Modern Algebra

Direct Products and Semidirect Products 5.4 Recognizing Direct Products, 5.5 Semidirect Products —Proofs of Theorems

- [Theorem DF.3.15](#page-14-0)
- 3 [Theorem DF.5.10](#page-16-0)
- 4 [Proposition DF.5.11](#page-28-0)

5 [Theorem DF.5.12. Recognition Theorem for Semidirect Products](#page-40-0)

Theorem DF.5.7

Proposition DF.5.7. Let G be a group, let $x, y \in G$, and let $H \leq G$. Then

\n- (1)
$$
xy = yx[x, y]
$$
.
\n- (2) $H \leq G$ if and only if $[H, G] \leq H$.
\n- (3) For any automorphism σ of G , we have $\sigma[x, y] = [\sigma(x), \sigma(y)]$. Also, G' is a *characteristic subgroup* of G (denoted "G' char G ", this means that every automorphism of G maps G' to itself, i.e., $\sigma(G') = G'$) and G/G' is abelian.
\n

(4) G/G' is the largest abelian quotient group of G in the sense that if $H \trianglelefteq G$ and G/H is abelian, then $G' \le H$. Conversely, if $G' \leq H$, then $H \trianglelefteq G$ and G/H is abelian.

Theorem DF.5.7 (continued 1)

Proposition DF.5.7. Let G be a group, let $x, y \in G$, and let $H \leq G$. Then

> (5) If φ : $G \rightarrow A$ is any homomorphism of G into an abelian group A , then φ factors through G' , i.e., $G'\leq \mathsf{ker}(\varphi)$ and the following diagram commutes:

Theorem DF.5.7 (continued 2)

Proposition DF.5.7. Let G be a group, let $x, y \in G$, and let $H \leq G$. Then

> (1) $xy = yx[x, y]$. (2) $H \triangleleft G$ if and only if $[H, G] \leq H$.

Proof. (1) We have $yx[x, y] = yxx^{-1}y^{-1}xy = xy$.

Theorem DF.5.7 (continued 2)

Proposition DF.5.7. Let G be a group, let $x, y \in G$, and let $H \leq G$. Then

> (1) $xy = yx[x, y]$. (2) $H \trianglelefteq G$ if and only if $[H, G] \leq H$.

Proof. (1) We have $yx[x, y] = yxx^{-1}y^{-1}xy = xy$.

(2) We have $H \trianglelefteq G$ is and only if $g^{-1} h g \in H$ for all $g \in G$ and all $h \in H$ by Theorem I.5.1. For $h \in H$, we have $g^{-1} h g \in H$ if and only if $h^{-1}g^{-1}hg = [h,g] \in H$. So $H \trianglelefteq G$ is an only if $[h,g] \in H$ for all $h \in H$ and all $g \in G$. That is, $H \triangleleft G$ if and only if $[H, G] \leq H$.

Theorem DF.5.7 (continued 2)

Proposition DF.5.7. Let G be a group, let $x, y \in G$, and let $H \leq G$. Then

> (1) $xy = yx[x, y]$. (2) $H \triangleleft G$ if and only if $[H, G] \leq H$.

Proof. (1) We have
$$
yx[x, y] = yxx^{-1}y^{-1}xy = xy
$$
.

(2) We have $H \unlhd G$ is and only if $g^{-1} h g \in H$ for all $g \in G$ and all $h \in H$ by Theorem 1.5.1. For $h\in H$, we have $g^{-1}hg\in H$ if and only if $h^{-1}g^{-1}hg=[h,g]\in H$. So $H\unlhd G$ is an only if $[h,g]\in H$ for all $h\in H$ and all $g \in G$. That is, $H \triangleleft G$ if and only if $[H, G] \leq H$.

Theorem DF.5.7 (continued 3)

Proposition DF.5.7. Let G be a group, let $x, y \in G$, and let $H \leq G$. Then

> (3) For any automorphism σ of G, we have $\sigma[x,y]=[\sigma(x),\sigma(y)]$. Also, G' is a *characteristic subgroup* of G (denoted " G' char G "; this means that every automorphism of G maps G' to itself, i.e., $\sigma(G')=G')$ and G/G' is abelian.

Proof (continued). (3) Let $\sigma \in$ Aut(G) be an automorphism of G and let $x, y \in G$. Then

$$
\sigma([x, y]) = \sigma(x^{-1}y^{-1}xy)
$$

= $\sigma(x^{-1})\sigma(y^{-1})\sigma(x)\sigma(y)$ since σ is an automorphism
= $\sigma(x)^{-1}\sigma(y)^{-1}\sigma(x)\sigma(y)$ since σ is an automorphism
= $[\sigma(x), \sigma(y)].$

Thus for every commutator $[x, y] \in G'$, $\sigma([x, y]) \in G'$.

Theorem DF.5.7 (continued 4)

Proof continued. Since σ has a two-sided inverse (because Aut(G) is a group), then σ maps the set of commutators bijectively onto itself. Since the commutators are a generating set for G' , then $\sigma(G')=G'$. That is, G' char G .

