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Theorem DF.5.7

Proposition DF.5.7. Let G be a group, let x,y € G, and let H < G.
Then

(1) xy = yx[x, y].

(2) H<S G if and only if [H, G] < H.

(3) For any automorphism o of G, we have
olx,y] = [o(x),o(y)]. Also, G’ is a characteristic subgroup
of G (denoted “G’ char G"; this means that every
automorphism of G maps G’ to itself, i.e., o(G’) = G’) and
G/G' is abelian.

(4) G/G'is the largest abelian quotient group of G in the sense
that if H < G and G/H is abelian, then G’ < H. Conversely,
if G' < H, then H< G and G/H is abelian.
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Theorem DF.5.7 (continued 1)

Proposition DF.5.7. Let G be a group, let x,y € G, and let H < G.
Then

(5) If ¢ : G — A'is any homomorphism of G into an abelian
group A, then ¢ factors through G, i.e., G’ < ker(y) and
the following diagram commutes:

G G/G'
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Theorem DF.5.7 (continued 2)

Proposition DF.5.7. Let G be a group, let x,y € G, and let H < G.
Then

(1) xy = yx[x, y].
(2) HQ G if and only if [H, G] < H.
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Theorem DF.5.7 (continued 2)

Proposition DF.5.7. Let G be a group, let x,y € G, and let H < G.
Then

(1) xy = yx[x, y].

(2) HQ G if and only if [H, G] < H.

OJ

Proof. (1) We have yx[x,y] = yxx "1y ~Ixy = xy.
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Theorem DF.5.7 (continued 2)

Proposition DF.5.7. Let G be a group, let x,y € G, and let H < G.
Then

(1) xy = yx[x, y].
(2) HQ G if and only if [H, G] < H.

Proof. (1) We have yx[x,y] = yxx "1y ~Ixy = xy. Ol

(2) We have H<1 G is and only if g~*hg € H forall g€ G and all h€ H
by Theorem 1.5.1. For h € H, we have g~ *hg € H if and only if
h~lg=lhg =[h,g] € H. So H< G is an only if [h,g] € H for all he H
and all g € G. Thatis, H QG if and only if [H, G] < H. O
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Theorem DF.5.7 (continued 3)

Proposition DF.5.7. Let G be a group, let x,y € G, and let H < G.
Then
(3) For any automorphism o of G, we have
ol[x,y] = [o(x),0(y)]. Also, G’ is a characteristic subgroup
of G (denoted “G’ char G"; this means that every
automorphism of G maps G’ to itself, i.e., 0(G’) = G’) and
G/G' is abelian.

Proof (continued). (3) Let 0 € Aut(G) be an automorphism of G and
let x,y € G. Then

o(l.yl) = ox7y "xy)
= o(x Ho(y Ho(x)a(y) since o is an automorphism
= o(x)7lo(y)to(x)a(y) since o is an automorphism
= [o(x),a(y)]-
Thus for every commutator [x,y] € G, o([x,y]) € G'.
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Theorem DF.5.7 (continued 4)

Proof continued. Since o has a two-sided inverse (because Aut(G) is a
group), then o maps the set of commutators bijectively onto itself. Since
the commutators are a generating set for G’, then o(G’) = G’. That is,

G’ char G.

March 16, 2021 7 /28
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Theorem DF.5.7 (continued 4)

Proof continued. Since o has a two-sided inverse (because Aut(G) is a
group), then o maps the set of commutators bijectively onto itself. Since
the commutators are a generating set for G’, then o(G’) = G’. That is,
G’ char G.

We now show that G/G’ is abelian. Let xg’ and yG’ be arbitrary elements
of G/G’. We have

(xG')(¥G') = (xy)G’ by definition

= (yx[xy])G" by (1)
(yx)G' since [x,y] € G’
(yG')(xG') by definition.

