Modern Algebra

Chapter V. Fields and Galois Theory

V.1.Appendix. Ruler and Compass Constructions—Proofs of Theorems

- 2 [Proposition V.1.16](#page-19-0)
- 3 [Corollary V.1.17. Trisection of a General Angle is Impossible](#page-28-0)
- [Corollary V.1.18. Doubling of the Cube is Impossible](#page-34-0)
- 5 [Corollary V.1.19. Squaring of the Circle is Impossible](#page-37-0)

Lemma V.1.15. Let F be a subfield of the field $\mathbb R$ of real numbers and let L_1, L_2 be nonparallel lines in F and C_1, C_2 distinct circles in F. Then

(i) $L_1 \cap L_2$ is a point in the plane of F;

- (ii) $L_1 \cap C_1 = \emptyset$ or consists of one or two points in the plane of $F(\sqrt{u})$ for some $u \in F$ where $u \geq 0$;
- (iii) $C_1 \cap C_2 = \emptyset$ or consists of one or two points in the plane of F(\sqrt{u} for some $u \in F$ where $u \ge 0$.

Proof. (i) Let L_1 have equation $a_1x + b_1y + c_1 = 0$ and let line L_2 have equation $a_2x + b_2y + c_2 = 0$.

Lemma V.1.15. Let F be a subfield of the field $\mathbb R$ of real numbers and let L_1, L_2 be nonparallel lines in F and C_1, C_2 distinct circles in F. Then

(i) $L_1 \cap L_2$ is a point in the plane of F;

- (ii) $L_1 \cap C_1 = \emptyset$ or consists of one or two points in the plane of F(\sqrt{u} for some $u \in F$ where $u \ge 0$;
- (iii) $C_1 \cap C_2 = \emptyset$ or consists of one or two points in the plane of F(\sqrt{u} for some $u \in F$ where $u \ge 0$.

Proof. (i) Let L_1 have equation $a_1x + b_1y + c_1 = 0$ and let line L_2 have **equation** $a_2x + b_2y + c_2 = 0$ **.** Then we find that the only common point to L₁ and L₂ is $x = (b_1c_2 - b_2c_1)/(a_1b_2 - a_2b_1)$ and $y = |a_1c_2 - a_2c_1|/(a_2b_1 - a_1b_2)$ where $a_1b_2 - a_2b_1 \neq 0$ since L_1 and L_2 are nonparallel. Notice that $x, y \in F$ since F is a field.

Lemma V.1.15. Let F be a subfield of the field $\mathbb R$ of real numbers and let L_1, L_2 be nonparallel lines in F and C_1, C_2 distinct circles in F. Then

(i) $L_1 \cap L_2$ is a point in the plane of F;

- (ii) $L_1 \cap C_1 = \emptyset$ or consists of one or two points in the plane of F(\sqrt{u} for some $u \in F$ where $u \ge 0$;
- (iii) $C_1 \cap C_2 = \emptyset$ or consists of one or two points in the plane of F(\sqrt{u} for some $u \in F$ where $u \ge 0$.

Proof. (i) Let L_1 have equation $a_1x + b_1y + c_1 = 0$ and let line L_2 have equation $a_2x + b_2y + c_2 = 0$. Then we find that the only common point to L₁ and L₂ is $x = (b_1c_2 - b_2c_1)/(a_1b_2 - a_2b_1)$ and $y = |a_1c_2 - a_2c_1|/(a_2b_1 - a_1b_2)$ where $a_1b_2 - a_2b_1 \neq 0$ since L_1 and L_2 are nonparallel. Notice that $x, y \in F$ since F is a field.

Lemma V.1.15. Let F be a subfield of the field \mathbb{R} of real numbers and let L_1, L_2 be nonparallel lines in F and C_1, C_2 distinct circles in F. Then

- (ii) $L_1 \cap C_1 = \emptyset$ or consists of one or two points in the plane of F(\sqrt{u} for some $u \in F$ where $u \ge 0$;
- (iii) $C_1 \cap C_2 = \emptyset$ or consists of one or two points in the plane of F(\sqrt{u} for some $u \in F$ where $u \ge 0$.

Proof. (iii) Let C_1 have equation $x^2 + y^2 + a_1x + b_1y + c_1 = 0$ and let C_2 have equation $x^2 + y^2 + a_2x + b_2y + c_2 = 0$ where $a_1, a_2, b_1, b_2, c_1, c_2 \in F$. Then if (x, y) lies on both C_1 and C_2 , we also have that (x, y) lies on the line L with equation $(a_1 - a_2)x + (b_1 - b_2)y + (c_1 - c_2) = 0$ (from "subtracting C_2 from C_1 "). So a point (x, y) lies on both C_1 and C_2 if and only if it lies on both C_1 and L. So case (iii) reduces to case (ii).

