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Theorem DF.5.7

Theorem DF.5.7

Proposition DF.5.7. Let G be a group, let x , y ∈ G , and let H ≤ G .
Then

(1) xy = yx [x , y ].

(2) H E G if and only if [H,G ] ≤ H.

(3) For any automorphism σ of G , we have
σ[x , y ] = [σ(x), σ(y)]. Also, G ′ is a characteristic subgroup
of G (denoted “G ′ char G”; this means that every
automorphism of G maps G ′ to itself, i.e., σ(G ′) = G ′) and
G/G ′ is abelian.

(4) G/G ′ is the largest abelian quotient group of G in the sense
that if H E G and G/H is abelian, then G ′ ≤ H. Conversely,
if G ′ ≤ H, then H E G and G/H is abelian.
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Theorem DF.5.7

Theorem DF.5.7 (continued 1)

Proposition DF.5.7. Let G be a group, let x , y ∈ G , and let H ≤ G .
Then

(5) If ϕ : G → A is any homomorphism of G into an abelian
group A, then ϕ factors through G ′, i.e., G ′ ≤ ker(ϕ) and
the following diagram commutes:

G/G ′

?

G -

A

@
@

@
@

@@R

ϕ
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Theorem DF.5.7

Theorem DF.5.7 (continued 2)

Proposition DF.5.7. Let G be a group, let x , y ∈ G , and let H ≤ G .
Then

(1) xy = yx [x , y ].

(2) H E G if and only if [H,G ] ≤ H.

Proof. (1) We have yx [x , y ] = yxx−1y−1xy = xy .

(2) We have H E G is and only if g−1hg ∈ H for all g ∈ G and all h ∈ H
by Theorem I.5.1. For h ∈ H, we have g−1hg ∈ H if and only if
h−1g−1hg = [h, g ] ∈ H. So H E G is an only if [h, g ] ∈ H for all h ∈ H
and all g ∈ G . That is, H E G if and only if [H,G ] ≤ H.
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Theorem DF.5.7

Theorem DF.5.7 (continued 3)

Proposition DF.5.7. Let G be a group, let x , y ∈ G , and let H ≤ G .
Then

(3) For any automorphism σ of G , we have
σ[x , y ] = [σ(x), σ(y)]. Also, G ′ is a characteristic subgroup
of G (denoted “G ′ char G”; this means that every
automorphism of G maps G ′ to itself, i.e., σ(G ′) = G ′) and
G/G ′ is abelian.

Proof (continued). (3) Let σ ∈ Aut(G ) be an automorphism of G and
let x , y ∈ G . Then

σ([x , y ]) = σ(x−1y−1xy)

= σ(x−1)σ(y−1)σ(x)σ(y) since σ is an automorphism

= σ(x)−1σ(y)−1σ(x)σ(y) since σ is an automorphism

= [σ(x), σ(y)].

Thus for every commutator [x , y ] ∈ G ′, σ([x , y ]) ∈ G ′.
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Theorem DF.5.7

Theorem DF.5.7 (continued 4)

Proof continued. Since σ has a two-sided inverse (because Aut(G ) is a
group), then σ maps the set of commutators bijectively onto itself. Since
the commutators are a generating set for G ′, then σ(G ′) = G ′. That is,
G ′ char G .
We now show that G/G ′ is abelian. Let xg ′ and yG ′ be arbitrary elements
of G/G ′. We have

(xG ′)(yG ′) = (xy)G ′ by definition

= (yx [xy ])G ′ by (1)

= (yx)G ′ since [x , y ] ∈ G ′

= (yG ′)(xG ′) by definition.
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Theorem DF.5.7

Theorem DF.5.7 (continued 5)

Proposition DF.5.7. Let G be a group, let x , y ∈ G , and let H ≤ G .
Then

(4) G/G ′ is the largest abelian quotient group of G in the sense
that if H E G and G/H is abelian, then G ′ ≤ H. Conversely,
if G ′ ≤ H, then H E G and G/H is abelian.

Proof (continued). (4) Suppose H E G and G/H is abelian. Then for all
x , y ∈ G we have (xH)(yH) = (yH)(xH) and so

1H = (xH)−1(xH)(yH)−1(yH) by the definition of the identity in G/H

= (xH)−1(yH)−1(xH)(yH) since G/H is abelian

= (x−1y−1xy)H by the definition of coset mulitplication

= [x , y ]H.