We now show that G/G' is abelian. Let xg' and $\mathsf{y}G'$ be arbitrary elements of G/G' . We have

$$
(xG')(yG') = (xy)G' by definition
$$

= $(yx[xy])G'$ by (1)
= $(yx)G'$ since $[x, y] \in G'$

$$
= (yG')(xG') \text{ by definition.}
$$

Theorem DF.5.7 (continued 4)

Proof continued. Since σ has a two-sided inverse (because Aut(G) is a group), then σ maps the set of commutators bijectively onto itself. Since the commutators are a generating set for G' , then $\sigma(G')=G'$. That is, G' char G .

We now show that G/G' is abelian. Let xg' and yG' be arbitrary elements of G/G' . We have

$$
(xG')(yG') = (xy)G' by definition
$$

= $(yx[xy])G'$ by (1)
= $(yx)G'$ since $[x, y] \in G'$
= $(yG')(xG')$ by definition.

Theorem DF.5.7 (continued 5)

Proposition DF.5.7. Let G be a group, let $x, y \in G$, and let $H \leq G$. Then

> (4) G/G' is the largest abelian quotient group of G in the sense that if $H \trianglelefteq G$ and G/H is abelian, then $G' \le H$. Conversely, if $G' \leq H$, then $H \trianglelefteq G$ and G/H is abelian.

Proof (continued). (4) Suppose $H \trianglelefteq G$ and G/H is abelian. Then for all $x, y \in G$ we have $(xH)(yH) = (yH)(xH)$ and so

 $1H = (xH)^{-1}(xH)(yH)^{-1}(yH)$ by the definition of the identity in G/H $\hspace{1cm} = \hspace{1cm}$ $(xH)^{-1}(yH)^{-1}(xH)(yH)$ since G/H is abelian $=$ $(x^{-1}y^{-1}xy)H$ by the definition of coset mulitplication $=$ [x, y]H.

So $[x, y] \in H$ for all $x, y \in G$ and hence $G' \le H$. So G/G' is the largest abelain quotient group.

Theorem DF.5.7 (continued 6)

Proposition DF.5.7. Let G be a group, let $x, y \in G$, and let $H \leq G$. Then

> (4) G/G' is the largest abelian quotient group of G in the sense that if $H \trianglelefteq G$ and G/H is abelian, then $G' \le H$. Conversely, if $G' \leq H$, then $H \trianglelefteq G$ and G/H is abelian.

Proof (continued). Conversely, if $G' \leq H$ then, since G/G' is abelian (by (3)), every subgroup of G/G' is normal. In particular, $H/G' \trianglelefteq G/G'.$ By Corollary I.5.12, this implies that $H \triangleleft G$. By the Third Isomorphism Theorem (Corollary 1.5.10), we have that $G/H \cong (G/G')/(H/G')$. Therefore G/H is abelian since it is a quotient group of the abelian group G/G' .

Theorem DF.5.7 (continued 7)

Proposition DF.5.7. Let G be a group, let $x, y \in G$, and let $H \leq G$. Then

> (5) If φ : $G \rightarrow A$ is any homomorphism of G into an abelian group A , then φ factors through G' , i.e., $G'\leq \mathsf{ker}(\varphi)$ and the following diagram commutes:

Theorem DF.5.7 (continued 8)

Proof (continued). (5) With ψ as the canonical homomorphism mapping $G \to G/G'$, we have ker $(\psi) = G'$. So for any given homomorphism $\varphi: G \to A$, by Theorem I.5.6, there is a unique homomorphism θ mapping $G/G' \to A$ such that $\varphi = \theta \circ \psi$. That is, the diagram commutes:

Corollary DF.3.15

Corollary DF.3.15. If H and K are subgroups of G and $H \leq N_G(K) = \{g \in G \mid gKg^{-1} = K\}$, then HK is a subgroup of G. In particular, if $K \triangleleft G$ then $HK \leq G$ for any $H \leq G$.

Proof. Let $h \in H$, $k \in K$. Since $H \leq N_G(K)$ then $hkh^{-1} \in K$ and so $hk = hk(h^{-1}h) = (hkh^{-1})h \in KH$ and so $HK \subset KH$. Similarly $kh = (hh^{-1})kh = h(h^{-1}kh) \in HK$. Therefore $KH = HK$ and by the previous not, HK is a subgroup of G.

Corollary DF.3.15

Corollary DF.3.15. If H and K are subgroups of G and $H \leq N_G(K) = \{g \in G \mid gKg^{-1} = K\}$, then HK is a subgroup of G. In particular, if $K \triangleleft G$ then $HK \leq G$ for any $H \leq G$.

Proof. Let $h \in H$, $k \in K$. Since $H \leq N_G(K)$ then $hkh^{-1} \in K$ and so $hk = hk(h^{-1}h) = (hkh^{-1})h \in KH$ and so $HK \subset KH$. Similarly $kh = (hh^{-1})kh = h(h^{-1}kh) \in HK$. Therefore $KH = HK$ and by the previous not, HK is a subgroup of G.

Theorem DF.5.10

Theorem DF.5.10. Let H and K be groups and let φ be a homomorphism from K into Aut(H). Let \cdot denote action of K on H determined by φ . Let G be the set of ordered pairs (h, k) with $h \in H$ and $k \in K$ and define the binary operation $(h_1, k_1)(h_2, k_2) = (h_1 \ k_1 \cdot h_2, k_1, k_2)$.