Lemma V.1.15. Let F be a subfield of the field $\mathbb R$ of real numbers and let L_1, L_2 be nonparallel lines in F and C_1, C_2 distinct circles in F. Then

- (ii) $L_1 \cap C_1 = \emptyset$ or consists of one or two points in the plane of F(\sqrt{u} for some $u \in F$ where $u \ge 0$;
- (iii) $C_1 \cap C_2 = \emptyset$ or consists of one or two points in the plane of F(\sqrt{u} for some $u \in F$ where $u \ge 0$.

Proof. (iii) Let C_1 have equation $x^2 + y^2 + a_1x + b_1y + c_1 = 0$ and let C_2 have equation $x^2 + y^2 + a_2x + b_2y + c_2 = 0$ where $a_1, a_2, b_1, b_2, c_1, c_2 \in F$. Then if (x, y) lies on both C_1 and C_2 , we also have that (x, y) lies on the line L with equation $(a_1 - a_2)x + (b_1 - b_2)y + (c_1 - c_2) = 0$ (from "subtracting C_2 from C_1 "). So a point (x, y) lies on both C_1 and C_2 if and only if it lies on both C_1 and L. So case (iii) reduces to case (ii).

l emma V 1.15

Lemma V.1.15. Let F be a subfield of the field \mathbb{R} of real numbers and let L_1, L_2 be nonparallel lines in F and C_1, C_2 distinct circles in F. Then

> (ii) $L_1 \cap C_1 = \emptyset$ or consists of one or two points in the plane of F(\sqrt{u} for some $u \in F$ where $u \ge 0$.

Proof. (ii) Suppose line L_1 has the equation $dx + ey + f = 0$ where d, e, $f \in F$ (and C_1 has the equation given above).

l emma V 1.15

Lemma V.1.15. Let F be a subfield of the field \mathbb{R} of real numbers and let L_1, L_2 be nonparallel lines in F and C_1, C_2 distinct circles in F. Then

> (ii) $L_1 \cap C_1 = \emptyset$ or consists of one or two points in the plane of F(\sqrt{u} for some $u \in F$ where $u \ge 0$.

Proof. (ii) Suppose line L_1 has the equation $dx + ey + f = 0$ where d, e, $f \in F$ (and C_1 has the equation given above). If $d = 0$ then $e \neq 0$ and the only (x, y) on both L and C_1 satisfies $ey + f = 0$ and $x^2 + y^2 + a_1x + b_1y + c_1 = 0$. Then we have $y = -f/e$ and so $x^2+(-f/e)^2+a_1x+b_1(-f/e)+c_1=0$ or $e^{2}x^{2} + e^{2}a_{1}x + (f^{2} - efb_{1} + e^{2}c_{1}) = 0.$

Lemma V.1.15. Let F be a subfield of the field \mathbb{R} of real numbers and let L_1, L_2 be nonparallel lines in F and C_1, C_2 distinct circles in F. Then

> (ii) $L_1 \cap C_1 = \emptyset$ or consists of one or two points in the plane of F(\sqrt{u} for some $u \in F$ where $u \ge 0$.

Proof. (ii) Suppose line L_1 has the equation $dx + ey + f = 0$ where d, e, $f \in F$ (and C_1 has the equation given above). If $d = 0$ then $e \neq 0$ and the only (x, y) on both L and C_1 satisfies ϵ y + $f=0$ and $x^2+y^2+a_1x+b_1y+c_1=0.$ Then we have $y=-f/\epsilon$ and so $x^2+(-f/e)^2+a_1x+b_1(-f/e)+c_1=0$ or $e^2x^2 + e^2a_1x + (f^2 - efb_1 + e^2c_1) = 0$. The quadratic equation then gives

$$
x=\frac{-e^2a_1\pm\sqrt{(e^2a_1)^2-4(e^2)(f^2-efb_1+e^2c_1)}}{2e^2}.
$$

Lemma V.1.15. Let F be a subfield of the field $\mathbb R$ of real numbers and let L_1, L_2 be nonparallel lines in F and C_1, C_2 distinct circles in F. Then

> (ii) $L_1 \cap C_1 = \emptyset$ or consists of one or two points in the plane of F(\sqrt{u} for some $u \in F$ where $u \ge 0$.