O
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Theorem DF.5.7 (continued 5)

Proposition DF.5.7. Let G be a group, let x,y € G, and let H < G.
Then

(4) G/G'is the largest abelian quotient group of G in the sense
that if H < G and G/H is abelian, then G’ < H. Conversely,
if G' < H, then H< G and G/H is abelian.

Proof (continued). (4) Suppose H < G and G/H is abelian. Then for all
x,y € G we have (xH)(yH) = (yH)(xH) and so

1H = (xH) Y(xH)(yH) *(yH) by the definition of the identity in G/H
= (XH) L(yH)™Y(xH)(yH) since G/H is abelian
= (X vy xy)H by the definition of coset mulitplication
= [xylH.

So [x,y] € H for all x,y € G and hence G’ < H. So G/G’ is the largest
abelain quotient group.
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Theorem DF.5.7 (continued 6)

Proposition DF.5.7. Let G be a group, let x,y € G, and let H < G.
Then
(4) G/G'is the largest abelian quotient group of G in the sense
that if H < G and G/H is abelian, then G’ < H. Conversely,
if G' < H, then H< G and G/H is abelian.

Proof (continued). Conversely, if G’ < H then, since G/G’ is abelian (by
(3)), every subgroup of G/G’ is normal. In particular, H/G' < G/G’. By
Corollary 1.5.12, this implies that H < G. By the Third Isomorphism
Theorem (Corollary 1.5.10), we have that G/H = (G/G")/(H/G").
Therefore G/H is abelian since it is a quotient group of the abelian group
G/G'. O
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Theorem DF.5.7 (continued 7)

Proposition DF.5.7. Let G be a group, let x,y € G, and let H < G.
Then

(5) If ¢ : G — A'is any homomorphism of G into an abelian
group A, then ¢ factors through G, i.e., G’ < ker(y) and
the following diagram commutes:

G G/G'
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Theorem DF.5.7 (continued 8)

Proof (continued). (5) With ¢ as the canonical homomorphism mapping
G — G/G’, we have ker(¢)) = G'. So for any given homomorphism

@ : G — A, by Theorem 1.5.6, there is a unique homomorphism 6 mapping
G/G" — A such that ¢ = o). That is, the diagram commutes:

G G/G'

O
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Theorem DF.3.15

Corollary DF.3.15

Corollary DF.3.15. If H and K are subgroups of G and

H < Ng(K)={g € G| gKg! = K}, then HK is a subgroup of G.

particular, if K < G then HK < G for any H < G.
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Corollary DF.3.15

Corollary DF.3.15. If H and K are subgroups of G and
H < Ng(K)={g € G| gKg™! = K}, then HK is a subgroup of G. In
particular, if K < G then HK < G for any H < G.

Proof. Let h € H, k € K. Since H < Ng(K) then hkh™! € K and so
hk = hk(h=th) = (hkh=*)h € KH and so HK C KH. Similarly

kh = (hh=1)kh = h(h='kh) € HK. Therefore KH = HK and by the
previous not, HK is a subgroup of G.
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Theorem DF.5.10

Theorem DF.5.10

Theorem DF.5.10. Let H and K be groups and let ¢ be a
homomorphism from K into Aut(H). Let - denote action of K on H
determined by ¢. Let G be the set of ordered pairs (h, k) with h € H and
k € K and define the binary operation (h1, k1)(h2, ko) = (h1 ki - ha, ki1, k).
(1) The binary operation makes G a group of order |G| = |H||K]|.
(2) The sets H={(h,1) | he H} and K = {(1,k) | k € K} are
subgroups of G and the maps h+— (h,1) for h € H and
k — (1, k) for k € K are isomorphisms of these subgroups
with groups H and K.
(3) H < G (associating H with its isomorphic copy of ordered
pairs).
(4) HN K ={1}.
(5) Forall h € H and k € K, we have khk=! = k - h = @(k)(h).
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Theorem DF.5.10 (continued 1)

Theorem DF.5.10. Let H and K be groups and let ¢ be a
homomorphism from K into Aut(H). Let - denote action of K on H
determined by ¢. Let G be the set of ordered pairs (h, k) with h € H and
k € K and define the binary operation (h1, k1)(h2, ko) = (h1 ki - ha, ki1, k2).
(1) The binary operation makes G a group of order |G| = |H||K]|.