- (1) The binary operation makes G a group of order $|G| = |H||K|$. (2) The sets $\tilde{H} = \{(h, 1) | h \in H\}$ and $\tilde{K} = \{(1, k) | k \in K\}$ are subgroups of G and the maps $h \mapsto (h, 1)$ for $h \in H$ and $k \mapsto (1, k)$ for $k \in K$ are isomorphisms of these subgroups with groups H and K .
- (3) $H \triangleleft G$ (associating H with its isomorphic copy of ordered pairs).
- (4) $H \cap K = \{1\}$.
- (5) For all $h \in H$ and $k \in K$, we have $khk^{-1} = k \cdot h = \varphi(k)(h)$.

Theorem DF.5.10 (continued 1)

Theorem DF.5.10. Let H and K be groups and let φ be a homomorphism from K into Aut(H). Let \cdot denote action of K on H determined by φ . Let G be the set of ordered pairs (h, k) with $h \in H$ and $k \in K$ and define the binary operation $(h_1, k_1)(h_2, k_2) = (h_1, k_1, h_2, k_1, k_2)$. (1) The binary operation makes G a group of order $|G| = |H||K|$.

Proof. (1) For $1 \in K$ and φ a homomorphism from K into Aut(H), we have that $\varphi(1)$ is the identity automorphism of H since a homomorphism maps an identity to an identity. So for $h \in H$ the action is $1 \cdot h = h$. We use this to show that the identity is $(1, 1)$:

$$
(1,1)(h,k) = (1 1 \cdot h, 1k) = (1h, 1k) by above = (h, k).
$$

Now for any $\varphi(k) \in \text{Aut}(H)$, since $\varphi(k)$ is an automorphism then $k \cdot h = \varphi(k)(h)$ is the inverse of $k \cdot h^{-1} = \varphi(k)(h^{-1})$.

Theorem DF.5.10 (continued 2)

Proof (continued). We use this to show that the the inverse of (h, k) is $(k^{-1} \cdot h^{-1}, k^{-1})$: $(k^{-1} \cdot h^{-1}, k^{-1})(h, k) = ((k^{-1} \cdot k^{-1})(k^{-1} \cdot h), k^{-1}k)$ $= (1, 1)$ by above.

Since we have established a left identity and left inverses, by Theorem I.1.3, we have a two sided identity and two sided inverses.

For associativity (using Dummit and Foote's notation):
\n
$$
((a, x), (b, y))(c, z) = (ax \cdot b, xy)(cz)
$$
\n
$$
= ((ax \cdot b)((xy.c), xyz)
$$
\n
$$
= ((a x \cdot b)(x \cdot (y \cdot x)), xyz)
$$
\n
$$
= (a((x \cdot b)(x \cdot (y \cdot c))), xyz)
$$
\n
$$
= (a(x \cdot (b(y \cdot c))), xyz) \text{ since the action of } x \text{ is an automorphism and so}
$$
\n
$$
(x \cdot b)(x \cdot (y \cdot c)) = x \cdot (b(y \cdot c))
$$

Theorem DF.5.10 (continued 2)

Proof (continued). We use this to show that the the inverse of (h, k) is $(k^{-1} \cdot h^{-1}, k^{-1})$: $(k^{-1} \cdot h^{-1}, k^{-1})(h, k) = ((k^{-1} \cdot k^{-1})(k^{-1} \cdot h), k^{-1}k)$ $= (1, 1)$ by above.

Since we have established a left identity and left inverses, by Theorem I.1.3, we have a two sided identity and two sided inverses.

For associativity (using Dummit and Foote's notation): $((a, x), (b, y))(c, z) = (ax \cdot b, xy)(cz)$ $=$ $((ax \cdot b)((xy.c), xyz)$ $= ((a x \cdot b)(x \cdot (y \cdot x)), xyz)$ $= (a((x \cdot b)(x \cdot (y \cdot c))), xyz)$ $= (a(x \cdot (b(y \cdot c)))$, xyz) since the action of x is an automorphism and so $(x \cdot b)(x \cdot (y \cdot c)) = x \cdot (b(y \cdot c))$

Theorem DF.5.10 (continued 3)

Theorem DF.5.10. Let H and K be groups and let φ be a homomorphism from K into Aut(H). Let \cdot denote action of K on H determined by φ . Let G be the set of ordered pairs (h, k) with $h \in H$ and $k \in K$ and define the binary operation $(h_1, k_1)(h_2, k_2) = (h_1 \ k_1 \cdot h_2, k_1, k_2)$. (1) The binary operation makes G a group of order $|G| = |H||K|$.

Proof (continued).

$$
((a, x), (b, y))(c, z) = (a(x \cdot (b(y \cdot c))), xyz)
$$

= $(a, x)(b y \cdot c, yz)$ by the definition
of the binary operation
= $(z, x)((b, y)(c, z))$ by the definition
of the binary operation.

So G is a group under the binary operation.

Theorem DF.5.10

Theorem DF.5.10 (continued 4)

Theorem DF.5.10.