Proof. (ii) Suppose line L_1 has the equation $dx + ey + f = 0$ where d, e, $f \in F$ (and C_1 has the equation given above). If $d = 0$ then $e \neq 0$ and the only (x, y) on both L and C_1 satisfies ϵ y + $f=0$ and $x^2+y^2+a_1x+b_1y+c_1=0.$ Then we have $y=-f/\epsilon$ and so $x^2+(-f/e)^2+a_1x+b_1(-f/e)+c_1=0$ or $e^2x^2+e^2a_1x+(f^2-efb_1+e^2c_1)=0$. The quadratic equation then gives

$$
x=\frac{-e^2a_1\pm\sqrt{(e^2a_1)^2-4(e^2)(f^2-efb_1+e^2c_1)}}{2e^2}.
$$

Let $u = (e^2 a_1)^2 - 4(e^2)(f^2 - e f b_1 + e^2 c_1)$. If $u < 0$ then $L_1 \cap C_1 = \emptyset$.

Lemma V.1.15. Let F be a subfield of the field $\mathbb R$ of real numbers and let L_1, L_2 be nonparallel lines in F and C_1, C_2 distinct circles in F. Then

> (ii) $L_1 \cap C_1 = \emptyset$ or consists of one or two points in the plane of $F(\sqrt{u})$ for some $u \in F$ where $u \geq 0$.

Proof. (ii) Suppose line L_1 has the equation $dx + ey + f = 0$ where d, e, $f \in F$ (and C_1 has the equation given above). If $d = 0$ then $e \neq 0$ and the only (x, y) on both L and C_1 satisfies ϵ y + $f=0$ and $x^2+y^2+a_1x+b_1y+c_1=0.$ Then we have $y=-f/\epsilon$ and so $x^2+(-f/e)^2+a_1x+b_1(-f/e)+c_1=0$ or $e^2x^2+e^2a_1x+(f^2-efb_1+e^2c_1)=0$. The quadratic equation then gives

$$
x=\frac{-e^2a_1\pm\sqrt{(e^2a_1)^2-4(e^2)(f^2-efb_1+e^2c_1)}}{2e^2}.
$$

Let $u = (e^2a_1)^2 - 4(e^2)(f^2 - efb_1 + e^2c_1)$. If $u < 0$ then $L_1 \cap C_1 = \varnothing$.

Proof (continued). (ii) If $u = 0$ then $x = -a_1/2$ and $y = -f/e$ and there is one point on both L_1 and C_1 . If $u > 0$ then there are two points on L_1 and C_1 and x is in terms of \sqrt{u} ; so the two points lie in F √ u). If $d \neq 0$ then we can "normalize" the equation for L_1 and WLOG assume $d = 1$, so that $x + ey + f = 0$, or $x = -ey - f$. So a point (x, y) lies on both L_1 and C_1 then $(-ey - f)^2 + y^2 + a_1(-ey - f) + b_1y + c_1 = Ay^2 + By + C = 0$ where $A, B, C \in F$.

Proof (continued). (ii) If $u = 0$ then $x = -a_1/2$ and $y = -f/e$ and there is one point on both L_1 and C_1 . If $u > 0$ then there are two points on L_1 and C_1 and x is in terms of \sqrt{u} ; so the two points lie in F √ u). If $d \neq 0$ then we can "normalize" the equation for L_1 and WLOG assume $d = 1$, so that $x + ey + f = 0$, or $x = -ey - f$. So a point (x, y) lies on both L_1 and C_1 then

 $(-ey - f)² + y² + a₁(-ey - f) + b₁y + c₁ = Ay² + By + C = 0$ where $\mathcal{A},\mathcal{B},\mathcal{C}\in\mathcal{F}.$ If $A=0$ then $y\in\mathcal{F}$ and so $x\in\mathcal{F}.$ Then $x,y\in\mathcal{F}=F(\sqrt{1}).$

Proof (continued). (ii) If $u = 0$ then $x = -a_1/2$ and $y = -f/e$ and there is one point on both L_1 and C_1 . If $u > 0$ then there are two points on L_1 and C_1 and x is in terms of \sqrt{u} ; so the two points lie in F √ u). If $d \neq 0$ then we can "normalize" the equation for L_1 and WLOG assume $d = 1$, so that $x + ey + f = 0$, or $x = -ey - f$. So a point (x, y) lies on both L_1 and C_1 then $(-ey - f)² + y² + a₁(-ey - f) + b₁y + c₁ = Ay² + By + C = 0$ where $A,B,C\in\mathsf{F}.$ If $A=0$ then $y\in\mathsf{F}$ and so $x\in\mathsf{F}.$ Then $x,y\in\mathsf{F}=\mathsf{F}(\sqrt{1}).$ If $A \neq 0$ then again by normalizing we may assume $A = 1$ and we need $y^2 + By + C = 0$. Completing the square yields

 $(y + B/2)^2 + (C - B^2/4) = 0$. This gives $y = -B/2 \pm \sqrt{-C + B^2/4}$.