Proof. (1) For 1 € K and ¢ a homomorphism from K into Aut(H), we

have that (1) is the identity automorphism of H since a homomorphism
maps an identity to an identity. So for h € H the action is 1- h = h. We
use this to show that the identity is (1, 1):

(1,1)(h,k) = (11-h,1k)
(1h,1k) by above
= (h, k).
Now for any (k) € Aut(H), since ¢(k) is an automorphism then
k- h = p(k)(h) is the inverse of k- h=1 = p(k)(h™1).
Modern Algebra March 16, 2021 14 / 28



Theorem DF.5.10 (continued 2)

Proof (continued). We use this to show that the the inverse of (h, k) is
(k7171 k1)
(k7Y L kY (hk) = (k7Y kTh (kT h), k)
= (1,1) by above.
Since we have established a left identity and left inverses, by Theorem
[.1.3, we have a two sided identity and two sided inverses.
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Theorem DF.5.10 (continued 2)

Proof (continued). We use this to show that the the inverse of (h, k) is
(k7171 k1)
(k1B k(oK) = (K k(KT h), KK

= (1,1) by above.
Since we have established a left identity and left inverses, by Theorem
[.1.3, we have a two sided identity and two sided inverses.

For associativity (using Dummit and Foote's notation):
((ax),(b,y))(c,2) = (ax-b,xy)(cz)
= ((ax- b)((xy.c), xyz)
(ax-b)(x-(y-x)),xyz)
((x- b)(x - (v - ©))), xyz)

(x - (b(y - ¢))), xyz) since the action

(
(
(a
(a

of x is an automorphism and so
(x-b)(x-(y-c))=x-(by-c))
Modern Algebra March 16, 2021 15 / 28



Theorem DF.5.10

Theorem DF.5.10 (continued 3)

Theorem DF.5.10. Let H and K be groups and let ¢ be a
homomorphism from K into Aut(H). Let - denote action of K on H
determined by ¢. Let G be the set of ordered pairs (h, k) with h € H and
k € K and define the binary operation (h1, k1)(h2, ka) = (h1 ki - ha, k1, k).

(1) The binary operation makes G a group of order |G| = |H||K]|.
Proof (continued).

((a,x), (b, y))(c,2) = (a(x- (bly - ©))), xyz)
(a,x)(b y - c,yz) by the definition

of the binary operation
= (z,x)((b,y)(c, z)) by the definition

of the binary operation.

So G is a group under the binary operation.
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Theorem DF.5.10 (continued 4)

Theorem DF.5.10.
(2) The sets H={(h,1) | h€ H} and K = {(1,k) | k € K} are
subgroups of G and the maps h — (h,1) for h € H and
k — (1, k) for k € K are isomorphisms of these subgroups
with groups H and K.

Proof (continued). (2) Let #: H — H and ¢ : K — K be defined as
6(h) = (h,1) and (k) = (1, k). Then “clearly” 6 and 1 are one to one
and onto.
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Theorem DF.5.10 (continued 4)

Theorem DF.5.10.
(2) The sets H={(h,1) | h€ H} and K = {(1,k) | k € K} are
subgroups of G and the maps h — (h,1) for h € H and
k — (1, k) for k € K are isomorphisms of these subgroups
with groups H and K.

Proof (continued). (2) Let #: H — H and ¢ : K — K be defined as
6(h) = (h,1) and (k) = (1, k). Then “clearly” 6 and 1 are one to one
and onto. Now

O(hiho) = (hiho, 1) = (hy 1+ hp, 11) = (hy,1)(h2, 1) = 6(hy)0(h2), and

Y(kika) = (1, kika) = (11, kiko)
(1 k1 -1, ki ko) since action on 1
by an automorphism yields 1 ()
= (L k)1, k) = (ki) (k).
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Theorem DF.5.10 (continued 5)

Theorem DF.5.10.
(4) HNK ={1}.
(5) Forall h € H and k € K, we have khk™! = k - h = @(k)(h).

