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Theorem DF.5.7 (continued 1)

Proposition DF.5.7. Let G be a group, let x,y € G, and let H < G.
Then

(5) If ¢ : G — Ais any homomorphism of G into an abelian
group A, then ¢ factors through G’, i.e., G’ < ker(y) and
the following diagram commutes:

G/G'
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Theorem DF.5.7

Proposition DF.5.7. Let G be a group, let x,y € G, and let H < G.
Then

(1) xy = yx[x, y].

(2) H< G if and only if [H, G] < H.

(3) For any automorphism o of G, we have
olx,y] = [o(x),o(y)]. Also, G’ is a characteristic subgroup
of G (denoted “G’ char G"; this means that every
automorphism of G maps G’ to itself, i.e., o(G’') = G’) and
G/G' is abelian.

(4) G/G'is the largest abelian quotient group of G in the sense
that if H < G and G/H is abelian, then G’ < H. Conversely,
if G' < H, then H< G and G/H is abelian.

Theorem DF.5.7 (continued 2)

Proposition DF.5.7. Let G be a group, let x,y € G, and let H < G.
Then

(1) xy = yx[x, y].
(2) H< G if and only if [H, G] < H.

Proof. (1) We have yx[x, y] = yxx "1y ~Ixy = xy. O

(2) We have H<1 G is and only if g thg € Hforallg€ G andall he H
by Theorem 1.5.1. For h € H, we have g 'hg € H if and only if
h~lg=lhg =[h,g]l € H. So H< G is an only if [h,g] € H for all h€ H
and all g € G. Thatis, H< G if and only if [H, G] < H. O
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Theorem DF.5.7 (continued 3) Theorem DF.5.7 (continued 4)

Proposition DF.5.7. Let G be a group, let x,y € G, and let H < G.

Then Proof continued. Since o has a two-sided inverse (because Aut(G) is a

group), then o maps the set of commutators bijectively onto itself. Since
the commutators are a generating set for G', then o(G’) = G'. That is,
G’ char G.

We now show that G/G’ is abelian. Let xg’ and yG’ be arbitrary elements
of G/G’. We have

(3) For any automorphism o of G, we have
a[x,y] = [o(x),o(y)]. Also, G’ is a characteristic subgroup
of G (denoted “G’ char G”; this means that every
automorphism of G maps G’ to itself, i.e., 0(G’) = G’) and
G/G' is abelian.

Proof (continued). (3) Let o € Aut(G) be an automorphism of G and

let x,y € G. Then (xG")(yG') = (xy)G’ by definition
_ /
o([x,y]) = o(xty lxy) = (YX[XY])F; by (1)
SN 1 . . : = (yx)G' since [x,y] € G’
= o(x )o(y )o(x)o(y) since o is an automorphism . ) L
= o(x)"to(y)to(x)a(y) since o is an automorphism = (YG)(xG") by definition.
= [o(x),0(y)]- O
Thus for every commutator [x, y] € G, o([x,y]) € G".
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Theorem DF.5.7 (continued 5) Theorem DF.5.7 (continued 6)
Proposition DF.5.7. Let G be a group, let x,y € G, and let H < G.
Then
P ition DF.5.7. Let G b let dlet H<G.
(4) G/G'is the largest abelian quotient group of G in the sense TLZ:OSI 1on S et G be a group, let x,y € G, and let H < G
that if H < G and G/H is abelian, then G’ < H. Conversely, _ _ _ _
if G' < H, then H<I G and G/H is abelian. (4) G/G'is the largest abelian quotient group of G in the sense
- o that if H < G and G/H is abelian, then G’ < H. Conversely,
Proof (continued). (4) Suppose H < G and G/H is abelian. Then for all if G < H, then H G and G/H is abelian.

x,y € G we have (xH)(yH) = (yH)(xH) and so _ _ _ _
Proof (continued). Conversely, if G’ < H then, since G/G’ is abelian (by

1H = (xH) Y(xH)(yH) *(yH) by the definition of the identity in G/H (3)). every subgroup of G/G' is normal. In particular, H/G' < G/G". By
_ (xH)_l(yH)_l(xH)(yH) since G/H is abelian Corollary 1.5.12, this implies that H < G. By the Third Isomorphism
—  (x"y~1xy)H by the definition of t mulitolicati Theorem (Corollary 1.5.10), we have that G/H = (G/G")/(H/G").
-y y the definition of coset mufitplication Therefore G/H is abelian since it is a quotient group of the abelian group
= [xylH. G/G'. 0

So [x,y] € H for all x,y € G and hence G’ < H. So G/G’ is the largest
abelain quotient group.