Proof (continued). (ii) If $u = 0$ then $x = -a_1/2$ and $y = -f/e$ and there is one point on both L_1 and C_1 . If $u > 0$ then there are two points on L_1 and C_1 and x is in terms of \sqrt{u} ; so the two points lie in F √ u). If $d \neq 0$ then we can "normalize" the equation for L_1 and WLOG assume $d = 1$, so that $x + ey + f = 0$, or $x = -ey - f$. So a point (x, y) lies on both L_1 and C_1 then $(-ey-f)^2 + y^2 + a_1(-ey-f) + b_1y + c_1 = Ay^2 + By + C = 0$ where $A,B,C\in\mathcal{F}.$ If $A=0$ then $y\in\mathcal{F}$ and so $x\in\mathcal{F}.$ Then $x,y\in\mathcal{F}=\mathcal{F}($ er∙ 1). If $A \neq 0$ then again by normalizing we may assume $A = 1$ and we need $y^2+By+C=0.$ Completing the square yields $(y + B/2)^2 + (C - B^2/4) = 0$. This gives $y = -B/2 \pm \sqrt{-C + B^2/4}$.

Let $u = -C + B^2/4$. Then $L_1 \cap C_1 = \emptyset$ if $u < 0$.

Proof (continued). (ii) If $u = 0$ then $x = -a_1/2$ and $y = -f/e$ and there is one point on both L_1 and C_1 . If $u > 0$ then there are two points on L_1 and C_1 and x is in terms of \sqrt{u} ; so the two points lie in F √ u). If $d \neq 0$ then we can "normalize" the equation for L_1 and WLOG assume $d = 1$, so that $x + ey + f = 0$, or $x = -ey - f$. So a point (x, y) lies on both L_1 and C_1 then $(-ey - f)² + y² + a₁(-ey - f) + b₁y + c₁ = Ay² + By + C = 0$ where $A,B,C\in\mathsf{F}.$ If $A=0$ then $y\in\mathsf{F}$ and so $x\in\mathsf{F}.$ Then $x,y\in\mathsf{F}=\mathsf{F}(\sqrt{1}).$ If $A \neq 0$ then again by normalizing we may assume $A = 1$ and we need $y^2+By+C=0.$ Completing the square yields $(y + B/2)^2 + (C - B^2/4) = 0$. This gives $y = -B/2 \pm \sqrt{-C + B^2/4}$. Let $u = -C + B^2/4$. Then $L_1 \cap C_1 = \varnothing$ if $u < 0$. If $u = 0$ then there is one point (x, y) on $L_1 \cap C_1$ where $x, y \in F = F(0)$.

Proof (continued). (ii) If $u = 0$ then $x = -a_1/2$ and $y = -f/e$ and there is one point on both L_1 and C_1 . If $u > 0$ then there are two points on L_1 and C_1 and x is in terms of \sqrt{u} ; so the two points lie in F √ u). If $d \neq 0$ then we can "normalize" the equation for L_1 and WLOG assume $d = 1$, so that $x + ey + f = 0$, or $x = -ey - f$. So a point (x, y) lies on both L_1 and C_1 then $(-ey - f)² + y² + a₁(-ey - f) + b₁y + c₁ = Ay² + By + C = 0$ where $A,B,C\in\mathsf{F}.$ If $A=0$ then $y\in\mathsf{F}$ and so $x\in\mathsf{F}.$ Then $x,y\in\mathsf{F}=\mathsf{F}(\sqrt{1}).$ If $A \neq 0$ then again by normalizing we may assume $A = 1$ and we need $y^2+By+C=0.$ Completing the square yields $(y + B/2)^2 + (C - B^2/4) = 0$. This gives $y = -B/2 \pm \sqrt{-C + B^2/4}$. Let $u = -C + B^2/4$. Then $L_1 \cap C_1 = \varnothing$ if $u < 0$. If $u = 0$ then there is one point (x, y) on $L_1 \cap C_1$ where $x, y \in F = F(0)$. If $u > 0$ then there are two points (x,y) on $L_1 \cap \mathcal{C}_1$ both of which satisfy $x,y \in F(\sqrt{u}).$