Proof (continued). (4) “Clearly” Hn K ={(1,1)}. Identifying H and K
with H and K (as hypothesized) yields H N K = {1}.
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Theorem DF.5.10 (continued 5)

Theorem DF.5.10.

(4) HNK ={1}.

(5) Forall h € H and k € K, we have khk™! = k - h = @(k)(h).
Proof (continued). (4) “Clearly” Hn K ={(1,1)}. Identifying H and K
with H and K (as hypothesized) yields H N K = {1}.

(5) We now show that when k acts on h, the action is actually
conjugation: k - h = khk™1.
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Theorem DF.5.10 (continued 5)

Theorem DF.5.10.

(4) HNK = {1}.

(5) Forall h € H and k € K, we have khk™! = k - h = @(k)(h).

Proof (continued). (4) “Clearly” Hn K ={(1,1)}. Identifying H and K
with H and K (as hypothesized) yields H N K = {1}.
(5) We now show that when k acts on h, the action is actually

conjugation: k - h = khk™1.

(1,k)(h,1)(1, k)" =

Notice that, in the notation of H and K

(L K)(h, 1)1, k7
(1 k-h,k)(1, kD)
(k-hk-1,kk™)

(

k- h,1)since k-1 =1 asin (1); see (x).

“Identifying” H and K with H and K gives khk~t = k - h = o(k)(h).
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Theorem DF.5.10 (continued 6)

Theorem DF.5.10. Let H and K be groups and let ¢ be a
homomorphism from K into Aut(H). Let - denote action of K on H
determined by ¢. Let G be the set of ordered pairs (h, k) with h € H and
k € K and define the binary operation (h1, k1)(h2, ko) = (h1 ki - h2, k1, k).
(3) H < G (associating H with its isomorphic copy of ordered
pairs).

Proof (continued). (3) Recall that Ng(H) = {g € G | gHg ! = H} is
the normalizer of H in G. By (5), since khk~! = k- h = @(k)(h) and (k)
is an automorphism of H, then khk—! € H for all h € H and for all k € K,
and so kHk™' = k- H = p(k)(H) = H. So K < Ng(H).
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Theorem DF.5.10 (continued 6)

Theorem DF.5.10. Let H and K be groups and let ¢ be a
homomorphism from K into Aut(H). Let - denote action of K on H
determined by ¢. Let G be the set of ordered pairs (h, k) with h € H and
k € K and define the binary operation (h1, k1)(h2, ko) = (h1 ki - h2, k1, k).
(3) H < G (associating H with its isomorphic copy of ordered
pairs).

Proof (continued). (3) Recall that Ng(H) = {g € G | gHg ! = H} is
the normalizer of H in G. By (5), since khk~! = k- h = @(k)(h) and (k)
is an automorphism of H, then khk—! € H for all h € H and for all k € K,
and so kHk™! = k- H = ¢(k)(H) = H. So K < Ng(H). Also, of course,
H < Ng(H). Since G = HK (though technically G consists of ordered
pairs instead of products, but we “identity” these). So G < Ng(H) and
hence G = Ng(H). Thatis, H < G. O
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Proposition DF.5.11

Proposition DF.5.11. Let H and K be groups and let ¢ : K — Aut(H)
be a homomorphism. The following are equivalent.
(1) The identity set map between H x K and H x K (both
consisting of ordered pairs) is a group homomorphism (and
hence H x K = H x K).
(2)  is the trivial homomorphism from K into Aut(H) (which
maps all k € K to the identity automorphism).
(3) K<IHx K.
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Proposition DF.5.11

