Lemma V 1.15 #### Modern Algebra ## Chapter V. Fields and Galois Theory V.1.Appendix. Ruler and Compass Constructions—Proofs of Theorems L_1, L_2 be nonparallel lines in F and C_1, C_2 distinct circles in F. Then **Lemma V.1.15.** Let F be a subfield of the field \mathbb{R} of real numbers and let (ii) $L_1 \cap C_1 = \emptyset$ or consists of one or two points in the plane of (i) $L_1 \cap L_2$ is a point in the plane of F; - $F(\sqrt{u})$ for some $u \in F$ where $u \ge 0$; - (iii) $C_1 \cap C_2 = \emptyset$ or consists of one or two points in the plane of $F(\sqrt{u})$ for some $u \in F$ where $u \ge 0$. equation $a_2x + b_2y + c_2 = 0$. Then we find that the only common point are nonparallel. Notice that $x, y \in F$ since F is a field. $y = a_1c_2 - a_2c_1/(a_2b_1 - a_1b_2)$ where $a_1b_2 - a_2b_1 \neq 0$ since L_1 and L_2 to L_1 and L_2 is $x = (b_1c_2 - b_2c_1)/(a_1b_2 - a_2b_1)$ and **Proof.** (i) Let L_1 have equation $a_1x + b_1y + c_1 = 0$ and let line L_2 have #### Lemma V.1.15 **Lemma V.1.15.** Let F be a subfield of the field \mathbb{R} of real numbers and let L_1, L_2 be nonparallel lines in F and C_1, C_2 distinct circles in F. Then - (ii) $L_1 \cap C_1 = \emptyset$ or consists of one or two points in the plane of $F(\sqrt{u})$ for some $u \in F$ where $u \ge 0$; - $C_1 \cap C_2 = \emptyset$ or consists of one or two points in the plane of $F(\sqrt{u})$ for some $u \in F$ where $u \geq 0$. - only if it lies on both C_1 and L. So case (iii) reduces to case (ii). **Proof.** (iii) Let C_1 have equation $x^2 + y^2 + a_1x + b_1y + c_1 = 0$ and let C_2 have equation $x^2 + y^2 + a_2x + b_2y + c_2 = 0$ where $a_1, a_2, b_1, b_2, c_1, c_2 \in F$. line L with equation $(a_1 - a_2)x + (b_1 - b_2)y + (c_1 - c_2) = 0$ (from Then if (x,y) lies on both C_1 and C_2 , we also have that (x,y) lies on the "subtracting C_2 from C_1 "). So a point (x, y) lies on both C_1 and C_2 if and #### Lemma V 1 15 L_1, L_2 be nonparallel lines in F and C_1, C_2 distinct circles in F. Then **Lemma V.1.15.** Let F be a subfield of the field \mathbb{R} of real numbers and let - (ii) $L_1 \cap C_1 = \emptyset$ or consists of one or two points in the plane of $F(\sqrt{u})$ for some $u \in F$ where $u \ge 0$. - and so $x^2 + (-f/e)^2 + a_1x + b_1(-f/e) + c_1 = 0$ or $e^2x^2 + e^2a_1x + (f^2 efb_1 + e^2c_1) = 0$. The quadratic equation then gives If d=0 then $e\neq 0$ and the only (x,y) on both L and C_1 satisfies ey+f=0 and $x^2+y^2+a_1x+b_1y+c_1=0$. Then we have y=-f/e $d, e, f \in F$ (and C_1 has the equation given above). **Proof.** (ii) Suppose line L_1 has the equation dx + ey + f = 0 where $$x= rac{-e^2a_1\pm\sqrt{(e^2a_1)^2-4(e^2)(f^2-efb_1+e^2c_1)}}{2e^2}.$$ Let $u = (e^2 a_1)^2 - 4(e^2)(f^2 - efb_1 + e^2 c_1)$. If u < 0 then $L_1 \cap C_1 = \emptyset$. Modern Algebra Modern Algebra December 20, 2015 4 / 12 Modern Algebra December 20, 2015 5 / 12 ### Lemma V.1.15 (continued) both L_1 and C_1 then d=1, so that x+ey+f=0, or x=-ey-f. So a point (x,y) lies on If $d \neq 0$ then we can "normalize" the equation for L_1 and WLOG assume on L_1 and C_1 and x is in terms of \sqrt{u} ; so the two points lie in $F(\sqrt{u})$. there is one point on both L_1 and C_1 . If u>0 then there are two points **Proof (continued).** (ii) If u = 0 then $x = -a_1/2$ and y = -f/e and $y^2 + By + C = 0$. Completing the square yields If $A \neq 0$ then again by normalizing we may assume A = 1 and we need $A,B,C\in F$. If A=0 then $y\in F$ and so $x\in F$. Then $x,y\in F=F(\sqrt{1})$. $(-ey-f)^2+y^2+a_1(-ey-f)+b_1y+c_1=Ay^2+By+C=0$ where are two points (x, y) on $L_1 \cap C_1$ both of which satisfy $x, y \in F(\sqrt{u})$. one point (x, y) on $L_1 \cap C_1$ where $x, y \in F = F(0)$. If u > 0 then there Let $u=-C+B^2/4$. Then $L_1\cap C_1=\varnothing$ if u<0. If u=0 then there is $(y+B/2)^2+(C-B^2/4)=0$. This gives $y=-B/2\pm\sqrt{-C+B^2/4}$. ### Proposition V.1.16 algebraic of degree a power of 2 over the field $\mathbb Q$ or rationals **Proposition V.1.16.** If a real number c is constructible, then c constructed through a finite sequence of intersections of lines and/or two points must either lie in the plane of $\mathbb Q$ or be points previously circle we need two points (the center P and radius PT for a circle). The find the intersection of lines and/or circles. Now to construct a line or take the plane of $\mathbb Q$ as given. The only way to construct new points is to previous note, shows that $\mathbb Q$ consists of constructible numbers and so we **Proof.