Proof (continued). (ii) If $u = 0$ then $x = -a_1/2$ and $y = -f/e$ and there is one point on both L_1 and C_1 . If $u > 0$ then there are two points on L_1 and C_1 and x is in terms of \sqrt{u} ; so the two points lie in F √ u). If $d \neq 0$ then we can "normalize" the equation for L_1 and WLOG assume $d = 1$, so that $x + ey + f = 0$, or $x = -ey - f$. So a point (x, y) lies on both L_1 and C_1 then $(-ey - f)² + y² + a₁(-ey - f) + b₁y + c₁ = Ay² + By + C = 0$ where $A,B,C\in\mathsf{F}.$ If $A=0$ then $y\in\mathsf{F}$ and so $x\in\mathsf{F}.$ Then $x,y\in\mathsf{F}=\mathsf{F}(\sqrt{1}).$ If $A \neq 0$ then again by normalizing we may assume $A = 1$ and we need $y^2+By+C=0.$ Completing the square yields $(y + B/2)^2 + (C - B^2/4) = 0$. This gives $y = -B/2 \pm \sqrt{-C + B^2/4}$. Let $u = -C + B^2/4$. Then $L_1 \cap C_1 = \varnothing$ if $u < 0$. If $u = 0$ then there is one point (x, y) on $L_1 \cap C_1$ where $x, y \in F = F(0)$. If $u > 0$ then there are two points (x,y) on $L_1\cap\mathcal{C}_1$ both of which satisfy $x,y\in\mathit{F}(\sqrt{u})$.

Proposition V.1.16. If a real number c is constructible, then c is algebraic of degree a power of 2 over the field $\mathbb Q$ or rationals.

Proof. From the fact that every integer is constructible, along with the previous note, shows that $\mathbb Q$ consists of constructible numbers and so we take the plane of $\mathbb Q$ as given. The only way to construct new points is to find the intersection of lines and/or circles.

Proposition V.1.16. If a real number c is constructible, then c is algebraic of degree a power of 2 over the field $\mathbb Q$ or rationals.

Proof. From the fact that every integer is constructible, along with the previous note, shows that $\mathbb Q$ consists of constructible numbers and so we take the plane of $\mathbb Q$ as given. The only way to construct new points is to find the intersection of lines and/or circles. Now to construct a line or circle we need two points (the center P and radius PT for a circle). The two points must either lie in the plane of Q or be points previously constructed through a finite sequence of intersections of lines and/or circles.

Proposition V.1.16. If a real number c is constructible, then c is algebraic of degree a power of 2 over the field $\mathbb Q$ or rationals.

Proof. From the fact that every integer is constructible, along with the previous note, shows that $\mathbb Q$ consists of constructible numbers and so we take the plane of $\mathbb Q$ as given. The only way to construct new points is to find the intersection of lines and/or circles. Now to construct a line or circle we need two points (the center P and radius PT for a circle). The two points must either lie in the plane of $\mathbb Q$ or be points previously constructed through a finite sequence of intersections of lines and/or circles.

Let c be constructible. Then c results from a finite sequence of intersections of constructible lines and/or circles (starting with the plane or \mathbb{Q}).

Proposition V.1.16. If a real number c is constructible, then c is algebraic of degree a power of 2 over the field $\mathbb Q$ or rationals.

Proof. From the fact that every integer is constructible, along with the previous note, shows that $\mathbb Q$ consists of constructible numbers and so we take the plane of $\mathbb Q$ as given. The only way to construct new points is to find the intersection of lines and/or circles. Now to construct a line or circle we need two points (the center P and radius PT for a circle). The two points must either lie in the plane of $\mathbb Q$ or be points previously constructed through a finite sequence of intersections of lines and/or circles.

Let c be constructible. Then c results from a finite sequence of intersections of constructible lines and/or circles (starting with the plane or \mathbb{Q}). By Lemma V.1.15, the first point so constructed lies in the plane of an extension field $\mathbb{Q}(\sqrt{u})$ of $\mathbb Q$ with $u\in \mathbb Q$, or equivalently in the plane of $\mathbb{Q}(v)$ with $v^2 \in \mathbb{Q}$. Such an extension has degree 1 or degree 2 over $\mathbb{Q}.$

Proposition V.1.16. If a real number c is constructible, then c is algebraic of degree a power of 2 over the field $\mathbb Q$ or rationals.

Proof. From the fact that every integer is constructible, along with the previous note, shows that $\mathbb Q$ consists of constructible numbers and so we take the plane of $\mathbb Q$ as given. The only way to construct new points is to find the intersection of lines and/or circles. Now to construct a line or circle we need two points (the center P and radius PT for a circle). The two points must either lie in the plane of $\mathbb Q$ or be points previously constructed through a finite sequence of intersections of lines and/or circles.