(2) The sets $\tilde{H} = \{(h, 1) | h \in H\}$ and $\tilde{K} = \{(1, k) | k \in K\}$ are subgroups of G and the maps $h \mapsto (h, 1)$ for $h \in H$ and $k \mapsto (1, k)$ for $k \in K$ are isomorphisms of these subgroups with groups H and K .

Proof (continued). (2) Let $\theta : H \to \tilde{H}$ and $\psi : K \to \tilde{K}$ be defined as $\theta(h) = (h, 1)$ and $\psi(k) = (1, k)$. Then "clearly" θ and ψ are one to one and onto. Now

$$
\theta(h_1h_2)=(h_1h_2,1)=(h_1 1 \cdot h_2,11)=(h_1,1)(h_2,1)=\theta(h_1)\theta(h_2), \text{ and}
$$

$$
\psi(k_1 k_2) = (1, k_1 k_2) = (1, 1, k_1 k_2)
$$

=
$$
(1 k_1 \cdot 1, k_1 k_2)
$$
 since action on 1
by an automorphism yields 1 (*)

$$
= (1, k_1)(1, k_2) = \psi(k_1)\psi(k_2).
$$

Theorem DF.5.10 (continued 4)

Theorem DF.5.10.

(2) The sets $H = \{(h, 1) | h \in H\}$ and $\tilde{K} = \{(1, k) | k \in K\}$ are subgroups of G and the maps $h \mapsto (h, 1)$ for $h \in H$ and $k \mapsto (1, k)$ for $k \in K$ are isomorphisms of these subgroups with groups H and K .

Proof (continued). (2) Let $\theta : H \to \tilde{H}$ and $\psi : K \to \tilde{K}$ be defined as $\theta(h) = (h, 1)$ and $\psi(k) = (1, k)$. Then "clearly" θ and ψ are one to one and onto. Now

$$
\theta(h_1h_2)=(h_1h_2,1)=(h_1\ 1\cdot h_2,11)=(h_1,1)(h_2,1)=\theta(h_1)\theta(h_2),\text{ and }
$$

$$
\psi(k_1 k_2) = (1, k_1 k_2) = (1, 1, k_1 k_2)
$$

= (1 k₁ · 1, k₁k₂) since action on 1

by an automorphism yields 1 (∗)

$$
= (1, k_1)(1, k_2) = \psi(k_1)\psi(k_2).
$$

Theorem DF.5.10 (continued 5)

Theorem DF.5.10.

(4) $H \cap K = \{1\}$.

(5) For all $h \in H$ and $k \in K$, we have $khk^{-1} = k \cdot h = \varphi(k)(h)$.

Proof (continued). (4) "Clearly" $\tilde{H} \cap \tilde{K} = \{(1,1)\}\.$ Identifying H and K with \tilde{H} and \tilde{K} (as hypothesized) yields $H \cap K = \{1\}$.

(5) We now show that when k acts on h , the action is actually conjugation: $k \cdot h = khk^{-1}$.

Theorem DF.5.10 (continued 5)

Theorem DF.5.10.

$$
(4) H \cap K = \{1\}.
$$

(5) For all $h \in H$ and $k \in K$, we have $khk^{-1} = k \cdot h = \varphi(k)(h)$.

Proof (continued). (4) "Clearly" $\tilde{H} \cap \tilde{K} = \{(1,1)\}\$. Identifying H and K with \tilde{H} and \tilde{K} (as hypothesized) yields $H \cap K = \{1\}$. (5) We now show that when k acts on h , the action is actually **conjugation:** $k \cdot h = khk^{-1}$. Notice that, in the notation of \tilde{H} and \tilde{K} ,

$$
(1, k)(h, 1)(1, k)^{-1} = ((1, k)(h, 1))(1, k^{-1})
$$

= $(1 k \cdot h, k)(1, k^{-1})$
= $(k \cdot h k \cdot 1, kk^{-1})$
= $(k \cdot h, 1)$ since $k \cdot 1 = 1$ as in (1); see (*).

"Identifying" H and K with \tilde{H} and \tilde{K} gives $khk^{-1} = k \cdot h = \varphi(k)(h)$.

Theorem DF.5.10 (continued 5)

Theorem DF.5.10.

$$
(4) H \cap K = \{1\}.
$$

(5) For all $h \in H$ and $k \in K$, we have $khk^{-1} = k \cdot h = \varphi(k)(h)$.

Proof (continued). (4) "Clearly" $\tilde{H} \cap \tilde{K} = \{(1,1)\}\$. Identifying H and K with \tilde{H} and \tilde{K} (as hypothesized) yields $H \cap K = \{1\}$. (5) We now show that when k acts on h , the action is actually conjugation: $k \cdot h = khk^{-1}$. Notice that, in the notation of \tilde{H} and \tilde{K} ,

$$
(1, k)(h, 1)(1, k)^{-1} = ((1, k)(h, 1))(1, k^{-1})
$$

= $(1 k \cdot h, k)(1, k^{-1})$
= $(k \cdot h k \cdot 1, kk^{-1})$
= $(k \cdot h, 1)$ since $k \cdot 1 = 1$ as in (1); see (*).

"Identifying" H and K with \tilde{H} and \tilde{K} gives $khk^{-1} = k \cdot h = \varphi(k)(h)$.