So [x , y ] ∈ H for all x , y ∈ G and hence G ′ ≤ H. So G/G ′ is the largest
abelain quotient group.
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Theorem DF.5.7

Theorem DF.5.7 (continued 6)

Proposition DF.5.7. Let G be a group, let x , y ∈ G , and let H ≤ G .
Then

(4) G/G ′ is the largest abelian quotient group of G in the sense
that if H E G and G/H is abelian, then G ′ ≤ H. Conversely,
if G ′ ≤ H, then H E G and G/H is abelian.

Proof (continued). Conversely, if G ′ ≤ H then, since G/G ′ is abelian (by
(3)), every subgroup of G/G ′ is normal. In particular, H/G ′ E G/G ′. By
Corollary I.5.12, this implies that H E G . By the Third Isomorphism
Theorem (Corollary I.5.10), we have that G/H ∼= (G/G ′)/(H/G ′).
Therefore G/H is abelian since it is a quotient group of the abelian group
G/G ′.
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Theorem DF.5.7

Theorem DF.5.7 (continued 7)

Proposition DF.5.7. Let G be a group, let x , y ∈ G , and let H ≤ G .
Then

(5) If ϕ : G → A is any homomorphism of G into an abelian
group A, then ϕ factors through G ′, i.e., G ′ ≤ ker(ϕ) and
the following diagram commutes:

G/G ′

?

G -

A

@
@

@
@

@@R

ϕ
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Theorem DF.5.7

Theorem DF.5.7 (continued 8)

Proof (continued). (5) With ψ as the canonical homomorphism mapping
G → G/G ′, we have ker(ψ) = G ′. So for any given homomorphism
ϕ : G → A, by Theorem I.5.6, there is a unique homomorphism θ mapping
G/G ′ → A such that ϕ = θ ◦ ψ. That is, the diagram commutes:

G/G ′

?

G -

A

@
@

@
@

@@R

ϕ
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Theorem DF.3.15

Corollary DF.3.15

Corollary DF.3.15. If H and K are subgroups of G and
H ≤ NG (K ) = {g ∈ G | gKg−1 = K}, then HK is a subgroup of G . In
particular, if K E G then HK ≤ G for any H ≤ G .

Proof. Let h ∈ H, k ∈ K . Since H ≤ NG (K ) then hkh−1 ∈ K and so
hk = hk(h−1h) = (hkh−1)h ∈ KH and so HK ⊂ KH. Similarly
kh = (hh−1)kh = h(h−1kh) ∈ HK . Therefore KH = HK and by the
previous not, HK is a subgroup of G .
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Theorem DF.5.10

Theorem DF.5.10

Theorem DF.5.10. Let H and K be groups and let ϕ be a
homomorphism from K into Aut(H). Let · denote action of K on H
determined by ϕ. Let G be the set of ordered pairs (h, k) with h ∈ H and
k ∈ K and define the binary operation (h1, k1)(h2, k2) = (h1 k1 · h2, k1, k2).

(1) The binary operation makes G a group of order |G | = |H||K |.
(2) The sets H̃ = {(h, 1) | h ∈ H} and K̃ = {(1, k) | k ∈ K} are

subgroups of G and the maps h 7→ (h, 1) for h ∈ H and
k 7→ (1, k) for k ∈ K are isomorphisms of these subgroups
with groups H and K .

(3) H E G (associating H with its isomorphic copy of ordered
pairs).

(4) H ∩ K = {1}.
(5) For all h ∈ H and k ∈ K , we have khk−1 = k · h = ϕ(k)(h).
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Theorem DF.5.10

Theorem DF.5.10 (continued 1)

Theorem DF.5.10. Let H and K be groups and let ϕ be a
homomorphism from K into Aut(H). Let · denote action of K on H
determined by ϕ. Let G be the set of ordered pairs (h, k) with h ∈ H and
k ∈ K and define the binary operation (h1, k1)(h2, k2) = (h1 k1 · h2, k1, k2).

(1) The binary operation makes G a group of order |G | = |H||K |.