Let c be constructible. Then c results from a finite sequence of intersections of constructible lines and/or circles (starting with the plane or \mathbb{Q}). By Lemma V.1.15, the first point so constructed lies in the plane of an extension field $\mathbb{Q}(\sqrt{u})$ of $\mathbb Q$ with $u \in \mathbb{Q}$, or equivalently in the plane of $\mathbb{Q}(v)$ with $v^2 \in \mathbb{Q}$. Such an extension has degree 1 or degree 2 over $\mathbb{Q}.$

Proposition V.1.16. If a real number c is constructible, then c is algebraic of degree a power of 2 over the field $\mathbb Q$ or rationals.

Proof (continued). Similarly, the next new point constructed lies in the plane of $Q(v,w)$ with $w^2 \in \mathbb{Q}(v)$ (again, by Lemma V.1.15). So $(c,0)$ lies in the plane of $F = \mathbb{Q}(v_1, v_2, \ldots, v_n)$ for some $n \in \mathbb{N}$ where $\mathbb{Q} \subset \mathbb{Q}(v_1) \subset \mathbb{Q}(v_1, v_2) \subset \cdots \subset \mathbb{Q}(v_1, v_2, \ldots, v_n)$ with $v_i^2 \in \mathbb{Q}(v_1, v_2, \ldots, v_{i-1})$ and by Lemma V.1.15, $[Q(v_1, v_2, \ldots, v_i): Q(v_1, v_2, \ldots, v_{i-1})] \in \{1, 2\}$ for $2 \le i \le n$. By Theorem V.1.2, $[F: \mathbb{Q}]$ is the product of these dimensions and so $[F: \mathbb{Q}]$ is a power of two.

Proposition V.1.16. If a real number c is constructible, then c is algebraic of degree a power of 2 over the field $\mathbb Q$ or rationals.

Proof (continued). Similarly, the next new point constructed lies in the plane of $Q(\nu,w)$ with $w^2\in \mathbb{Q}(\nu)$ (again, by Lemma V.1.15). So $(c,0)$ lies in the plane of $F = \mathbb{Q}(v_1, v_2, \ldots, v_n)$ for some $n \in \mathbb{N}$ where $\mathbb{Q} \subset \mathbb{Q}(v_1) \subset \mathbb{Q}(v_1, v_2) \subset \cdots \subset \mathbb{Q}(v_1, v_2, \ldots, v_n)$ with $v_i^2 \in \mathbb{Q}(v_1, v_2, \ldots, v_{i-1})$ and by Lemma V.1.15, $[Q(v_1, v_2, \ldots, v_i) : Q(v_1, v_2, \ldots, v_{i-1})] \in \{1, 2\}$ for $2 \le i \le n$. By Theorem V.1.2, $[F: \mathbb{Q}]$ is the product of these dimensions and so $[F: \mathbb{Q}]$ is a power **of two.** So by Theorem V.1.11, c is algebraic over \mathbb{Q} . Now (as fields) $\mathbb{Q} \subset \mathbb{Q}(c) \subset F$ and so by Theorem V.1.2, $[\mathbb{Q}(c) : \mathbb{Q}][F : \mathbb{Q}(c)] = [F : \mathbb{Q}]$ and so $[Q(c):Q]$ divides $[F:Q]$.

Proposition V.1.16. If a real number c is constructible, then c is algebraic of degree a power of 2 over the field $\mathbb Q$ or rationals.

Proof (continued). Similarly, the next new point constructed lies in the plane of $Q(\nu,w)$ with $w^2\in \mathbb{Q}(\nu)$ (again, by Lemma V.1.15). So $(c,0)$ lies in the plane of $F = \mathbb{Q}(v_1, v_2, \ldots, v_n)$ for some $n \in \mathbb{N}$ where $\mathbb{Q} \subset \mathbb{Q}(v_1) \subset \mathbb{Q}(v_1, v_2) \subset \cdots \subset \mathbb{Q}(v_1, v_2, \ldots, v_n)$ with $v_i^2 \in \mathbb{Q}(v_1, v_2, \ldots, v_{i-1})$ and by Lemma V.1.15, $[Q(v_1, v_2, \ldots, v_i): Q(v_1, v_2, \ldots, v_{i-1})] \in \{1, 2\}$ for $2 \le i \le n$. By Theorem V.1.2, $[F: \mathbb{Q}]$ is the product of these dimensions and so $[F: \mathbb{Q}]$ is a power of two. So by Theorem V.1.11, c is algebraic over $\mathbb Q$. Now (as fields) $\mathbb{Q} \subset \mathbb{Q}(c) \subset F$ and so by Theorem V.1.2, $[\mathbb{Q}(c) : \mathbb{Q}][F : \mathbb{Q}(c)] = [F : \mathbb{Q}]$ and so $[Q(c):Q]$ divides $[F:Q]$. So the degree $[Q(c):Q]$ of c over Q is a power of 2.

