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Lemma V.1.15

Lemma V.1.15. Let F be a subfield of the field R of real numbers and let
L1, L2 be nonparallel lines in F and C1,C2 distinct circles in F . Then

(i) L1 ∩ L2 is a point in the plane of F ;

(ii) L1 ∩ C1 = ∅ or consists of one or two points in the plane of
F (
√

u) for some u ∈ F where u ≥ 0;

(iii) C1 ∩ C2 = ∅ or consists of one or two points in the plane of
F (
√

u) for some u ∈ F where u ≥ 0.

Proof. (i) Let L1 have equation a1x + b1y + c1 = 0 and let line L2 have
equation a2x + b2y + c2 = 0.

Then we find that the only common point
to L1 and L2 is x = (b1c2 − b2c1)/(a1b2 − a2b1) and
y =)a1c2 − a2c1)/(a2b1 − a1b2) where a1b2 − a2b1 6= 0 since L1 and L2

are nonparallel. Notice that x , y ∈ F since F is a field.

() Modern Algebra December 20, 2015 3 / 12



Lemma V.1.15

Lemma V.1.15

Lemma V.1.15. Let F be a subfield of the field R of real numbers and let
L1, L2 be nonparallel lines in F and C1,C2 distinct circles in F . Then

(i) L1 ∩ L2 is a point in the plane of F ;

(ii) L1 ∩ C1 = ∅ or consists of one or two points in the plane of
F (
√

u) for some u ∈ F where u ≥ 0;

(iii) C1 ∩ C2 = ∅ or consists of one or two points in the plane of
F (
√

u) for some u ∈ F where u ≥ 0.

Proof. (i) Let L1 have equation a1x + b1y + c1 = 0 and let line L2 have
equation a2x + b2y + c2 = 0. Then we find that the only common point
to L1 and L2 is x = (b1c2 − b2c1)/(a1b2 − a2b1) and
y =)a1c2 − a2c1)/(a2b1 − a1b2) where a1b2 − a2b1 6= 0 since L1 and L2

are nonparallel. Notice that x , y ∈ F since F is a field.

() Modern Algebra December 20, 2015 3 / 12



Lemma V.1.15

Lemma V.1.15

Lemma V.1.15. Let F be a subfield of the field R of real numbers and let
L1, L2 be nonparallel lines in F and C1,C2 distinct circles in F . Then

(i) L1 ∩ L2 is a point in the plane of F ;

(ii) L1 ∩ C1 = ∅ or consists of one or two points in the plane of
F (
√

u) for some u ∈ F where u ≥ 0;

(iii) C1 ∩ C2 = ∅ or consists of one or two points in the plane of
F (
√

u) for some u ∈ F where u ≥ 0.

Proof. (i) Let L1 have equation a1x + b1y + c1 = 0 and let line L2 have
equation a2x + b2y + c2 = 0. Then we find that the only common point
to L1 and L2 is x = (b1c2 − b2c1)/(a1b2 − a2b1) and
y =)a1c2 − a2c1)/(a2b1 − a1b2) where a1b2 − a2b1 6= 0 since L1 and L2

are nonparallel. Notice that x , y ∈ F since F is a field.

() Modern Algebra December 20, 2015 3 / 12



Lemma V.1.15

Lemma V.1.15

Lemma V.1.15. Let F be a subfield of the field R of real numbers and let
L1, L2 be nonparallel lines in F and C1,C2 distinct circles in F . Then
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F (
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u) for some u ∈ F where u ≥ 0;

(iii) C1 ∩ C2 = ∅ or consists of one or two points in the plane of
F (
√

u) for some u ∈ F where u ≥ 0.