Proof. (1) For 1 ∈ K and ϕ a homomorphism from K into Aut(H), we
have that ϕ(1) is the identity automorphism of H since a homomorphism
maps an identity to an identity. So for h ∈ H the action is 1 · h = h. We
use this to show that the identity is (1, 1):

(1, 1)(h, k) = (1 1 · h, 1k)

= (1h, 1k) by above

= (h, k).

Now for any ϕ(k) ∈ Aut(H), since ϕ(k) is an automorphism then
k · h = ϕ(k)(h) is the inverse of k · h−1 = ϕ(k)(h−1).
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Theorem DF.5.10

Theorem DF.5.10 (continued 2)

Proof (continued). We use this to show that the the inverse of (h, k) is
(k−1 · h−1, k−1):

(k−1 · h−1, k−1)(h, k) = ((k−1 · k−1)(k−1 · h), k−1k)

= (1, 1) by above.
Since we have established a left identity and left inverses, by Theorem
I.1.3, we have a two sided identity and two sided inverses.

For associativity (using Dummit and Foote’s notation):
((a, x), (b, y))(c , z) = (ax · b, xy)(cz)

= ((ax · b)((xy·c), xyz)

= ((a x · b)(x · (y · x)), xyz)

= (a((x · b)(x · (y · c))), xyz)

= (a(x · (b(y · c))), xyz) since the action

of x is an automorphism and so

(x · b)(x · (y · c)) = x · (b(y · c))
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Theorem DF.5.10

Theorem DF.5.10 (continued 3)

Theorem DF.5.10. Let H and K be groups and let ϕ be a
homomorphism from K into Aut(H). Let · denote action of K on H
determined by ϕ. Let G be the set of ordered pairs (h, k) with h ∈ H and
k ∈ K and define the binary operation (h1, k1)(h2, k2) = (h1 k1 · h2, k1, k2).

(1) The binary operation makes G a group of order |G | = |H||K |.
Proof (continued).

((a, x), (b, y))(c , z) = (a(x · (b(y · c))), xyz)

= (a, x)(b y · c , yz) by the definition

of the binary operation

= (z , x)((b, y)(c , z)) by the definition

of the binary operation.

So G is a group under the binary operation.
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Theorem DF.5.10

Theorem DF.5.10 (continued 4)

Theorem DF.5.10.

(2) The sets H̃ = {(h, 1) | h ∈ H} and K̃ = {(1, k) | k ∈ K} are
subgroups of G and the maps h 7→ (h, 1) for h ∈ H and
k 7→ (1, k) for k ∈ K are isomorphisms of these subgroups
with groups H and K .

Proof (continued). (2) Let θ : H → H̃ and ψ : K → K̃ be defined as
θ(h) = (h, 1) and ψ(k) = (1, k). Then “clearly” θ and ψ are one to one
and onto. Now

θ(h1h2) = (h1h2, 1) = (h1 1 · h2, 11) = (h1, 1)(h2, 1) = θ(h1)θ(h2), and

ψ(k1k2) = (1, k1k2) = (1 1, k1k2)

= (1 k1 · 1, k1k2) since action on 1

by an automorphism yields 1 (∗)
= (1, k1)(1, k2) = ψ(k1)ψ(k2).

So θ and ψ are isomorphisms.() Modern Algebra March 16, 2021 17 / 28
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Theorem DF.5.10

Theorem DF.5.10 (continued 5)

Theorem DF.5.10.

(4) H ∩ K = {1}.
(5) For all h ∈ H and k ∈ K , we have khk−1 = k · h = ϕ(k)(h).

Proof (continued). (4) “Clearly” H̃ ∩ K̃ = {(1, 1)}. Identifying H and K
with H̃ and K̃ (as hypothesized) yields H ∩ K = {1}.
(5) We now show that when k acts on h, the action is actually
conjugation: k · h = khk−1.

Notice that, in the notation of H̃ and K̃ ,

(1, k)(h, 1)(1, k)−1 = ((1, k)(h, 1))(1, k−1)

= (1 k · h, k)(1, k−1)

= (k · h k · 1, kk−1)

= (k · h, 1) since k · 1 = 1 as in (1); see (∗).