Theorem DF.5.10 (continued 6)

Theorem DF.5.10. Let H and K be groups and let φ be a homomorphism from K into Aut(H). Let \cdot denote action of K on H determined by φ . Let G be the set of ordered pairs (h, k) with $h \in H$ and $k \in K$ and define the binary operation $(h_1, k_1)(h_2, k_2) = (h_1, k_1 \cdot h_2, k_1, k_2)$.

> (3) $H \trianglelefteq G$ (associating H with its isomorphic copy of ordered pairs).

Proof (continued). (3) Recall that $N_G(H) = \{g \in G \mid gHg^{-1} = H\}$ is the normalizer of H in G. By (5), since $khk^{-1} = k \cdot h = \varphi(k)(h)$ and $\varphi(k)$ is an automorphism of H, then $khk^{-1} \in H$ for all $h \in H$ and for all $k \in K$. and so $kHk^{-1} = k \cdot H = \varphi(k)(H) = H$. So $K < N_G(H)$. Also, of course, $H \leq N_G(H)$. Since $G = HK$ (though technically G consists of ordered pairs instead of products, but we "identity" these). So $G \leq N_G(H)$ and hence $G = N_G(H)$. That is, $H \trianglelefteq G$.

Theorem DF.5.10 (continued 6)

Theorem DF.5.10. Let H and K be groups and let φ be a homomorphism from K into Aut(H). Let \cdot denote action of K on H determined by φ . Let G be the set of ordered pairs (h, k) with $h \in H$ and $k \in K$ and define the binary operation $(h_1, k_1)(h_2, k_2) = (h_1, k_1 \cdot h_2, k_1, k_2)$.

> (3) $H \trianglelefteq G$ (associating H with its isomorphic copy of ordered pairs).

Proof (continued). (3) Recall that $N_G(H) = \{g \in G \mid gHg^{-1} = H\}$ is the normalizer of H in G. By (5), since $khk^{-1} = k \cdot h = \varphi(k)(h)$ and $\varphi(k)$ is an automorphism of H, then $khk^{-1} \in H$ for all $h \in H$ and for all $k \in K$. and so $kHk^{-1} = k \cdot H = \varphi(k)(H) = H$. So $K < N_G(H)$. Also, of course, $H \leq N_G(H)$. Since $G = HK$ (though technically G consists of ordered pairs instead of products, but we "identity" these). So $G \leq N_G(H)$ and hence $G = N_G(H)$. That is, $H \trianglelefteq G$.

Proposition DF.5.11

Proposition DF.5.11. Let H and K be groups and let $\varphi : K \to \text{Aut}(H)$ be a homomorphism. The following are equivalent.

- (1) The identity set map between $H \rtimes K$ and $H \times K$ (both consisting of ordered pairs) is a group homomorphism (and hence $H \rtimes K \cong H \times K$).
- (2) φ is the trivial homomorphism from K into Aut(H) (which maps all $k \in K$ to the identity automorphism).

(3) $K \triangleleft H \rtimes K$.

Proof. (1) implies (2) Suppose the identity map is an isomorphism between $H \rtimes K$ and $N \times K$. In $H \times K$, $(h_1, k_1)(h_2, k_2) = (h_1 h_2, k_1 k_2)$ and in $H \rtimes K$, $(h_1, h_2)(k_1, k_2) = (h_1 \ k_1 \cdot h_2, k_1 k_2)$. So it must be that $h_1h_2 = h_1$ $k_1 \cdot h_2$, or $h_2 = k_1 \cdot h_2$. This must hold for all $h_2 \in H$, so $\varphi(k_1)$ must be the identity automorphism.

Proposition DF.5.11

Proposition DF.5.11. Let H and K be groups and let $\varphi : K \to \text{Aut}(H)$ be a homomorphism. The following are equivalent.

- (1) The identity set map between $H \rtimes K$ and $H \times K$ (both consisting of ordered pairs) is a group homomorphism (and hence $H \rtimes K \cong H \times K$).
- (2) φ is the trivial homomorphism from K into Aut(H) (which maps all $k \in K$ to the identity automorphism).

(3) $K \triangleleft H \rtimes K$.

Proof. (1) implies (2) Suppose the identity map is an isomorphism between $H \rtimes K$ and $N \times K$. In $H \times K$, $(h_1, k_1)(h_2, k_2) = (h_1 h_2, k_1 k_2)$ and in $H \rtimes K$, $(h_1, h_2)(k_1, k_2) = (h_1 \ k_1 \cdot h_2, k_1 k_2)$. So it must be that $h_1h_2 = h_1$ $k_1 \cdot h_2$, or $h_2 = k_1 \cdot h_2$. This must hold for all $h_2 \in H$, so $\varphi(k_1)$ must be the identity automorphism. Also, this holds for all $k_1 \in K$ and so it must be that $\varphi(k)$ is the identity automorphism for all $k \in K$. That is, φ is the trivial homomorphism from K to Aut(H).

Proposition DF.5.11

Proposition DF.5.11. Let H and K be groups and let $\varphi : K \to \text{Aut}(H)$ be a homomorphism. The following are equivalent.

- (1) The identity set map between $H \rtimes K$ and $H \times K$ (both consisting of ordered pairs) is a group homomorphism (and hence $H \rtimes K \cong H \times K$).
- (2) φ is the trivial homomorphism from K into Aut(H) (which maps all $k \in K$ to the identity automorphism).