Theorem DF.5.7 (continued 7)

Proposition DF.5.7. Let G be a group, let x,y € G, and let H < G.
Then

(5) If ¢ : G — Ais any homomorphism of G into an abelian
group A, then ¢ factors through G’, i.e., G’ < ker(y) and
the following diagram commutes:

G/G'
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Corollary DF.3.15

Corollary DF.3.15. If H and K are subgroups of G and
H < Ng(K)={g € G| gKg™! = K}, then HK is a subgroup of G. In
particular, if K < G then HK < G for any H < G.

Proof. Let h € H, k € K. Since H < Ng(K) then hkh=! € K and so

hk = hk(h=th) = (hkh=1)h € KH and so HK C KH. Similarly

kh = (hh=Y)kh = h(h~1kh) € HK. Therefore KH = HK and by the
previous not, HK is a subgroup of G. O
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Theorem DF.5.7 (continued 8)

Proof (continued). (5) With ¢ as the canonical homomorphism mapping
G — G/G’, we have ker(¢)) = G'. So for any given homomorphism

@ : G — A, by Theorem 1.5.6, there is a unique homomorphism 6 mapping
G/G’" — A such that ¢ = 0 o). That is, the diagram commutes:

G/G'

O
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Theorem DF.5.10

Theorem DF.5.10. Let H and K be groups and let ¢ be a
homomorphism from K into Aut(H). Let - denote action of K on H
determined by ¢. Let G be the set of ordered pairs (h, k) with h € H and
k € K and define the binary operation (h1, k1)(h2, ko) = (h1 k1 - ha, k1, k2).
(1) The binary operation makes G a group of order |G| = |H||K]|.
(2) The sets H={(h,1) | h e H} and K = {(1,k) | k € K} are
subgroups of G and the maps h— (h,1) for h € H and

k — (1, k) for k € K are isomorphisms of these subgroups
with groups H and K.

(3) H < G (associating H with its isomorphic copy of ordered
pairs).

(4) HNK = {1}.

(5) Forall h € H and k € K, we have khk=! = k - h = (k)(h).
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Theorem DF.5.10 Theorem DF.5.10

Theorem DF.5.10 (continued 1) Theorem DF.5.10 (continued 2)
Theorem DF.5.10. Let H and K be groups and let ¢ be a Proof (continued). We use this to show that the the inverse of (h, k) is
homomorphism from K into Aut(H). Let - denote action of K on H (k=1 h71 k1)
determined by . Let G be the set of ordered pairs (h, k) with h € H and (k2L kY (k) = (K kYKt ), kk)
k € K and define the binary operation (h1, k1)(h2, ko) = (h1 ki1 - ha, k1, k2). = (1,1) by above.
(1) The binary operation makes G a group of order |G| = |H||K]. Since we have established a left identity and left inverses, by Theorem

I.1.3, we have a two sided identity and two sided inverses.
Proof. (1) For 1 € K and ¢ a homomorphism from K into Aut(H), we

have that ¢(1) is the identity automorphism of H since a homomorphism For associativity (using Dummit and Foote's notation):
maps an identity to an identity. So for h € H the actionis 1- h= h. We ((a,x).(b,y))(c,z) = (ax-b,xy)(cz)
use this to show that the identity is (1,1): = ((ax- b)((xy.c), xyz)
(1,1)(h,k) = (11-h,1kK) = ((ax-b)(x-(y-x)),xyz)
(1h, 1k) by above = (a((x- b)(x - (y - ©))), xy2)
= (h,k). = (a(x - (b(y - ¢))), xyz) since the action
(k

Now for any (k) € Aut(H), since ¢

~ o~ o~ o~

. of x is an automorphism and so
) is an automorphism then

k- h = o(k)(h) is the inverse of k - =1 = p(k)(h™Y). (- b)(x - (y - ) = x- (bly - €))
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Theorem DF.5.10 (continued 3) Theorem DF.5.10 (continued 4)

Theorem DF.5.10. Let H and K be groups and let ¢ be a Theorem DF.5.10.

homomorphism from K into Aut(H). Let - denote action of K on H (2) Thbe sets H f:G{(h,j) Lh € H} ;nd };:1 {]El’ l;) | /Iile };} are
determined by . Let G be the set of ordered pairs (h, k) with h € H and subgroups of G and the maps / +— (h, 1) for h € H an

k € K and define the binary operation (A1, ki)(ha, ko) = (b1 Ky - o, ki, ko). k‘»—> (1, k) for k € K are isomorphisms of these subgroups
) ] with groups H and K.
(1) The binary operation makes G a group of order |G| = |H||K]|.

