- Theorem V.1.3(vi)
Theorem V.1.3(vi)

Modern Algebra Theorem V.1.3. If F is an extension field of a field K, u, u; € F, and
: : X C F, then
Chapter V. Fields and Galois Theory (vi) the subfield K(X) consists of all elements of the form

V.1. Field Extensions—Proofs of Theorems
fui,ug, ... un)/g(ur, ua,. .. up)

= f(ur,u,...,up)g(ur,u,. .., ::VL
where n € N, . g € K[x1,x0,..., %], U1, u2,...,u, € X,
Throrras T8 Hungredord
and g(uy, up,...,u 0.
Aol WA 1, U2 :vwm
Proof. (vi) Every field that contains K and X must contain the set
E=A{f(u1,un,...,uy)/g(ur,uz,....un) | nEN; f g€ K[x1,x2,..., %]
= i € Xig(un, n.. ... ) £ 0},
Whence K(X) D E.
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Theorem V.1.3(vi) Theorem V.1.3(vi)
Theorem V.1.3(vi) (continued 1) Theorem V.1.3(vi) (continued 2)
Proof (continued). (vi) Conversely, if f, g € K[x1,x2,...,xm] and
fi,81 € K[x1,x2,...,xp] then define h, k € K[x1,x2, ..., Xm+n] by Proof (continued). Similarly,
}AXH“XNJ...JXﬁBnT:v” *.AX“_LXM“...uxgv%.HAXBTTU_LXBnTNJ...QXB.TTBV \.\AEHVENV...QEﬁ:v WH_.A_\”_.u,\MV...J_\:v
|%|AXHuXNu...JXSVJ.AX3+HQX3+NJ...X3+ZV %\AQHQQNQ...uEBV %\HA’\HQ_\NQ...“—\BV
and k(x1,x2, -+, Xm+n) = (X1, X2, - -+ s Xm)&1(Xm+15 Xm+25 - - + » Xm-tn)- _ fo(u, Uz, ... Um, Vi, Vo, ..., V) cE
Then for any vy, U, ..., Un, V1, Va,..., Vv, € X such that g(u1,uz,y ..o Umy Vi, Vo, ooy V)
glur, vz, ... um) # 0, g(vi, va,..., va) # 0, and so E \ {0} is a multiplicative subgroup of (F, x) by Theorem 1.2.5. So
E is a field. Since K(x) is the intersection of all fields containing K U X
fluy,up,...,u fi(vi,va,..., Vv h(ui, up, ... Uy VI, Vo, .., V. '
(un, uz m)_filw, v n) _ Alun, iz m 1 22 ") E. then K(X) C E. Therefore K(X) = E. 0
glul,up, ... um) gi(vi,va,...,vn)  k(ui,up, ... Umyvi, Vo, ..., Vp)

Therefore, E is an additive subgroup of (F,+) by Theorem [.2.5.
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Theorem V.1.5

Theorem V.1.3(vii)

Theorem V.1.3(vii) Theorem V.1.5

Theorem V.1.5. If F is an extension field of K and u € F is
transcendental over K, then there is an isomorphism of fields

Theorem V.1.3. If F is an extension field of a field K, u, u; € F, and K(u) = K(x) which is the identity when restricted to K.
X C F, then Proof. Since u is transcendental then f(u) # 0, g(u) # 0 for all nonzero
(vii) For each v € K(X) (respectively, K[X]) there is a finite f,g € K[x]. Define ¢ : K(x) — F as f/g > f(u)/g(u). “Clearly” ¢ is a
subset X’ of X such that v € K(X’) (respectively, K[X']). homomorphism. Now for fi/g1 # /g2, we have o(fi/g1) = fi(u)/g1(u)

and ©(f2/g2) = f(u)/g2(u) and since fi/g1 # f/g» then figr # frg1 and
figo — hg1 # 0 (not the 0 polynomial, that is). Now