Proposition DF.5.11. Let H and K be groups and let ¢ : K — Aut(H)
be a homomorphism. The following are equivalent.
(1) The identity set map between H x K and H x K (both
consisting of ordered pairs) is a group homomorphism (and
hence H x K = H x K).
(2)  is the trivial homomorphism from K into Aut(H) (which
maps all k € K to the identity automorphism).
(3) K<IHx K.
Proof. (1) implies (2) Suppose the identity map is an isomorphism
between H x K and N x K. In H x K, (h1, k1)(h2, k2) = (h1h2, kikz) and
in Hx K, (hl, hg)(kl, k2) = (h1 ki - ho, klkg). So it must be that
hihy = hy ki - hy, or hy = kq - hp. This must hold for all h, € H, so ¢(ki1)
must be the identity automorphism.

Modern Algebra March 16, 2021 20 / 28



Proposition DF.5.11

Proposition DF.5.11. Let H and K be groups and let ¢ : K — Aut(H)
be a homomorphism. The following are equivalent.

(1) The identity set map between H x K and H x K (both
consisting of ordered pairs) is a group homomorphism (and
hence H x K = H x K).

(2)  is the trivial homomorphism from K into Aut(H) (which
maps all k € K to the identity automorphism).

(3) KIHx K.
Proof. (1) implies (2) Suppose the identity map is an isomorphism
between H x K and N x K. In H x K, (h1, k1)(h2, k2) = (h1h2, kikz) and
in Hx K, (hl, hg)(kl, k2) = (h1 ki - ho, klkg). So it must be that
hihy = hy ki - hy, or hy = kq - hp. This must hold for all h, € H, so ¢(ki1)
must be the identity automorphism. Also, this holds for all k; € K and so
it must be that ¢(k) is the identity automorphism for all k € K. That is,
¢ is the trivial homomorphism from K to Aut(H).
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Proposition DF.5.11 (continued 1)

Proposition DF.5.11. Let H and K be groups and let ¢ : K — Aut(H)
be a homomorphism. The following are equivalent.

(2) ¢ is the trivial homomorphism from K into Aut(H) (which

maps all k € K to the identity automorphism).

(3) KIHx K.
Proof (continued). (2) implies (3) If ¢ is the trivial homomorphism,
then ¢(k) is the identity automorphism of H and k- h = h for all he H
and for all k € K. By Theorem DF.10(5), k - h = khk~!, so khk=! = h for
all he H, k € K. So kh = hk and the elements of H commute with the
elements of K. Also H normalizes K (since kh = hk for all he H, k € K
implies k = hkh™! for all h € H, k € K and hence hKh™! = K for all
h € H), and of course K normalizes itself.
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Proposition DF.5.11 (continued 1)

Proposition DF.5.11. Let H and K be groups and let ¢ : K — Aut(H)
be a homomorphism. The following are equivalent.

(2) ¢ is the trivial homomorphism from K into Aut(H) (which
maps all k € K to the identity automorphism).

(3) KIHx K.
Proof (continued). (2) implies (3) If ¢ is the trivial homomorphism,
then ¢(k) is the identity automorphism of H and k- h = h for all he H
and for all k € K. By Theorem DF.10(5), k - h = khk~!, so khk=! = h for
all he H, k € K. So kh = hk and the elements of H commute with the
elements of K. Also H normalizes K (since kh = hk for all he H, k € K
implies k = hkh™! for all h € H, k € K and hence hKh™! = K for all
h € H), and of course K normalizes itself. Let g € H x K and consider
gkg 1. We translate this into ordered pairs where, say, g = (h, k1) and
k = (1, k).
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Proposition DF.5.11 (continued 2)