Proof. (iii) Let C1 have equation x2 + y2 + a1x + b1y + c1 = 0 and let C2

have equation x2 + y2 + a2x + b2y + c2 = 0 where a1, a2, b1, b2, c1, c2 ∈ F .
Then if (x , y) lies on both C1 and C2, we also have that (x , y) lies on the
line L with equation (a1 − a2)x + (b1 − b2)y + (c1 − c2) = 0 (from
“subtracting C2 from C1”). So a point (x , y) lies on both C1 and C2 if and
only if it lies on both C1 and L. So case (iii) reduces to case (ii).
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Lemma V.1.15. Let F be a subfield of the field R of real numbers and let
L1, L2 be nonparallel lines in F and C1,C2 distinct circles in F . Then

(ii) L1 ∩ C1 = ∅ or consists of one or two points in the plane of
F (
√

u) for some u ∈ F where u ≥ 0.

Proof. (ii) Suppose line L1 has the equation dx + ey + f = 0 where
d , e, f ∈ F (and C1 has the equation given above).

If d = 0 then e 6= 0 and the only (x , y) on both L and C1 satisfies
ey + f = 0 and x2 + y2 + a1x + b1y + c1 = 0. Then we have y = −f /e
and so x2 + (−f /e)2 + a1x + b1(−f /e) + c1 = 0 or
e2x2 + e2a1x + (f 2 − efb1 + e2c1) = 0. The quadratic equation then gives

x =
−e2a1 ±

√
(e2a1)2 − 4(e2)(f 2 − efb1 + e2c1)

2e2
.

Let u = (e2a1)
2 − 4(e2)(f 2 − efb1 + e2c1). If u < 0 then L1 ∩ C1 = ∅.
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Lemma V.1.15 (continued)

Proof (continued). (ii) If u = 0 then x = −a1/2 and y = −f /e and
there is one point on both L1 and C1. If u > 0 then there are two points
on L1 and C1 and x is in terms of

√
u; so the two points lie in F (

√
u).

If d 6= 0 then we can “normalize” the equation for L1 and WLOG assume
d = 1, so that x + ey + f = 0, or x = −ey − f . So a point (x , y) lies on
both L1 and C1 then
(−ey − f )2 + y2 + a1(−ey − f ) + b1y + c1 = Ay2 + By + C = 0 where
A,B,C ∈ F .

If A = 0 then y ∈ F and so x ∈ F . Then x , y ∈ F = F (
√

1).
If A 6= 0 then again by normalizing we may assume A = 1 and we need
y2 + By + C = 0. Completing the square yields
(y + B/2)2 + (C − B2/4) = 0. This gives y = −B/2±

√
−C + B2/4.

Let u = −C + B2/4. Then L1 ∩ C1 = ∅ if u < 0. If u = 0 then there is
one point (x , y) on L1 ∩ C1 where x , y ∈ F = F (0). If u > 0 then there
are two points (x , y) on L1 ∩ C1 both of which satisfy x , y ∈ F (

√
u).
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Proposition V.1.16

Proposition V.1.16. If a real number c is constructible, then c is
algebraic of degree a power of 2 over the field Q or rationals.

Proof. From the fact that every integer is constructible, along with the
previous note, shows that Q consists of constructible numbers and so we
take the plane of Q as given. The only way to construct new points is to
find the intersection of lines and/or circles.

Now to construct a line or
circle we need two points (the center P and radius PT for a circle). The
two points must either lie in the plane of Q or be points previously
constructed through a finite sequence of intersections of lines and/or
circles.

Let c be constructible. Then c results from a finite sequence of
intersections of constructible lines and/or circles (starting with the plane
or Q). By Lemma V.1.15, the first point so constructed lies in the plane of
an extension field Q(

√
u) of Q with u ∈ Q, or equivalently in the plane of

Q(v) with v2 ∈ Q. Such an extension has degree 1 or degree 2 over Q.
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Proposition V.1.16. If a real number c is constructible, then c is
algebraic of degree a power of 2 over the field Q or rationals.