“Identifying” H and K with H̃ and K̃ gives khk−1 = k · h = ϕ(k)(h).
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Theorem DF.5.10

Theorem DF.5.10 (continued 6)

Theorem DF.5.10. Let H and K be groups and let ϕ be a
homomorphism from K into Aut(H). Let · denote action of K on H
determined by ϕ. Let G be the set of ordered pairs (h, k) with h ∈ H and
k ∈ K and define the binary operation (h1, k1)(h2, k2) = (h1 k1 · h2, k1, k2).

(3) H E G (associating H with its isomorphic copy of ordered
pairs).

Proof (continued). (3) Recall that NG (H) = {g ∈ G | gHg−1 = H} is
the normalizer of H in G . By (5), since khk−1 = k · h = ϕ(k)(h) and ϕ(k)
is an automorphism of H, then khk−1 ∈ H for all h ∈ H and for all k ∈ K ,
and so kHk−1 = k · H = ϕ(k)(H) = H. So K < NG (H). Also, of course,
H ≤ NG (H). Since G = HK (though technically G consists of ordered
pairs instead of products, but we “identity” these). So G ≤ NG (H) and
hence G = NG (H). That is, H E G .

() Modern Algebra March 16, 2021 19 / 28



Theorem DF.5.10

Theorem DF.5.10 (continued 6)

Theorem DF.5.10. Let H and K be groups and let ϕ be a
homomorphism from K into Aut(H). Let · denote action of K on H
determined by ϕ. Let G be the set of ordered pairs (h, k) with h ∈ H and
k ∈ K and define the binary operation (h1, k1)(h2, k2) = (h1 k1 · h2, k1, k2).

(3) H E G (associating H with its isomorphic copy of ordered
pairs).

Proof (continued). (3) Recall that NG (H) = {g ∈ G | gHg−1 = H} is
the normalizer of H in G . By (5), since khk−1 = k · h = ϕ(k)(h) and ϕ(k)
is an automorphism of H, then khk−1 ∈ H for all h ∈ H and for all k ∈ K ,
and so kHk−1 = k · H = ϕ(k)(H) = H. So K < NG (H). Also, of course,
H ≤ NG (H). Since G = HK (though technically G consists of ordered
pairs instead of products, but we “identity” these). So G ≤ NG (H) and
hence G = NG (H). That is, H E G .

() Modern Algebra March 16, 2021 19 / 28



Proposition DF.5.11

Proposition DF.5.11

Proposition DF.5.11. Let H and K be groups and let ϕ : K → Aut(H)
be a homomorphism. The following are equivalent.

(1) The identity set map between H o K and H × K (both
consisting of ordered pairs) is a group homomorphism (and
hence H o K ∼= H × K ).

(2) ϕ is the trivial homomorphism from K into Aut(H) (which
maps all k ∈ K to the identity automorphism).

(3) K E H o K .

Proof. (1) implies (2) Suppose the identity map is an isomorphism
between H o K and N × K . In H × K , (h1, k1)(h2, k2) = (h1h2, k1k2) and
in H o K , (h1, h2)(k1, k2) = (h1 k1 · h2, k1k2). So it must be that
h1h2 = h1 k1 · h2, or h2 = k1 · h2. This must hold for all h2 ∈ H, so ϕ(k1)
must be the identity automorphism.

Also, this holds for all k1 ∈ K and so
it must be that ϕ(k) is the identity automorphism for all k ∈ K . That is,
ϕ is the trivial homomorphism from K to Aut(H).
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h1h2 = h1 k1 · h2, or h2 = k1 · h2. This must hold for all h2 ∈ H, so ϕ(k1)
must be the identity automorphism. Also, this holds for all k1 ∈ K and so
it must be that ϕ(k) is the identity automorphism for all k ∈ K . That is,
ϕ is the trivial homomorphism from K to Aut(H).
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Proposition DF.5.11

Proposition DF.5.11 (continued 1)

Proposition DF.5.11. Let H and K be groups and let ϕ : K → Aut(H)
be a homomorphism. The following are equivalent.

(2) ϕ is the trivial homomorphism from K into Aut(H) (which
maps all k ∈ K to the identity automorphism).

(3) K E H o K .