(3) $K \triangleleft H \rtimes K$.

Proof. (1) implies (2) Suppose the identity map is an isomorphism between $H \rtimes K$ and $N \times K$. In $H \times K$, $(h_1, k_1)(h_2, k_2) = (h_1 h_2, k_1 k_2)$ and in $H \rtimes K$, $(h_1, h_2)(k_1, k_2) = (h_1 \ k_1 \cdot h_2, k_1 k_2)$. So it must be that $h_1h_2 = h_1$ $k_1 \cdot h_2$, or $h_2 = k_1 \cdot h_2$. This must hold for all $h_2 \in H$, so $\varphi(k_1)$ must be the identity automorphism. Also, this holds for all $k_1 \in K$ and so it must be that $\varphi(k)$ is the identity automorphism for all $k \in K$. That is, φ is the trivial homomorphism from K to Aut(H).

Proposition DF.5.11 (continued 1)

Proposition DF.5.11. Let H and K be groups and let $\varphi : K \to \text{Aut}(H)$ be a homomorphism. The following are equivalent.

> (2) φ is the trivial homomorphism from K into Aut(H) (which maps all $k \in K$ to the identity automorphism).

(3) $K \trianglelefteq H \rtimes K$.

Proof (continued). (2) implies (3) If φ is the trivial homomorphism, then $\varphi(k)$ is the identity automorphism of H and $k \cdot h = h$ for all $h \in H$ and for all $k\in\mathcal{K}.$ By Theorem DF.10(5), $k\cdot h=khk^{-1},$ so $khk^{-1}=h$ for all $h \in H$, $k \in K$. So $kh = hk$ and the elements of H commute with the elements of K. Also H normalizes K (since $kh = hk$ for all $h \in H$, $k \in K$ implies $k = hkh^{-1}$ for all $h \in H$, $k \in K$ and hence $hKh^{-1} = K$ for all $h \in H$), and of course K normalizes itself. Let $g \in H \rtimes K$ and consider $g k g^{-1}$. We translate this into ordered pairs where, say, $g = (h_1, k_1)$ and $k = (1, k).$

Proposition DF.5.11 (continued 1)

Proposition DF.5.11. Let H and K be groups and let $\varphi : K \to \text{Aut}(H)$ be a homomorphism. The following are equivalent.

> (2) φ is the trivial homomorphism from K into Aut(H) (which maps all $k \in K$ to the identity automorphism).

(3) $K \trianglelefteq H \rtimes K$.

Proof (continued). (2) implies (3) If φ is the trivial homomorphism, then $\varphi(k)$ is the identity automorphism of H and $k \cdot h = h$ for all $h \in H$ and for all $k\in\mathcal{K}.$ By Theorem DF.10(5), $k\cdot h=khk^{-1},$ so $khk^{-1}=h$ for all $h \in H$, $k \in K$. So $kh = hk$ and the elements of H commute with the elements of K. Also H normalizes K (since $kh = hk$ for all $h \in H$, $k \in K$ implies $k = hkh^{-1}$ for all $h \in H$, $k \in K$ and hence $hKh^{-1} = K$ for all $h \in H$), and of course K normalizes itself. Let $g \in H \rtimes K$ and consider $g k g^{-1}$. We translate this into ordered pairs where, say, $g = (h_1, k_1)$ and $k = (1, k).$

Proposition DF.5.11 (continued 2)

Proposition DF.5.11. Let H and K be groups and let $\varphi : K \to \text{Aut}(H)$ be a homomorphism. The following are equivalent.

> (2) φ is the trivial homomorphism from K into Aut(H) (which maps all $k \in K$ to the identity automorphism).

$$
(3) K \trianglelefteq H \rtimes K.
$$

Proof (continued). (2) implies (3) Then

$$
gkg^{-1} = (h_1, k_1)(1, k)(h_1, k_1)^{-1}
$$

\n
$$
= ((h_1, k_1)(1, k))(h_1, k_1)^{-1}
$$

\n
$$
= (h_1 k_1 \cdot 1, k_1 k)(k_1^{-1} \cdot h_1, k_1^{-1})
$$
 by the definition of product
\nin $H \times K$ and the formula for an inverse of (h_1, k_1)
\n(see the proof of Theorem DF.10)
\n
$$
= (h_1 1, k_1 k)(h - 1^{-1}, k_1^{-1})
$$
 since the group action yields
\nthe identity automorphism
\n
$$
= (h_1 (k_1 k) \cdot h_1^{-1}, k_1, k, k_1^{-1})
$$
 by the definition of product

Proposition DF.5.11 (continued 3)

Proposition DF.5.11. Let H and K be groups and let $\varphi : K \to \text{Aut}(H)$ be a homomorphism. The following are equivalent.

> (2) φ is the trivial homomorphism from K into Aut(H) (which maps all $k \in K$ to the identity automorphism).

(3) $K \trianglelefteq H \rtimes K$.

