity automorphism).
- (3)  $K \subseteq H \rtimes K$ .

**Proof.** (1) implies (2) Suppose the identity map is an isomorphism between  $H \rtimes K$  and  $N \times K$ . In  $H \times K$ ,  $(h_1, k_1)(h_2, k_2) = (h_1h_2, k_1k_2)$  and in  $H \rtimes K$ ,  $(h_1, h_2)(k_1, k_2) = (h_1 \ k_1 \cdot h_2, k_1k_2)$ . So it must be that  $h_1h_2 = h_1 \ k_1 \cdot h_2$ , or  $h_2 = k_1 \cdot h_2$ . This must hold for all  $h_2 \in H$ , so  $\varphi(k_1)$  must be the identity automorphism. Also, this holds for all  $k_1 \in K$  and so it must be that  $\varphi(k)$  is the identity automorphism for all  $k \in K$ . That is,  $\varphi$  is the trivial homomorphism from K to Aut(H).

## Theorem DF.5.10 (continued 6)

**Theorem DF.5.10.** Let H and K be groups and let  $\varphi$  be a homomorphism from K into  $\operatorname{Aut}(H)$ . Let  $\cdot$  denote action of K on H determined by  $\varphi$ . Let G be the set of ordered pairs (h,k) with  $h \in H$  and  $k \in K$  and define the binary operation  $(h_1,k_1)(h_2,k_2)=(h_1\ k_1\cdot h_2,k_1,k_2)$ .

(3)  $H \subseteq G$  (associating H with its isomorphic copy of ordered pairs).

**Proof (continued).** (3) Recall that  $N_G(H) = \{g \in G \mid gHg^{-1} = H\}$  is the normalizer of H in G. By (5), since  $khk^{-1} = k \cdot h = \varphi(k)(h)$  and  $\varphi(k)$  is an automorphism of H, then  $khk^{-1} \in H$  for all  $h \in H$  and for all  $k \in K$ , and so  $kHk^{-1} = k \cdot H = \varphi(k)(H) = H$ . So  $K < N_G(H)$ . Also, of course,  $H \leq N_G(H)$ . Since G = HK (though technically G consists of ordered pairs instead of products, but we "identity" these). So  $G \leq N_G(H)$  and hence  $G = N_G(H)$ . That is,  $H \leq G$ .

Modern Algebra March 16, 2021 19 / 2

Proposition DF.5.1

## Proposition DF.5.11 (continued 1)

**Proposition DF.5.11.** Let H and K be groups and let  $\varphi: K \to \operatorname{Aut}(H)$  be a homomorphism. The following are equivalent.

- (2)  $\varphi$  is the trivial homomorphism from K into Aut(H) (which maps all  $k \in K$  to the identity automorphism).
- (3)  $K \subseteq H \rtimes K$ .

**Proof (continued).** (2) implies (3) If  $\varphi$  is the trivial homomorphism, then  $\varphi(k)$  is the identity automorphism of H and  $k \cdot h = h$  for all  $h \in H$  and for all  $k \in K$ . By Theorem DF.10(5),  $k \cdot h = khk^{-1}$ , so  $khk^{-1} = h$  for all  $h \in H$ ,  $k \in K$ . So kh = hk and the elements of H commute with the elements of H. Also H normalizes H (since H for all H

March 16, 2021 18 / 28

#### Proposition DF.5.11

#### Proposition DF.5.11 (continued 2)

**Proposition DF.5.11.** Let H and K be groups and let  $\varphi : K \to Aut(H)$  be a homomorphism. The following are equivalent.

- (2)  $\varphi$  is the trivial homomorphism from K into Aut(H) (which maps all  $k \in K$  to the identity automorphism).
- (3)  $K \leq H \rtimes K$ .

Proof (continued). (2) implies (3) Then

$$gkg^{-1} = (h_1, k_1)(1, k)(h_1, k_1)^{-1}$$

$$= ((h_1, k_1)(1, k))(h_1, k_1)^{-1}$$

$$= (h_1 k_1 \cdot 1, k_1 k)(k_1^{-1} \cdot h_1, k_1^{-1}) \text{ by the definition of product}$$
in  $H \rtimes K$  and the formula for an inverse of  $(h_1, k_1)$ 
(see the proof of Theorem DF.10)
$$= (h_1 1, k_1 k)(h - 1^{-1}, k_1^{-1}) \text{ since the group action yields}$$
the identity automorphism
$$= (h_1 (k_1 k) \cdot h_1^{-1}, k_1, k, k_1^{-1}) \text{ by the definition of product}$$

#### Proposition DF.5.1

# Proposition DF.5.11 (continued 4)

**Proposition DF.5.11.** Let H and K be groups and let  $\varphi : K \to Aut(H)$  be a homomorphism. The following are equivalent.