Proof (continued). (2) implies (3) If ϕ is the trivial homomorphism,
then ϕ(k) is the identity automorphism of H and k · h = h for all h ∈ H
and for all k ∈ K . By Theorem DF.10(5), k · h = khk−1, so khk−1 = h for
all h ∈ H, k ∈ K . So kh = hk and the elements of H commute with the
elements of K . Also H normalizes K (since kh = hk for all h ∈ H, k ∈ K
implies k = hkh−1 for all h ∈ H, k ∈ K and hence hKh−1 = K for all
h ∈ H), and of course K normalizes itself. Let g ∈ H o K and consider
gkg−1. We translate this into ordered pairs where, say, g = (h1, k1) and
k = (1, k).
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Proposition DF.5.11

Proposition DF.5.11 (continued 2)

Proposition DF.5.11. Let H and K be groups and let ϕ : K → Aut(H)
be a homomorphism. The following are equivalent.

(2) ϕ is the trivial homomorphism from K into Aut(H) (which
maps all k ∈ K to the identity automorphism).

(3) K E H o K .

Proof (continued). (2) implies (3) Then

gkg−1 = (h1, k1)(1, k)(h1, k1)
−1

= ((h1, k1)(1, k))(h1, k1)
−1

= (h1 k1 · 1, k1k)(k−1
1 · h1, k

−1
1 ) by the definition of product

in H o K and the formula for an inverse of (h1, k1)

(see the proof of Theorem DF.10)

= (h1 1, k1k)(h − 1−1, k−1
1 ) since the group action yields

the identity automorphism

= (h1 (k1k) · h−1
1 , k1, k, k

−1
1 ) by the definition of product
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Proposition DF.5.11 (continued 3)

Proposition DF.5.11. Let H and K be groups and let ϕ : K → Aut(H)
be a homomorphism. The following are equivalent.

(2) ϕ is the trivial homomorphism from K into Aut(H) (which
maps all k ∈ K to the identity automorphism).

(3) K E H o K .

Proof (continued). (2) implies (3) Then

gkg−1 = (h1 (k1k) · h−1
1 , k1, k, k

−1
1 ) by the definition of product

= (h1h
−1
1 , k1kk

−1
1 ) since group action yields the

identity automorphism

= (1, k1kk
−1
1 ) ∈ K .

So K E H o K (again, we “identity” K and K̃ ) by Theorem I.5.1(iv).
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Proposition DF.5.11 (continued 4)

Proposition DF.5.11. Let H and K be groups and let ϕ : K → Aut(H)
be a homomorphism. The following are equivalent.

(1) The identity set map between H o K and H × K (both
consisting of ordered pairs) is a group homomorphism (and
hence H o K ∼= H × K ).

(3) K E H o K .

Proof. (3) implies (1) [The text, DF, uses a simplified notation when
considering h, k, hk, etc. We use the ordered pair notation throughout this
proof.] Notice that the commutator satisfies:

[h, k] = [(h, 1), (1.k)] “identifying” as in Theorem DF.10

= (h, 1)−1(1, k)−1(h, 1)(1, k)

= (1 · h−1, 1)(k−1 · 1, k−1)(h, 1)(1, k)

= (h1, 1)(1, k)(h, 1)(1, k).
Since H E H o K by Theorem DF.10(3), (1, k)−1(h, 1)(1, k) ∈ H and so
(h, 1)−1(1, k)−1(h, 1)(1, k) ∈ H. That is, [h, k] = [(h, 1), (1, k)] ∈ H.
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Proposition DF.5.11 (continued 4)
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Proposition DF.5.11

Proposition DF.5.11 (continued 5)

Proposition DF.5.11. Let H and K be groups and let ϕ : K → Aut(H)
be a homomorphism. The following are equivalent.

(1) The identity set map between H o K and H × K (both
consisting of ordered pairs) is a group homomorphism (and
hence H o K ∼= H × K ).

(3) K E H o K .