Proposition DF.5.11. Let H and K be groups and let ¢ : K — Aut(H)
be a homomorphism. The following are equivalent.
(2) ¢ is the trivial homomorphism from K into Aut(H) (which
maps all k € K to the identity automorphism).
(3) K<IHxK.
Proof (continued). (2) implies (3) Then
gkg™t = (h, k) (1, k)(hy ke) ™
= ((h1, ka)(L, k) (he, ke) 7
= (h1 k-1, kik)(k;t - hi, k;t) by the definition of product
in H x K and the formula for an inverse of (hy, k1)
(see the proof of Theorem DF.10)
= (hy 1,kik)(h — 171 k;t) since the group action yields
the identity automorphism
= (hy (kik) - byt ke, k, k{t) by the definition of product
Modern Algebra March 16, 2021 22 / 28



Proposition DF.5.11

Proposition DF.5.11 (continued 3)

Proposition DF.5.11. Let H and K be groups and let ¢ : K — Aut(H)
be a homomorphism. The following are equivalent.

(2) ¢ is the trivial homomorphism from K into Aut(H) (which
maps all k € K to the identity automorphism).
(3) KIHx K.
Proof (continued). (2) implies (3) Then

gkg™* = (h1 (kik)- hit, ki, k, k1) by the definition of product

= (hihy!, kikkt) since group action yields the
identity automorphism

= (1, kikk{1) € K.

So K < H x K (again, we “identity” K and K) by Theorem 1.5.1(iv).
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Proposition DF.5.11

Proposition DF.5.11 (continued 4)

Proposition DF.5.11. Let H and K be groups and let ¢ : K — Aut(H)
be a homomorphism. The following are equivalent.

(1) The identity set map between H x K and H x K (both
consisting of ordered pairs) is a group homomorphism (and
hence H x K = H x K).

(3) K<IHxK.

Proof. (3) implies (1) [The text, DF, uses a simplified notation when

considering h, k, hk, etc. We use the ordered pair notation throughout this
proof.]
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Proposition DF.5.11 (continued 4)

Proposition DF.5.11. Let H and K be groups and let ¢ : K — Aut(H)
be a homomorphism. The following are equivalent.

(1) The identity set map between H x K and H x K (both
consisting of ordered pairs) is a group homomorphism (and
hence H x K = H x K).

(3) K<IHxK.

Proof. (3) implies (1) [The text, DF, uses a simplified notation when
considering h, k, hk, etc. We use the ordered pair notation throughout this
proof.] Notice that the commutator satisfies:

[h,k] = [(h,1),(1.k)] “identifying” as in Theorem DF.10
= (h, 1)71(1) k)il(h’ 1)(1, k)
= (1-h LDk -1,k7Y)(h 1)1, k)
(ht,1)(1, k)(h, 1)(1, k).
Since H <l H x K by Theorem DF.10(3), (1, k)~(h,1)(1, k) € H and so
(h,1

(h,1)7Y(1, k)~Y(h,1)(1, k) € H. Thatis, [h, k] = [(h, 1), (1 k)] € H.
Modern Algebra March 16, 2021 24 /28



Proposition DF.5.11 (continued 5)

Proposition DF.5.11. Let H and K be groups and let ¢ : K — Aut(H)
be a homomorphism. The following are equivalent.
(1) The identity set map between H x K and H x K (both
consisting of ordered pairs) is a group homomorphism (and
hence H x K = H x K).
(3) KIHx K.

Proof (continued). (3) implies (1) (continued) Similarly, since

K < H x K by hypothesis, then (h,1)71(1, k)~1(h,1) € K and so
(h,1)7Y(1, k)~Y(h,1)(1, k) € K. That is [h, k] = [(h,1)(1, k)] € K. Since
HN K =1=(1,1) (“identifying”) by Theorem DF.10(4), then

[h> k] = [(h7 1)(17 k)] = (h_l’ 1)(1’ k_l)(h> 1)(17 k) = (1> 1)'
This implies (h,1)(1, k) = (1, k)(h,1) (or “identifying,” hk = kh).
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Proposition DF.5.11 (continued 5)

Proposition DF.5.11. Let H and K be groups and let ¢ : K — Aut(H)
be a homomorphism. The following are equivalent.
(1) The identity set map between H x K and H x K (both
consisting of ordered pairs) is a group homomorphism (and
hence H x K = H x K).
(3) KIHx K.