Proof (continued). (2) implies (3) Then

$$
gkg^{-1} = (h_1 (k_1k) \cdot h_1^{-1}, k_1, k, k_1^{-1})
$$
 by the definition of product
= $(h_1h_1^{-1}, k_1kk_1^{-1})$ since group action yields the
identity automorphism
= $(1, k_1kk_1^{-1}) \in K$.

So $K \trianglelefteq H \rtimes K$ (again, we "identity" K and \tilde{K}) by Theorem I.5.1(iv).

Proposition DF.5.11 (continued 4)

Proposition DF.5.11. Let H and K be groups and let $\varphi : K \to \text{Aut}(H)$ be a homomorphism. The following are equivalent.

> (1) The identity set map between $H \rtimes K$ and $H \times K$ (both consisting of ordered pairs) is a group homomorphism (and hence $H \rtimes K \cong H \times K$).

$$
(3) K \trianglelefteq H \rtimes K.
$$

Proof. (3) implies (1) [The text, DF, uses a simplified notation when considering h, k, hk , etc. We use the ordered pair notation throughout this **proof.** Notice that the commutator satisfies:

$$
[h, k] = [(h, 1), (1.k)]
$$
 "identifying" as in Theorem DF.10
= $(h, 1)^{-1}(1, k)^{-1}(h, 1)(1, k)$
= $(1 \cdot h^{-1}, 1)(k^{-1} \cdot 1, k^{-1})(h, 1)(1, k)$
= $(h^{1}, 1)(1, k)(h, 1)(1, k)$.
Since $H \le H \rtimes K$ by Theorem DF.10(3), $(1, k)^{-1}(h, 1)(1, k) \in H$ and so
 $(h, 1)^{-1}(1, k)^{-1}(h, 1)(1, k) \in H$. That is, $[h, k] = [(h, 1), (1, k)] \in H$.

 $(h, 1)$

Proposition DF.5.11 (continued 4)

Proposition DF.5.11. Let H and K be groups and let $\varphi : K \to \text{Aut}(H)$ be a homomorphism. The following are equivalent.

> (1) The identity set map between $H \rtimes K$ and $H \times K$ (both consisting of ordered pairs) is a group homomorphism (and hence $H \rtimes K \cong H \times K$). (3) $K \triangleleft H \rtimes K$.

Proof. (3) implies (1) [The text, DF, uses a simplified notation when considering h, k, hk , etc. We use the ordered pair notation throughout this proof.] Notice that the commutator satisfies:

$$
[h, k] = [(h, 1), (1.k)]
$$
 "identifying" as in Theorem DF.10
= $(h, 1)^{-1}(1, k)^{-1}(h, 1)(1, k)$
= $(1 \cdot h^{-1}, 1)(k^{-1} \cdot 1, k^{-1})(h, 1)(1, k)$
= $(h^{1}, 1)(1, k)(h, 1)(1, k)$.
Since $H \le H \times K$ by Theorem DF.10(3), $(1, k)^{-1}(h, 1)(1, k) \in H$ and so
 $(h, 1)^{-1}(1, k)^{-1}(h, 1)(1, k) \in H$. That is, $[h, k] = [(h, 1), (1, k)] \in H$.

 $(h, 1)$ [−]

Proposition DF.5.11 (continued 5)

Proposition DF.5.11. Let H and K be groups and let $\varphi : K \to \text{Aut}(H)$ be a homomorphism. The following are equivalent.

> (1) The identity set map between $H \rtimes K$ and $H \times K$ (both consisting of ordered pairs) is a group homomorphism (and hence $H \rtimes K \cong H \times K$). (3) $K \triangleleft H \rtimes K$.

Proof (continued). (3) implies (1) (continued) Similarly, since $K\unlhd H\rtimes K$ by hypothesis, then $(h,1)^{-1}(1,k)^{-1}(h,1)\in K$ and so $(h,1)^{-1}(1,k)^{-1}(h,1)(1,k) \in K$. That is $[h,k] = [(h,1)(1,k)] \in K$. Since $H \cap K = 1 = (1, 1)$ ("identifying") by Theorem DF.10(4), then

 $[h, k] = [(h, 1)(1, k)] = (h^{-1}, 1)(1, k^{-1})(h, 1)(1, k) = (1, 1).$

This implies $(h, 1)(1, k) = (1, k)(h, 1)$ (or "identifying," $hk = kh$). Now $(h, 1)(1, k) = (h 1 \cdot 1, k) = (h, k)$ and $(1, k)(h, 1) = (1 k \cdot h, k)$, since these are equal, we must have $k \cdot h = h$ for all $h \in H$, $k \in K$. That is, the action of K on H is the identity $(\varphi(k)(h) = h)$.

Proposition DF.5.11 (continued 5)

Proposition DF.5.11. Let H and K be groups and let $\varphi : K \to \text{Aut}(H)$ be a homomorphism. The following are equivalent.

> (1) The identity set map between $H \rtimes K$ and $H \times K$ (both consisting of ordered pairs) is a group homomorphism (and hence $H \rtimes K \cong H \times K$). (3) $K \triangleleft H \rtimes K$.