Proof (continued). Proof (continued). (2) Let § : H — H and ¢ : K — K be defined as
6(h) = (h,1) and (k) = (1, k). Then “clearly” # and ) are one to one
(a:%), (b.y))(e2) = (alx- (bly - )))xv2) and onto. Now
= (a,x)(b y - c,yz) by the definition O(h1h2) = (h1h2,1) = (h1 1+ hp,11) = (h1,1)(h2,1) = 6(h1)6(h2), and
of the binary operation
= (z,x)((b,y)(c, z)) by the definition Y(kik) = (1, kike) = (11, kiko)
of the binary operation. = (1 ki -1, kiko) since action on 1

by an automorphism yields 1 (x)

= (]-7 kl)(17 k2) = w(kl)w(/Q)
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So G is a group under the binary operation.



Theorem DF.5.10

Theorem DF.5.10 (continued 5)

Theorem DF.5.10.
(4) HNK ={1}.
(5) For all h € H and k € K, we have khk—! = k - h = @(k)(h).

Proof (continued). (4) “Clearly” HN K = {(1,1)}. Identifying H and K
with H and K (as hypothesized) yields H N K = {1}.

(5) We now show that when k acts on h, the action is actually
conjugation: k - h = khk—1. Notice that, in the notation of H and K,

Theorem DF.5.10

Theorem DF.5.10 (continued 6)

Theorem DF.5.10. Let H and K be groups and let ¢ be a
homomorphism from K into Aut(H). Let - denote action of K on H
determined by . Let G be the set of ordered pairs (h, k) with h € H and
k € K and define the binary operation (hy, k1)(h2, ko) = (h1 k1 - ha, k1, ko).
(3) H < G (associating H with its isomorphic copy of ordered
pairs).

Proof (continued). (3) Recall that Ng(H) ={g € G | gHg ' = H} is
the normalizer of H in G. By (5), since khk=! = k- h = ¢(k)(h) and (k)

-1 -1
(1, K)(h, 1)(L. k) = (LK), 1))(1’7/; ) is an automorphism of H, then khk—! € H for all h € H and for all k € K,
= (Lk-hk)(LK™) and so kHkL = k- H = (k)(H) = H. So K < Ng(H). Also, of course,
= (k-hk-1,kk ") H < Ng(H). Since G = HK (though technically G consists of ordered
= (k-h,1) since k-1=1asin (1); see (%). pairs instead of products, but we “identity” these). So G < Ng(H) and
B . hence G = Ng(H). Thatis, H<G. O
“Identifying” H and K with H and K gives khk~! = k - h = o(k)(h).
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Proposition DF.5.11 Proposition DF.5.11

Proposition DF.5.11

Proposition DF.5.11. Let H and K be groups and let ¢ : K — Aut(H)
be a homomorphism. The following are equivalent.

(1) The identity set map between H x K and H x K (both
consisting of ordered pairs) is a group homomorphism (and
hence H x K = H x K).

(2) ¢ is the trivial homomorphism from K into Aut(H) (which
maps all k € K to the identity automorphism).

(3) KIHx K.
Proof. (1) implies (2) Suppose the identity map is an isomorphism
between H x K and N x K. In H x K, (h1, k1)(h2, ko) = (h1ha, kik2) and
in Hx K, (hl, hg)(kl, k2) = (hl ky - ho, klkg). So it must be that
hihy = hy ki - ho, or hp) = ky - hy. This must hold for all h, € H, so 99(/(1)
must be the identity automorphism. Also, this holds for all k; € K and so
it must be that ¢(k) is the identity automorphism for all k € K. That is,
¢ is the trivial homomorphism from K to Aut(H).
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Proposition DF.5.11 (continued 1)

Proposition DF.5.11. Let H and K be groups and let ¢ : K — Aut(H)
be a homomorphism. The following are equivalent.

(2) o is the trivial homomorphism from K into Aut(H) (which
maps all k € K to the identity automorphism).