- (1) The identity set map between  $H \rtimes K$  and  $H \times K$  (both consisting of ordered pairs) is a group homomorphism (and hence  $H \rtimes K \cong H \times K$ ).
- (3)  $K \subseteq H \rtimes K$ .

**Proof.** (3) implies (1) [The text, DF, uses a simplified notation when considering h, k, hk, etc. We use the ordered pair notation throughout this proof.] Notice that the commutator satisfies:

$$[h, k] = [(h, 1), (1.k)]$$
 "identifying" as in Theorem DF.10  

$$= (h, 1)^{-1}(1, k)^{-1}(h, 1)(1, k)$$
  

$$= (1 \cdot h^{-1}, 1)(k^{-1} \cdot 1, k^{-1})(h, 1)(1, k)$$
  

$$= (h^{1}, 1)(1, k)(h, 1)(1, k).$$

Since  $H \subseteq H \rtimes K$  by Theorem DF.10(3),  $(1, k)^{-1}(h, 1)(1, k) \in H$  and so  $(h, 1)^{-1}(1, k)^{-1}(h, 1)(1, k) \in H$ . That is,  $[h, k] = [(h, 1), (1, k)] \in H$ .

#### Proposition DF.5.11

# Proposition DF.5.11 (continued 3)

**Proposition DF.5.11.** Let H and K be groups and let  $\varphi : K \to Aut(H)$  be a homomorphism. The following are equivalent.

- (2)  $\varphi$  is the trivial homomorphism from K into Aut(H) (which maps all  $k \in K$  to the identity automorphism).
- (3)  $K \triangleleft H \rtimes K$ .

Proof (continued). (2) implies (3) Then

$$gkg^{-1} = (h_1(k_1k) \cdot h_1^{-1}, k_1, k, k_1^{-1})$$
 by the definition of product 
$$= (h_1h_1^{-1}, k_1kk_1^{-1})$$
 since group action yields the identity automorphism 
$$= (1, k_1kk_1^{-1}) \in K.$$

So  $K \subseteq H \rtimes K$  (again, we "identity" K and  $\tilde{K}$ ) by Theorem I.5.1(iv).

Modern Algebra March 16, 2021 23 / 28

#### Proposition DF.5.1

## Proposition DF.5.11 (continued 5)

**Proposition DF.5.11.** Let H and K be groups and let  $\varphi : K \to Aut(H)$  be a homomorphism. The following are equivalent.

- (1) The identity set map between  $H \rtimes K$  and  $H \times K$  (both consisting of ordered pairs) is a group homomorphism (and hence  $H \rtimes K \cong H \times K$ ).
- (3)  $K \subseteq H \rtimes K$ .

**Proof (continued). (3) implies (1) (continued)** Similarly, since  $K \leq H \rtimes K$  by hypothesis, then  $(h,1)^{-1}(1,k)^{-1}(h,1) \in K$  and so  $(h,1)^{-1}(1,k)^{-1}(h,1)(1,k) \in K$ . That is  $[h,k]=[(h,1)(1,k)] \in K$ . Since  $H \cap K=1=(1,1)$  ("identifying") by Theorem DF.10(4), then

$$[h, k] = [(h, 1)(1, k)] = (h^{-1}, 1)(1, k^{-1})(h, 1)(1, k) = (1, 1).$$

This implies (h,1)(1,k)=(1,k)(h,1) (or "identifying," hk=kh). Now  $(h,1)(1,k)=(h\ 1\cdot 1,k)=(h,k)$  and  $(1,k)(h,1)=(1\ k\cdot h,k)$ , since these are equal, we must have  $k\cdot h=h$  for all  $h\in H$ ,  $k\in K$ . That is, the action of K on H is the identity  $(\varphi(k)(h)=h)$ .