** From the fact that every integer is constructible, along with the $\mathbb{Q}(\nu)$ with $\nu^2 \in \mathbb{Q}$. Such an extension has degree 1 or degree 2 over \mathbb{Q} . an extension field $\mathbb{Q}(\sqrt{u})$ of \mathbb{Q} with $u \in \mathbb{Q}$, or equivalently in the plane of or \mathbb{Q}). By Lemma V.1.15, the first point so constructed lies in the plane of intersections of constructible lines and/or circles (starting with the plane Let c be constructible. Then c results from a finite sequence of # December 20, 2015 6 / 12 Corollary V.1.17 ## Proposition V.1.16 (continued) ### algebraic of degree a power of 2 over the field $\mathbb Q$ or rationals **Proposition V.1.16.** If a real number c is constructible, then c is a power of 2 and so $[\mathbb{Q}(c):\mathbb{Q}]$ divides $[F:\mathbb{Q}]$. So the degree $[\mathbb{Q}(c):\mathbb{Q}]$ of c over \mathbb{Q} is of two. So by Theorem V.1.11, c is algebraic over \mathbb{Q} . Now (as fields) V.1.2, $[F:\mathbb{Q}]$ is the product of these dimensions and so $[F:\mathbb{Q}]$ is a power plane of Q(v,w) with $w^2\in \mathbb{Q}(v)$ (again, by Lemma V.1.15). So (c,0) lies $\mathbb{Q} \subset \mathbb{Q}(c) \subset F$ and so by Theorem V.1.2, $[\mathbb{Q}(c) : \mathbb{Q}][F : \mathbb{Q}(c)] = [F : \mathbb{Q}]$ $v_i^2 \in \mathbb{Q}(v_1, v_2, \dots, v_{i-1})$ and by Lemma V.1.15, $\mathbb{Q}\subset\mathbb{Q}(v_1)\subset\mathbb{Q}(v_1,v_2)\subset\cdots\subset\mathbb{Q}(v_1,v_2,\ldots,v_n)$ with in the plane of $F=\mathbb{Q}(v_1,v_2,\ldots,v_n)$ for some $n\in\mathbb{N}$ where **Proof (continued).** Similarly, the next new point constructed lies in the $[\mathbb{Q}(v_1,v_2,\ldots,v_i):\mathbb{Q}(v_1,v_2,\ldots,v_{i-1})]\in\{1,2\}$ for $2\leq i\leq n$. By Theorem ### General Angle is Impossible. Corollary V.1.17. Straight Edge and Compass Trisection of a and therefore a general angle cannot be trisected An angle of 60° cannot be trisected by ruler and compass constructions equation $1/2 = 4x^3 - 3x$ or equivalently $8x^3 - 6x - 1 = 0$. $\cos(3lpha)=\cos(60^\circ)=1/2$ and $\cos(20^\circ)$ is a root of the polynomial that $\cos(3\alpha)=4\cos^3(\alpha)-3\cos(\alpha)$. With $\alpha=20^\circ$, then 12/20/2015). However for any angle α , elementary trigonometric shows https://www.youtube.com/watch?v=S24GYj1rWGs, accessed the the Lemma to Theorem 32.11 in my YouTube video online at possible to construct the real number $\cos(20^\circ)$ (see Exercise V.1.25(b) or construct a right triangle with one acute angle of 20°. It would then be **Proof.** If it were possible to trisect a 60° angle, we would then be able to Modern Algebra December 20, 2015 8 / 12 Modern Algebra December 20, 2015 9 / 12 ### Corollary V.1.17 #### Corollary V.1.18 ## Corollary V.1.17. Straight Edge and Compass Trisection of a General Angle is Impossible. An angle of 60° cannot be trisected by ruler and compass constructions, and therefore a general angle cannot be trisected. **Proof.** But $8x^3 - 6x - 1$ is irreducible in $\mathbb{Q}[x]$ by Proposition III.6.8 and the Factor Theorem (Theorem III.6.6). Therefore, $\cos(20^\circ)$ has degree 3 over \mathbb{Q} and so $\cos(20^\circ)$ is not constructible by Proposition V.1.16, and whence a 20° angle is not constructible. ## Corollary V.1.18. Straight Edge and Compass Doubling of the Cube is Impossible. It is impossible by ruler and compass constructions to duplicate a cube of side length 1 (that is, to construct the side of a cube of volume 2). **Proof.** If s is the side length of a cube of volume 2, then s is a root of x^3-2 which is irreducible in $\mathbb{Q}[x]$ by Eisentein's Criterion (Theorem III.6.15). Therefore x is not constructible by Proposition V.1.16 since $\sqrt[3]{2}$ is of degree 3 over \mathbb{Q} . ## Corollary V.1.19 Corollary V.1.19. Squaring of the Circle is Impo ## Corollary V.1.19. Straight Edge and Compass Squaring of the Circle is Impossible. It is impossible by ruler and compass constructions to construct a square with area equal to the area of a circle of radius 1 (that is, to construct a square with area π). **Proof.** Consider a circle of radius 1, and so area π . ASSUME a square of area π can be constructed. Then the length of a side of the square is $\sqrt{\pi}$ and this is a constructible number. Then π is constructible and so by Proposition V.1.16, π is algebraic over $\mathbb Q$. But π is known to be transcendental by Lindemann's proof, a CONTRADICTION. So no such square is constructible.