(3) KIHx K.
Proof (continued). (2) implies (3) If ¢ is the trivial homomorphism,
then ¢(k) is the identity automorphism of H and k- h = h forall he H
and for all k € K. By Theorem DF.10(5), k- h = khk ™1, so khk~1 = h for
all he H, k € K. So kh = hk and the elements of H commute with the
elements of K. Also H normalizes K (since kh = hk for all he H, k € K
implies k = hkh™! for all h € H, k € K and hence hKh™! = K for all
h € H), and of course K normalizes itself. Let g € H x K and consider
gkg 1. We translate this into ordered pairs where, say, g = (hy, k1) and
k = (1, k).
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Proposition DF.5.11 (continued 2)

Proposition DF.5.11 (continued 3)

Proposition DF.5.11. Let H and K be groups and let ¢ : K — Aut(H)
be a homomorphism. The following are equivalent.
(2) ¢ is the trivial homomorphism from K into Aut(H) (which
maps all k € K to the identity automorphism). (2)
(3) K<IHxK.
Proof (continued). (2) implies (3) Then
gkg™t = (. ka)(1, k)(hy, k)™
= ((he, ka)(L, k) (he, ke) 7
= (m ki1, kik)(k{ L - hy, kL) by the definition of product gke
in H x K and the formula for an inverse of (hy, k1)
(see the proof of Theorem DF.10)

= (h1 1,kik)(h— 171 k;'*) since the group action yields

Proposition DF.5.11. Let H and K be groups and let ¢ : K — Aut(H)
be a homomorphism. The following are equivalent.

¢ is the trivial homomorphism from K into Aut(H) (which
maps all k € K to the identity automorphism).

(3) K<IH =K.
Proof (continued). (2) implies (3) Then

1= (hy (kik) - byt ke, k, k;Y) by the definition of product
= (hihy!, kikkt) since group action yields the
identity automorphism
= (1, kikk;t) € K.

the identity automorphism
= (hy (kik) - hTY ke, k, k;t) by the definition of product

So K < H x K (again, we “identity” K and K) by Theorem 1.5.1(iv).
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Proposition DF.5.11 Proposition DF.5.11

Proposition DF.5.11 (continued 4)

Proposition DF.5.11. Let H and K be groups and let ¢ : K — Aut(H)
be a homomorphism. The following are equivalent.
(1) The identity set map between H x K and H x K (both
consisting of ordered pairs) is a group homomorphism (and
hence H x K = H x K).
(3) KIHx K.
Proof. (3) implies (1) [The text, DF, uses a simplified notation when
considering h, k, hk, etc. We use the ordered pair notation throughout this
proof.] Notice that the commutator satisfies:

[h,k] = [(h,1),(1.k)] “identifying” as in Theorem DF.10
(h 1)1, k)2 (h, 1)(1, k)
= (1-hH1) (k- 1, k7Y (h, 1)(1, k)
= (W', 1)(L, k)(h,1)(1, k).
Since H <\ H x K by Theorem DF.10(3), (1, k)~*(
[

h,1)(1, k) € H and so
(h,1)~Y(1, k)~Y(h,1)(1, k) € H. That is, [h, k] = [(h, 1

h,1), (1, k)] € H.

Modern Algebra March 16, 2021 24 /28

Proposition DF.5.11 (continued 5)

Proposition DF.5.11. Let H and K be groups and let ¢ : K — Aut(H)
be a homomorphism. The following are equivalent.
(1) The identity set map between H x K and H x K (both
consisting of ordered pairs) is a group homomorphism (and
hence H x K = H x K).
(3) KIHx K.

Proof (continued). (3) implies (1) (continued) Similarly, since

K < H x K by hypothesis, then (h,1)71(1,k)"1(h,1) € K and so
(h,1)7Y(1, k)~Y(h,1)(1, k) € K. That is [h, k] = [(h,1)(1, k)] € K. Since
HNK=1=(1,1) (“identifying”) by Theorem DF.10(4), then

[h, k]l = [(h. 1)(1, k)] = (h~, 1)(1, k) (h, 1)(1, k) = (L, 1).

This implies (h,1)(1, k) = (1, k)(h,1) (or “identifying,” hk = kh). Now
(h,1)(1,k) =(h1-1,k) = (h,k) and (1, k)(h,1) = (1 k - h, k), since
these are equal, we must have k- h= hforall h€ H, k € K. That is, the
action of K on H is the identity (p(k)(h) = h).
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