Proof (continued). Similarly, the next new point constructed lies in the
plane of Q(v ,w) with w2 ∈ Q(v) (again, by Lemma V.1.15). So (c , 0) lies
in the plane of F = Q(v1, v2, . . . , vn) for some n ∈ N where
Q ⊂ Q(v1) ⊂ Q(v1, v2) ⊂ · · · ⊂ Q(v1, v2, . . . , vn) with
v2
i ∈ Q(v1, v2, . . . , vi−1) and by Lemma V.1.15,

[Q(v1, v2, . . . , vi ) : Q(v1, v2, . . . , vi−1)] ∈ {1, 2} for 2 ≤ i ≤ n. By Theorem
V.1.2, [F : Q] is the product of these dimensions and so [F : Q] is a power
of two.

So by Theorem V.1.11, c is algebraic over Q. Now (as fields)
Q ⊂ Q(c) ⊂ F and so by Theorem V.1.2, [Q(c) : Q][F : Q(c)] = [F : Q]
and so [Q(c) : Q] divides [F : Q]. So the degree [Q(c) : Q] of c over Q is
a power of 2.
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Corollary V.1.17. Trisection of a General Angle is Impossible

Corollary V.1.17

Corollary V.1.17. Straight Edge and Compass Trisection of a
General Angle is Impossible.
An angle of 60◦ cannot be trisected by ruler and compass constructions,
and therefore a general angle cannot be trisected.

Proof. If it were possible to trisect a 60◦ angle, we would then be able to
construct a right triangle with one acute angle of 20◦.

It would then be
possible to construct the real number cos(20◦) (see Exercise V.1.25(b) or
the the Lemma to Theorem 32.11 in my YouTube video online at
https://www.youtube.com/watch?v=S24GYj1rWGs, accessed
12/20/2015). However for any angle α, elementary trigonometric shows
that cos(3α) = 4 cos3(α)− 3 cos(α). With α = 20◦, then
cos(3α) = cos(60◦) = 1/2 and cos(20◦) is a root of the polynomial
equation 1/2 = 4x3 − 3x or equivalently 8x3 − 6x − 1 = 0.
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Corollary V.1.17. Trisection of a General Angle is Impossible

Corollary V.1.17

Corollary V.1.17. Straight Edge and Compass Trisection of a
General Angle is Impossible.
An angle of 60◦ cannot be trisected by ruler and compass constructions,
and therefore a general angle cannot be trisected.

Proof. But 8x3 − 6x − 1 is irreducible in Q[x ] by Proposition III.6.8 and
the Factor Theorem (Theorem III.6.6). Therefore, cos(20◦) has degree 3
over Q and so cos(20◦) is not constructible by Proposition V.1.16, and
whence a 20◦ angle is not constructible.
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Corollary V.1.18. Doubling of the Cube is Impossible

Corollary V.1.18

Corollary V.1.18. Straight Edge and Compass Doubling of the Cube
is Impossible.
It is impossible by ruler and compass constructions to duplicate a cube of
side length 1 (that is, to construct the side of a cube of volume 2).

Proof. If s is the side length of a cube of volume 2, then s is a root of
x3 − 2 which is irreducible in Q[x ] by Eisentein’s Criterion (Theorem
III.6.15).

Therefore x is not constructible by Proposition V.1.16 since 3
√

2
is of degree 3 over Q.
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Corollary V.1.19. Squaring of the Circle is Impossible

Corollary V.1.19

Corollary V.1.19. Straight Edge and Compass Squaring of the Circle
is Impossible.
It is impossible by ruler and compass constructions to construct a square
with area equal to the area of a circle of radius 1 (that is, to construct a
square with area π).

Proof. Consider a circle of radius 1, and so area π.

ASSUME a square of
area π can be constructed. Then the length of a side of the square is

√
π

and this is a constructible number. Then π is constructible and so by
Proposition V.1.16, π is algebraic over Q. But π is known to be
transcendental by Lindemann’s proof, a CONTRADICTION. So no such
square is constructible.
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