Lemma V 1.15

Modern Algebra

Chapter V. Fields and Galois Theory

V.1.Appendix. Ruler and Compass Constructions—Proofs of Theorems

 L_1, L_2 be nonparallel lines in F and C_1, C_2 distinct circles in F. Then **Lemma V.1.15.** Let F be a subfield of the field \mathbb{R} of real numbers and let (ii) $L_1 \cap C_1 = \emptyset$ or consists of one or two points in the plane of (i) $L_1 \cap L_2$ is a point in the plane of F;

- $F(\sqrt{u})$ for some $u \in F$ where $u \ge 0$;
- (iii) $C_1 \cap C_2 = \emptyset$ or consists of one or two points in the plane of $F(\sqrt{u})$ for some $u \in F$ where $u \ge 0$.

equation $a_2x + b_2y + c_2 = 0$. Then we find that the only common point are nonparallel. Notice that $x, y \in F$ since F is a field. $y = a_1c_2 - a_2c_1/(a_2b_1 - a_1b_2)$ where $a_1b_2 - a_2b_1 \neq 0$ since L_1 and L_2 to L_1 and L_2 is $x = (b_1c_2 - b_2c_1)/(a_1b_2 - a_2b_1)$ and **Proof.** (i) Let L_1 have equation $a_1x + b_1y + c_1 = 0$ and let line L_2 have

Lemma V.1.15

Lemma V.1.15. Let F be a subfield of the field \mathbb{R} of real numbers and let L_1, L_2 be nonparallel lines in F and C_1, C_2 distinct circles in F. Then

- (ii) $L_1 \cap C_1 = \emptyset$ or consists of one or two points in the plane of $F(\sqrt{u})$ for some $u \in F$ where $u \ge 0$;
- $C_1 \cap C_2 = \emptyset$ or consists of one or two points in the plane of $F(\sqrt{u})$ for some $u \in F$ where $u \geq 0$.
- only if it lies on both C_1 and L. So case (iii) reduces to case (ii). **Proof.** (iii) Let C_1 have equation $x^2 + y^2 + a_1x + b_1y + c_1 = 0$ and let C_2 have equation $x^2 + y^2 + a_2x + b_2y + c_2 = 0$ where $a_1, a_2, b_1, b_2, c_1, c_2 \in F$. line L with equation $(a_1 - a_2)x + (b_1 - b_2)y + (c_1 - c_2) = 0$ (from Then if (x,y) lies on both C_1 and C_2 , we also have that (x,y) lies on the "subtracting C_2 from C_1 "). So a point (x, y) lies on both C_1 and C_2 if and

Lemma V 1 15

 L_1, L_2 be nonparallel lines in F and C_1, C_2 distinct circles in F. Then **Lemma V.1.15.** Let F be a subfield of the field \mathbb{R} of real numbers and let

- (ii) $L_1 \cap C_1 = \emptyset$ or consists of one or two points in the plane of $F(\sqrt{u})$ for some $u \in F$ where $u \ge 0$.
- and so $x^2 + (-f/e)^2 + a_1x + b_1(-f/e) + c_1 = 0$ or $e^2x^2 + e^2a_1x + (f^2 efb_1 + e^2c_1) = 0$. The quadratic equation then gives If d=0 then $e\neq 0$ and the only (x,y) on both L and C_1 satisfies ey+f=0 and $x^2+y^2+a_1x+b_1y+c_1=0$. Then we have y=-f/e $d, e, f \in F$ (and C_1 has the equation given above). **Proof.** (ii) Suppose line L_1 has the equation dx + ey + f = 0 where

$$x=rac{-e^2a_1\pm\sqrt{(e^2a_1)^2-4(e^2)(f^2-efb_1+e^2c_1)}}{2e^2}.$$

Let $u = (e^2 a_1)^2 - 4(e^2)(f^2 - efb_1 + e^2 c_1)$. If u < 0 then $L_1 \cap C_1 = \emptyset$.

Modern Algebra

Modern Algebra

December 20, 2015 4 / 12

Modern Algebra

December 20, 2015 5 / 12

Lemma V.1.15 (continued)

both L_1 and C_1 then d=1, so that x+ey+f=0, or x=-ey-f. So a point (x,y) lies on If $d \neq 0$ then we can "normalize" the equation for L_1 and WLOG assume on L_1 and C_1 and x is in terms of \sqrt{u} ; so the two points lie in $F(\sqrt{u})$. there is one point on both L_1 and C_1 . If u>0 then there are two points **Proof (continued).** (ii) If u = 0 then $x = -a_1/2$ and y = -f/e and

 $y^2 + By + C = 0$. Completing the square yields If $A \neq 0$ then again by normalizing we may assume A = 1 and we need $A,B,C\in F$. If A=0 then $y\in F$ and so $x\in F$. Then $x,y\in F=F(\sqrt{1})$. $(-ey-f)^2+y^2+a_1(-ey-f)+b_1y+c_1=Ay^2+By+C=0$ where

are two points (x, y) on $L_1 \cap C_1$ both of which satisfy $x, y \in F(\sqrt{u})$. one point (x, y) on $L_1 \cap C_1$ where $x, y \in F = F(0)$. If u > 0 then there Let $u=-C+B^2/4$. Then $L_1\cap C_1=\varnothing$ if u<0. If u=0 then there is $(y+B/2)^2+(C-B^2/4)=0$. This gives $y=-B/2\pm\sqrt{-C+B^2/4}$.