Proof. (vi) If u & K(X) then by part (vi), fi(u)g2(u) — fa(u)gi(u) # 0 (or else u is algebraic over K), and so
u=fluy,uz,....un)/g(t, ;... up) for some n € Nand o(fi/g1) = fi(u)/g1(u) # fo(u) /g>(u) = (h/g2). Therefore  is one to
f.g € Kixi,x2, .o xa]. So with X' = {ur, wa, ..., un}, u € K(X'). U one (a monomorphism). Also, ¢ is the identity on K (treating K as a

subfield of K(x); think of K as the constant rational functions in F(x)).
By Theorem V.1.3(iv), the image of ¢ is K(u). So ¢ is an isomorphism

from K(x) to K(u) which is the identity on K. O
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Theorem V.1.6 Theorem V.1.6
Theorem V.1.6 Theorem V.1.6(i) and (ii)
._.:mo%m33<.u.m. If F is an extension field of K and u € F is algebraic Proof (continued). (i) and (i) Now Ker(¢) is an ideal by Theorem
over K, t en . 111.2.8, so Ker(yp) = (f) for some f € K[x]. Notice that p(f) = f(u) = 0.
(i) K(u) = Klul; Since u is algebraic, Ker(y) # {0}. Also, Ker(y) # K|[x] (for example,

(i) K(u) = K|[x]/(f) where f € K[x] is an irreducible monic
polynomial of degree n > 1 uniquely determined by the
conditions that f(u) =0 and g(u) = 0 (where g € K[x]) if

nonzero constant polynomials are not mapped to 0). So f # 0 and
deg(f) > 1. Furthermore, if c is the leading coefficient of f then c is a
unit in K[x] by Corollary 111.6.4 and so polynomial c~1f is monic. By

and only if f divides g; Theorem 111.3.2(ii) we have that (f) = (c"!f). Consequently, WLOG we
(i) [K(u): K] =n; assume that f is monic. By the First Isomorphism Theorem (Corollary
(iv) {1k, u, ..., u""'} is a basis of the vector space K(u) 111.2.10), K[x]/(f) = K[x]/Ker(¢) = Im(p) = K[u]. Since K[u] is an
over K; integral domain (because K is a field), by Theorem 111.2.16, the ideal (f)
(v) every element of K(u) can be written uniquely in the form is prime. Since (f) is a prime ideal, by Theorem I11.3.4(i), f itself is a
a0+ a1u + au® + - + ap_1u""" where each a; € K. prime element of K[x] and by Theorem I11.3.4(iii), f is irreducible in K[x]
Proof. (i) and (ii) Define ¢ : K[x] — K[u] as g — g(u). Then “clearly” (notice that K|[x] is a principal ideal domain as explained above), and by
¢ is a ring homomorphism. By Theorem V.1.3(i), ¢ is onto (an Theorem 111.3.4(ii), (f) is a maximal ideal in K[x]. Consequently, K[x]/(f)
epimorphism). Since K is a field, by Corollary 111.6.4, K|[x] is a principal is a field by Theorem 111.2.20(i).

ideal domain.
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Theorem V.1.6

Theorem V.1.6(i) and (ii) (continued)

Proof (continued). Since K(u) is the smallest subfield of F containing
K U {u} (since K(u) is the intersection of all subfields of F containing

K U{u}), and K[u] is a ring containing K U {u}, but K[u] is a field since
Klu] = K[x]/(f), then K(u) C K[u]. However, in general, the ring K[u] is
a subset of the field K(u); that is K(u) D K[u], so we must have

K(u) = K[u] and (i) follows. We have established (ii), except for the
uniqueness claim. Suppose g(uv) =0 for g € K[x]. Then ¢(g) = g(u) =0
and so g € Ker(yp) = (f). Since principal ideal () consists of all multiples
of f (by, say, Theorem I11.2.5(v)) then g is a multiple of f; that is, f
divides g. So (i) follows.

Modern Algebra March 24, 2016

Theorem V.1.6

Theorem V.1.6(iv) (continued)

Theorem V.1.6. If F is an extension field of K and u € F is algebraic
over K, then

(iv) {lk,u,u? ..., u"1} is a basis of the vector space K(u)
over K.
Proof (continued). (iv) To see that {1k, u,u?, ..., u""1} is linearly

independent over K (and hence a basis), suppose

ag+ aju—+ -+ ap_1u"t =0 for some a; € K. Then

g=a +au+---+ ap_u" e K[x] has u as a root and has a degree of
at most n — 1 (some a;’s could be 0). By (ii), f divides g and deg(f) = n,
so it must be that g = 0 (the zero polynomial); that is, a; = 0 for all i,
whence {1y, u, u?,...,u""1} is linearly independent and hence is a basis
of K(u). O

0 ]
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Theorem V.1.6

Theorem V.1.6(iv)

Theorem V.1.6. If F is an extension field of K and v € F is algebraic
over K, then
(iv) {1k, u,u?,...,u""1} is a basis of the vector space K(u)
over K.