Proposition V.1.16. If a real number c is constructible, then c is algebraic of degree a power of 2 over the field $\mathbb Q$ or rationals.

Proof (continued). Similarly, the next new point constructed lies in the plane of $Q(\nu,w)$ with $w^2\in \mathbb{Q}(\nu)$ (again, by Lemma V.1.15). So $(c,0)$ lies in the plane of $F = \mathbb{Q}(v_1, v_2, \ldots, v_n)$ for some $n \in \mathbb{N}$ where $\mathbb{Q} \subset \mathbb{Q}(v_1) \subset \mathbb{Q}(v_1, v_2) \subset \cdots \subset \mathbb{Q}(v_1, v_2, \ldots, v_n)$ with $v_i^2 \in \mathbb{Q}(v_1, v_2, \ldots, v_{i-1})$ and by Lemma V.1.15, $[Q(v_1, v_2, \ldots, v_i): Q(v_1, v_2, \ldots, v_{i-1})] \in \{1, 2\}$ for $2 \le i \le n$. By Theorem V.1.2, $[F: \mathbb{Q}]$ is the product of these dimensions and so $[F: \mathbb{Q}]$ is a power of two. So by Theorem V.1.11, c is algebraic over $\mathbb Q$. Now (as fields) $\mathbb{Q} \subset \mathbb{Q}(c) \subset F$ and so by Theorem V.1.2, $[\mathbb{Q}(c) : \mathbb{Q}][F : \mathbb{Q}(c)] = [F : \mathbb{Q}]$ and so $[Q(c):Q]$ divides $[F:Q]$. So the degree $[Q(c):Q]$ of c over Q is a power of 2.

Corollary V.1.17. Straight Edge and Compass Trisection of a General Angle is Impossible.

An angle of 60° cannot be trisected by ruler and compass constructions, and therefore a general angle cannot be trisected.

Proof. If it were possible to trisect a 60° angle, we would then be able to construct a right triangle with one acute angle of 20°.

Corollary V.1.17. Straight Edge and Compass Trisection of a General Angle is Impossible.

An angle of 60° cannot be trisected by ruler and compass constructions, and therefore a general angle cannot be trisected.

Proof. If it were possible to trisect a 60° angle, we would then be able to construct a right triangle with one acute angle of 20°. It would then be possible to construct the real number cos(20°) (see Exercise V.1.25(b) or the the Lemma to Theorem 32.11 in my YouTube video online at https://www.youtube.com/watch?v=S24GYj1rWGs, accessed 12/20/2015).

Corollary V.1.17. Straight Edge and Compass Trisection of a General Angle is Impossible.

An angle of 60° cannot be trisected by ruler and compass constructions, and therefore a general angle cannot be trisected.

Proof. If it were possible to trisect a 60° angle, we would then be able to construct a right triangle with one acute angle of 20° . It would then be possible to construct the real number $\cos(20^\circ)$ (see Exercise V.1.25(b) or the the Lemma to Theorem 32.11 in my YouTube video online at https://www.youtube.com/watch?v=S24GYj1rWGs, accessed **12/20/2015).** However for any angle α , elementary trigonometric shows that $\cos(3\alpha) = 4\cos^3(\alpha)-3\cos(\alpha).$ With $\alpha = 20^\circ,$ then $cos(3\alpha) = cos(60^\circ) = 1/2$ and $cos(20^\circ)$ is a root of the polynomial equation $1/2 = 4x^3 - 3x$ or equivalently $8x^3 - 6x - 1 = 0$.

Corollary V.1.17. Straight Edge and Compass Trisection of a General Angle is Impossible.

An angle of 60° cannot be trisected by ruler and compass constructions, and therefore a general angle cannot be trisected.

Proof. If it were possible to trisect a 60° angle, we would then be able to construct a right triangle with one acute angle of 20° . It would then be possible to construct the real number $\cos(20^\circ)$ (see Exercise V.1.25(b) or the the Lemma to Theorem 32.11 in my YouTube video online at https://www.youtube.com/watch?v=S24GYj1rWGs, accessed 12/20/2015). However for any angle α , elementary trigonometric shows that $\cos(3\alpha)=4\cos^3(\alpha)-3\cos(\alpha).$ With $\alpha=20^\circ,$ then $\cos(3\alpha)=\cos(60^\circ)=1/2$ and $\cos(20^\circ)$ is a root of the polynomial equation $1/2=4x^3-3x$ or equivalently $8x^3-6x-1=0.$

Corollary V.1.17. Straight Edge and Compass Trisection of a General Angle is Impossible.

An angle of 60° cannot be trisected by ruler and compass constructions, and therefore a general angle cannot be trisected.