Proof (continued). (3) implies (1) (continued) Similarly, since
K E H o K by hypothesis, then (h, 1)−1(1, k)−1(h, 1) ∈ K and so
(h, 1)−1(1, k)−1(h, 1)(1, k) ∈ K . That is [h, k] = [(h, 1)(1, k)] ∈ K . Since
H ∩ K = 1 = (1, 1) (“identifying”) by Theorem DF.10(4), then

[h, k] = [(h, 1)(1, k)] = (h−1, 1)(1, k−1)(h, 1)(1, k) = (1, 1).

This implies (h, 1)(1, k) = (1, k)(h, 1) (or “identifying,” hk = kh). Now
(h, 1)(1, k) = (h 1 · 1, k) = (h, k) and (1, k)(h, 1) = (1 k · h, k), since
these are equal, we must have k · h = h for all h ∈ H, k ∈ K . That is, the
action of K on H is the identity (ϕ(k)(h) = h).
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Proposition DF.5.11 (continued 5)

Proposition DF.5.11. Let H and K be groups and let ϕ : K → Aut(H)
be a homomorphism. The following are equivalent.

(1) The identity set map between H o K and H × K (both
consisting of ordered pairs) is a group homomorphism (and
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[h, k] = [(h, 1)(1, k)] = (h−1, 1)(1, k−1)(h, 1)(1, k) = (1, 1).

This implies (h, 1)(1, k) = (1, k)(h, 1) (or “identifying,” hk = kh). Now
(h, 1)(1, k) = (h 1 · 1, k) = (h, k) and (1, k)(h, 1) = (1 k · h, k), since
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Proposition DF.5.11

Proposition DF.5.11 (continued 6)

Proposition DF.5.11. Let H and K be groups and let ϕ : K → Aut(H)
be a homomorphism. The following are equivalent.

(1) The identity set map between H o K and H × K (both
consisting of ordered pairs) is a group homomorphism (and
hence H o K ∼= H × K ).

(3) K E H o K .

Proof (continued). (3) implies (1) (continued) The identity mapping
of H o K to H × K is certainly one to one and onto (both H × K and
H o K are pairs (h, k)). Now with the action of K on H as the identity we
have that the product in H o K satisfies:

(h1, k1)(h2, k2) = (h1 k1h2, k1k2) = (h1h2, k1k2) = (h1, k1)(h2, k2)

in H × K . So the identity has the homomorphism property. That is, the
identity mapping is an isomorphism.
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Theorem DF.5.12

Theorem DF.5.12. Recognition Theorem for Semidirect Products.
Suppose G is a group with subgroups H and K such that

(1) H E G , and

(2) H ∩ K = {1}.
Let ϕ : K → Aut(H) be the homomorphism defined by mapping k ∈ K to
the automorphism of left conjugation by k on H. Then HK ∼= H o K . In
particular, if G = HK with H and K satisfying (1) and (2), then G is the
semidirect product of H and K .

Proof. Since H E G , then HK = H ∨ K = KH is a subgroup of G by
Hungerford’s Theorem I.5.3(iii). By Proposition DF.5.8, every element of
HK can be written uniquely in the form hk, for some h ∈ H and k ∈ K .
Thus the map hk 7→ (h, k) is a set bijection from HK onto H o K . We
now show this bijection satisfies the homomorphism property. Let two
elements of HK be h1k1 and h2k2.
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Theorem DF.5.12. Recognition Theorem for Semidirect Products

Theorem DF.5.12 (continued)

Theorem DF.5.12. Recognition Theorem for Semidirect Products.
Suppose G is a group with subgroups H and K such that

(1) H E G , and
(2) H ∩ K = {1}.

Let ϕ : K → Aut(H) be the homomorphism defined by mapping k ∈ K to
the automorphism of left conjugation by k on H. Then HK ∼= H o K .
Proof (continued). Then in G ,

(h1k1)(h2k2) = h1k1h2(k
−1
1 k1)k2 = h1(k1h2k

−1
1 )k1k2 = h3k3

where h3 = h1(h1(k1h2k
−1
1 ) ∈ H since H is a normal subgroup of G , and

k3 = k1k2 ∈ K . So the mapping hk 7→ (h, k) is a homomorphism because
in H o K ,

(h1, k1)(h2, k2) = (h1 k1 · h2, k1k2)by the definition of product in H o K

= (h1(k1h2k
−1
1 ), k1k2)

= (h3, k3).

So HK ∼= H o K .
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