Proposition V.1.16

algebraic of degree a power of 2 over the field $\mathbb Q$ or rationals **Proposition V.1.16.** If a real number c is constructible, then c

constructed through a finite sequence of intersections of lines and/or two points must either lie in the plane of $\mathbb Q$ or be points previously circle we need two points (the center P and radius PT for a circle). The find the intersection of lines and/or circles. Now to construct a line or take the plane of $\mathbb Q$ as given. The only way to construct new points is to previous note, shows that $\mathbb Q$ consists of constructible numbers and so we **Proof.** From the fact that every integer is constructible, along with the

 $\mathbb{Q}(\nu)$ with $\nu^2 \in \mathbb{Q}$. Such an extension has degree 1 or degree 2 over \mathbb{Q} . an extension field $\mathbb{Q}(\sqrt{u})$ of \mathbb{Q} with $u \in \mathbb{Q}$, or equivalently in the plane of or \mathbb{Q}). By Lemma V.1.15, the first point so constructed lies in the plane of intersections of constructible lines and/or circles (starting with the plane Let c be constructible. Then c results from a finite sequence of

December 20, 2015 6 / 12

Corollary V.1.17

Proposition V.1.16 (continued)

algebraic of degree a power of 2 over the field $\mathbb Q$ or rationals **Proposition V.1.16.** If a real number c is constructible, then c is

a power of 2 and so $[\mathbb{Q}(c):\mathbb{Q}]$ divides $[F:\mathbb{Q}]$. So the degree $[\mathbb{Q}(c):\mathbb{Q}]$ of c over \mathbb{Q} is of two. So by Theorem V.1.11, c is algebraic over \mathbb{Q} . Now (as fields) V.1.2, $[F:\mathbb{Q}]$ is the product of these dimensions and so $[F:\mathbb{Q}]$ is a power plane of Q(v,w) with $w^2\in \mathbb{Q}(v)$ (again, by Lemma V.1.15). So (c,0) lies $\mathbb{Q} \subset \mathbb{Q}(c) \subset F$ and so by Theorem V.1.2, $[\mathbb{Q}(c) : \mathbb{Q}][F : \mathbb{Q}(c)] = [F : \mathbb{Q}]$ $v_i^2 \in \mathbb{Q}(v_1, v_2, \dots, v_{i-1})$ and by Lemma V.1.15, $\mathbb{Q}\subset\mathbb{Q}(v_1)\subset\mathbb{Q}(v_1,v_2)\subset\cdots\subset\mathbb{Q}(v_1,v_2,\ldots,v_n)$ with in the plane of $F=\mathbb{Q}(v_1,v_2,\ldots,v_n)$ for some $n\in\mathbb{N}$ where **Proof (continued).** Similarly, the next new point constructed lies in the $[\mathbb{Q}(v_1,v_2,\ldots,v_i):\mathbb{Q}(v_1,v_2,\ldots,v_{i-1})]\in\{1,2\}$ for $2\leq i\leq n$. By Theorem

General Angle is Impossible. Corollary V.1.17. Straight Edge and Compass Trisection of a

and therefore a general angle cannot be trisected An angle of 60° cannot be trisected by ruler and compass constructions

equation $1/2 = 4x^3 - 3x$ or equivalently $8x^3 - 6x - 1 = 0$. $\cos(3lpha)=\cos(60^\circ)=1/2$ and $\cos(20^\circ)$ is a root of the polynomial that $\cos(3\alpha)=4\cos^3(\alpha)-3\cos(\alpha)$. With $\alpha=20^\circ$, then 12/20/2015). However for any angle α , elementary trigonometric shows https://www.youtube.com/watch?v=S24GYj1rWGs, accessed the the Lemma to Theorem 32.11 in my YouTube video online at possible to construct the real number $\cos(20^\circ)$ (see Exercise V.1.25(b) or construct a right triangle with one acute angle of 20°. It would then be **Proof.** If it were possible to trisect a 60° angle, we would then be able to

Modern Algebra December 20, 2015 8 / 12

Modern Algebra

December 20, 2015 9 / 12

Corollary V.1.17

Corollary V.1.18

Corollary V.1.17. Straight Edge and Compass Trisection of a General Angle is Impossible.

An angle of 60° cannot be trisected by ruler and compass constructions, and therefore a general angle cannot be trisected.

Proof. But $8x^3 - 6x - 1$ is irreducible in $\mathbb{Q}[x]$ by Proposition III.6.8 and the Factor Theorem (Theorem III.6.6). Therefore, $\cos(20^\circ)$ has degree 3 over \mathbb{Q} and so $\cos(20^\circ)$ is not constructible by Proposition V.1.16, and whence a 20° angle is not constructible.

Corollary V.1.18. Straight Edge and Compass Doubling of the Cube is Impossible.

It is impossible by ruler and compass constructions to duplicate a cube of side length 1 (that is, to construct the side of a cube of volume 2).

Proof. If s is the side length of a cube of volume 2, then s is a root of x^3-2 which is irreducible in $\mathbb{Q}[x]$ by Eisentein's Criterion (Theorem III.6.15). Therefore x is not constructible by Proposition V.1.16 since $\sqrt[3]{2}$ is of degree 3 over \mathbb{Q} .

Corollary V.1.19 Corollary V.1.19. Squaring of the Circle is Impo

Corollary V.1.19. Straight Edge and Compass Squaring of the Circle is Impossible.

It is impossible by ruler and compass constructions to construct a square with area equal to the area of a circle of radius 1 (that is, to construct a square with area π).

Proof. Consider a circle of radius 1, and so area π . ASSUME a square of area π can be constructed. Then the length of a side of the square is $\sqrt{\pi}$ and this is a constructible number. Then π is constructible and so by Proposition V.1.16, π is algebraic over $\mathbb Q$. But π is known to be transcendental by Lindemann's proof, a CONTRADICTION. So no such square is constructible.