Proof (continued). (3) implies (1) (continued) Similarly, since $K\unlhd H\rtimes K$ by hypothesis, then $(h,1)^{-1}(1,k)^{-1}(h,1)\in K$ and so $(h,1)^{-1}(1,k)^{-1}(h,1)(1,k) \in K$. That is $[h,k] = [(h,1)(1,k)] \in K$. Since $H \cap K = 1 = (1, 1)$ ("identifying") by Theorem DF.10(4), then

$$
[h,k] = [(h,1)(1,k)] = (h^{-1},1)(1,k^{-1})(h,1)(1,k) = (1,1).
$$

This implies $(h, 1)(1, k) = (1, k)(h, 1)$ (or "identifying," $hk = kh$). Now $(h, 1)(1, k) = (h 1 \cdot 1, k) = (h, k)$ and $(1, k)(h, 1) = (1 k \cdot h, k)$, since these are equal, we must have $k \cdot h = h$ for all $h \in H$, $k \in K$. That is, the action of K on H is the identity $(\varphi(k)(h) = h)$.

Proposition DF.5.11 (continued 6)

Proposition DF.5.11. Let H and K be groups and let $\varphi : K \to \text{Aut}(H)$ be a homomorphism. The following are equivalent.

> (1) The identity set map between $H \rtimes K$ and $H \times K$ (both consisting of ordered pairs) is a group homomorphism (and hence $H \rtimes K \cong H \times K$). (3) $K \triangleleft H \rtimes K$.

Proof (continued). (3) implies (1) (continued) The identity mapping of $H \rtimes K$ to $H \times K$ is certainly one to one and onto (both $H \times K$ and $H \rtimes K$ are pairs (h, k)). Now with the action of K on H as the identity we have that the product in $H \rtimes K$ satisfies:

$$
(h_1,k_1)(h_2,k_2)=(h_1\ k_1h_2,k_1k_2)=(h_1h_2,k_1k_2)=(h_1,k_1)(h_2,k_2)
$$

in $H \times K$. So the identity has the homomorphism property. That is, the identity mapping is an isomorphism.

Theorem DF.5.12

Theorem DF.5.12. Recognition Theorem for Semidirect Products. Suppose G is a group with subgroups H and K such that

(1)
$$
H \trianglelefteq G
$$
, and

$$
(2) H \cap K = \{1\}.
$$

Let $\varphi: K \to \text{Aut}(H)$ be the homomorphism defined by mapping $k \in K$ to the automorphism of left conjugation by k on H. Then $HK \cong H \rtimes K$. In particular, if $G = HK$ with H and K satisfying (1) and (2), then G is the semidirect product of H and K .

Proof. Since $H \triangleleft G$, then $HK = H \vee K = KH$ is a subgroup of G by Hungerford's Theorem I.5.3(iii). By Proposition DF.5.8, every element of HK can be written uniquely in the form hk, for some $h \in H$ and $k \in K$. Thus the map $hk \mapsto (h, k)$ is a set bijection from HK onto H $\rtimes K$. We now show this bijection satisfies the homomorphism property. Let two elements of HK be h_1k_1 and h_2k_2 .

Theorem DF.5.12

Theorem DF.5.12. Recognition Theorem for Semidirect Products. Suppose G is a group with subgroups H and K such that

(1)
$$
H \trianglelefteq G
$$
, and

$$
(2) H \cap K = \{1\}.
$$

Let $\varphi : K \to \text{Aut}(H)$ be the homomorphism defined by mapping $k \in K$ to the automorphism of left conjugation by k on H. Then $HK \cong H \rtimes K$. In particular, if $G = HK$ with H and K satisfying (1) and (2), then G is the semidirect product of H and K .

Proof. Since $H \triangleleft G$, then $HK = H \vee K = KH$ is a subgroup of G by Hungerford's Theorem I.5.3(iii). By Proposition DF.5.8, every element of HK can be written uniquely in the form hk, for some $h \in H$ and $k \in K$. Thus the map $hk \mapsto (h, k)$ is a set bijection from HK onto $H \rtimes K$. We now show this bijection satisfies the homomorphism property. Let two elements of HK be h_1k_1 and h_2k_2 .

Theorem DF.5.12 (continued)

Theorem DF.5.12. Recognition Theorem for Semidirect Products.

Suppose G is a group with subgroups H and K such that

(1)
$$
H \trianglelefteq G
$$
, and
(2) $H \cap K = \{1\}$

Let $\varphi : K \to \text{Aut}(H)$ be the homomorphism defined by mapping $k \in K$ to the automorphism of left conjugation by k on H. Then $HK \cong H \rtimes K$. Proof (continued). Then in G,

 $(h_1k_1)(h_2k_2) = h_1k_1h_2(k_1^{-1}k_1)k_2 = h_1(k_1h_2k_1^{-1})k_1k_2 = h_3k_3$ where $h_3 = h_1(h_1(k_1h_2k_1^{-1}) \in \bar{H}$ since H is a normal subgroup of G , and $k_3 = k_1 k_2 \in K$. So the mapping $hk \mapsto (h, k)$ is a homomorphism because in $H \rtimes K$.

$$
(h_1, k_1)(h_2, k_2)
$$
 = $(h_1 k_1 \cdot h_2, k_1 k_2)$ by the definition of product in $H \times K$
 = $(h_1(k_1 h_2 k_1^{-1}), k_1 k_2)$
 = $(h_3, k_3).$

So HK \cong H \rtimes K.