Proof (continued). (3) implies (1) (continued) Similarly, since
K < H x K by hypothesis, then (h,1)71(1, k)~1(h,1) € K and so
(h,1)7Y(1, k)~Y(h,1)(1, k) € K. That is [h, k] = [(h,1)(1, k)] € K. Since
HN K =1=(1,1) (“identifying”) by Theorem DF.10(4), then

[h, k] = [(h,1)(1, k)] = (h™1 1)(1, k7 1)(h, 1)(1, k) = (1,1).
This implies (h,1)(1, k) = (1, k)(h, 1) (or “identifying,” hk = kh). Now
(h,1)(1,k)=(h1-1,k) = (h,k) and (1, k)(h,1) = (1 k- h, k), since
these are equal, we must have k- h= hfor all he H, k € K. That is, the

action of K on H is the identity (¢(k)(h) = h).
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Proposition DF.5.11 (continued 6)

Proposition DF.5.11. Let H and K be groups and let ¢ : K — Aut(H)
be a homomorphism. The following are equivalent.

(1) The identity set map between H x K and H x K (both
consisting of ordered pairs) is a group homomorphism (and
hence H x K = H x K).

(3) K< Hx K.

Proof (continued). (3) implies (1) (continued) The identity mapping
of Hx K to H x K is certainly one to one and onto (both H x K and

H x K are pairs (h, k)). Now with the action of K on H as the identity we
have that the product in H x K satisfies:

(h1, k1)(ho, ko) = (h1 kiho, kiko) = (h1ho, kiko) = (h1, ki)(h2, k2)

in H x K. So the identity has the homomorphism property. That is, the
identity mapping is an isomorphism. O
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Theorem DF.5.12

Theorem DF.5.12. Recognition Theorem for Semidirect Products.
Suppose G is a group with subgroups H and K such that

(1) HL G, and

(2) HNK ={1}.
Let ¢ : K — Aut(H) be the homomorphism defined by mapping k € K to
the automorphism of left conjugation by k on H. Then HK 2 H x K. In
particular, if G = HK with H and K satisfying (1) and (2), then G is the
semidirect product of H and K.
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Theorem DF.5.12

Theorem DF.5.12. Recognition Theorem for Semidirect Products.
Suppose G is a group with subgroups H and K such that

(1) HL G, and

(2) HNK ={1}.
Let ¢ : K — Aut(H) be the homomorphism defined by mapping k € K to
the automorphism of left conjugation by k on H. Then HK 2 H x K. In

particular, if G = HK with H and K satisfying (1) and (2), then G is the
semidirect product of H and K.

Proof. Since H < G, then HK = HV K = KH is a subgroup of G by
Hungerford's Theorem 1.5.3(iii). By Proposition DF.5.8, every element of
HK can be written uniquely in the form hk, for some h € H and k € K.
Thus the map hk — (h, k) is a set bijection from HK onto H x K. We
now show this bijection satisfies the homomorphism property. Let two
elements of HK be hi1 ki and hoko.
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Theorem DF.5.12 (continued)

Theorem DF.5.12. Recognition Theorem for Semidirect Products.
Suppose G is a group with subgroups H and K such that

(1) HL G, and

(2) HNK ={1}.
Let ¢ : K — Aut(H) be the homomorphism defined by mapping k € K to
the automorphism of left conjugation by kK on H. Then HK =2 H x K.
Proof (continued). Then in G,

(hiki)(haka) = hikiha(ky tki)ke = hy(kihaky ) kika = hsks
where h3 = hl(hl(klhgkfl) € H since H is a normal subgroup of G, and
ks = kiky € K. So the mapping hk — (h, k) is a homomorphism because
in Hx K,

(hl, kl)(hg, kz) = (hl ki - ho, klkg)by the definition of product in H x K
= (m(kih2k 1), kika)
= (hs, k3).

So HK = H x K. O
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