Proof. But $8x^3 - 6x - 1$ is irreducible in $\mathbb{Q}[x]$ by Proposition III.6.8 and the Factor Theorem (Theorem III.6.6). Therefore, cos(20°) has degree 3 over $\overline{\mathbb{Q}}$ and so $\cos(20^\circ)$ is not constructible by Proposition V.1.16, and whence a 20° angle is not constructible.

Corollary V.1.17. Straight Edge and Compass Trisection of a General Angle is Impossible.

An angle of 60° cannot be trisected by ruler and compass constructions, and therefore a general angle cannot be trisected.

Proof. But $8x^3 - 6x - 1$ is irreducible in $\mathbb{Q}[x]$ by Proposition III.6.8 and the Factor Theorem (Theorem III.6.6). Therefore, $\cos(20^\circ)$ has degree 3 over $\overline{\mathbb{Q}}$ and so $\cos(20^\circ)$ is not constructible by Proposition V.1.16, and whence a 20 $^{\circ}$ angle is not constructible.

Corollary V.1.18. Straight Edge and Compass Doubling of the Cube is Impossible.

It is impossible by ruler and compass constructions to duplicate a cube of side length 1 (that is, to construct the side of a cube of volume 2).

Proof. If s is the side length of a cube of volume 2, then s is a root of x^3-2 which is irreducible in $\mathbb{Q}[x]$ by Eisentein's Criterion (Theorem III.6.15).

Corollary V.1.18. Straight Edge and Compass Doubling of the Cube is Impossible.

It is impossible by ruler and compass constructions to duplicate a cube of side length 1 (that is, to construct the side of a cube of volume 2).

Proof. If s is the side length of a cube of volume 2, then s is a root of x^3-2 which is irreducible in $\mathbb{Q}[x]$ by Eisentein's Criterion (Theorem $x^2 - z$ which is irreducible in $\mathbb{Q}[x]$ by Eisentein's Criterion (Theorem 11.6.15). Therefore x is not constructible by Proposition V.1.16 since $\sqrt[3]{2}$ is of degree 3 over Q.

Corollary V.1.18. Straight Edge and Compass Doubling of the Cube is Impossible.

It is impossible by ruler and compass constructions to duplicate a cube of side length 1 (that is, to construct the side of a cube of volume 2).

Proof. If s is the side length of a cube of volume 2, then s is a root of x^3-2 which is irreducible in $\mathbb{Q}[x]$ by Eisentein's Criterion (Theorem $x^2 - z$ which is irreducible in $\mathbb{Q}[x]$ by Eisentein's Criterion (Theorem $\sqrt[3]{2}$ III.6.15). Therefore x is not constructible by Proposition V.1.16 since $\sqrt[3]{2}$ is of degree 3 over Q.

Corollary V.1.19. Straight Edge and Compass Squaring of the Circle is Impossible.

It is impossible by ruler and compass constructions to construct a square with area equal to the area of a circle of radius 1 (that is, to construct a square with area π).

Proof. Consider a circle of radius 1, and so area π .

Corollary V.1.19. Straight Edge and Compass Squaring of the Circle is Impossible.

It is impossible by ruler and compass constructions to construct a square with area equal to the area of a circle of radius 1 (that is, to construct a square with area π).

Proof. Consider a circle of radius 1, and so area π . ASSUME a square of **area** π can be constructed. Then the length of a side of the square is $\sqrt{\pi}$ and this is a constructible number. Then π is constructible and so by Proposition V.1.16, π is algebraic over \mathbb{O} .

Corollary V.1.19. Straight Edge and Compass Squaring of the Circle is Impossible.

It is impossible by ruler and compass constructions to construct a square with area equal to the area of a circle of radius 1 (that is, to construct a square with area π).

Proof. Consider a circle of radius 1, and so area π . ASSUME a square of **area** π can be constructed. Then the length of a side of the square is $\sqrt{\pi}$ and this is a constructible number. Then π is constructible and so by **Proposition V.1.16,** π **is algebraic over Q.** But π is known to be transcendental by Lindemann's proof, a CONTRADICTION. So no such square is constructible.

Corollary V.1.19. Straight Edge and Compass Squaring of the Circle is Impossible.

It is impossible by ruler and compass constructions to construct a square with area equal to the area of a circle of radius 1 (that is, to construct a square with area π).

Proof. Consider a circle of radius 1, and so area π . ASSUME a square of **area** π can be constructed. Then the length of a side of the square is $\sqrt{\pi}$ and this is a constructible number. Then π is constructible and so by Proposition V.1.16, π is algebraic over $\mathbb O$. But π is known to be transcendental by Lindemann's proof, a CONTRADICTION. So no such square is constructible.