Proof. (iv) By Theorem V.1.3(i), every element of K[u] = K(u) is of the
form g(u) for some g € K[x]. By the Division Algorithm (Theorem 111.6.2)
we know that g(x) = q(x)f(x) + h(x) with g, h € K[x] and

deg(h) < deg(f). Therefore,

g(u) = q(u)f(u)+ h(u) =0+ h(u) = bo + biu+ - - - + bpu™ with

m < n = deg(f). Thus, every element of K(u) can be written as a linear
combination of 1k, u, u?,...,u"" 1. Thatis, {1k, u,u?,...,u "1} spans
the K-vector space K(u). [HERE, a “K-vector space” is a vector space
with scalars from K. A basis is a linearly independent spanning set; see
page 181.]
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Theorem V.1.6

Theorem V.1.6(iii) and (v)

Theorem V.1.6. If F is an extension field of K and u € F is algebraic
over K, then

(i) [K(u): K] =n;

(v) every element of K(u) can be written uniquely in the form

ag + aiu+ au? + -+ ap,_1u""! where each a; € K.

Proof. (iii) Now [K(u) : K] denotes the dimension of K(u) as a K-vector
space (more precisely, the cardinality of a basis). So part by (iv),
[K(u) : K] = n.
(v) By (iv), every element of K(u) can be written in the form
ag + aju+ -+ ap,_1u""! for some a; € K because {1k, u,u?,...,u""1}
is a basis. For uniqueness, suppose
a +aiu—+---+ m:IH::IH =by+biu+---+ D:IHE:IH. Then
(ap — bo) + (a1 — b1)u+ -+ + (an—1 — bp—1)u"* = 0 and since

{1k, u,u?, ..., u"1} is linearly independent (it is a basis by part (iv))

thenag—bg=a1— b1 =---=an_1— bs—1 =0 and so ag = by, a1 = b1,

..., an—1 = bp_1 = 0 and the representation is in fact unique. O
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Theorem V.1.8

Theorem V.1.8

Theorem V.1.8. Let 0 : K — L be an isomorphism of fields, u an
element of some extension field of K and v an element of some extension
field of L. Assume either:
(i) w is transcendental over K and v is transcendental over L; or
(ii) uis a root of an irreducible polynomial f € K[x] and v is a
root of of € L[x].
Then o extends to an isomorphism of fields K(u) 2 L(v) which maps u
onto v.
Proof. (i) Since o : K — L is an isomorphism, then, by Exercise I11.5.1,
the mapping K[x] — L[x] given by Y7, rix' — > o(ri)x’ is an
isomorphism. By Theorem V.1.3(iv), every element of K(x) is of the form
h/g for some h, g € K[x] and every element of L(x) is of the form k/¢ for
some k, ¢ € L(x). Since the mapping above (which we also denote as o) is
one to one and onto, then o extends to a one to one and onto mapping of
K(x) to L(x) as g/¢+— o(g)/o(£). It is straightforward to verify that this
extended o is a field isomorphism.
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Theorem V.1.8

Theorem V.1.8(ii)

Theorem V.1.8. Let 0 : K — L be an isomorphism of fields, v an
element of some extension field of K and v an element of some extension
field of L. Assume either:

(ii) uis a root of an irreducible polynomial f € K[x] and v is a
root of of € L[x].

Then o extends to an isomorphism of fields K(u) = L(v) which maps u
onto v.

Proof. (ii) WLOG, we assume f is monic (since the extended isomorphism
o : K[x] — L[x] maps polynomial kf to o(kf) = ko(f) for all k € K and
the roots of f and kf (and of and kof) coincide. Since o : K[x] — L[x] is
an isomorphism, then of € L[x] is monic and irreducible. In the proof of
Theorem V.1.6(ii) the mappings ¢ : K[x]/(f) — K|[u] = K(u) and

Y L[x]/(of) — L[v] = L[v] given respectively by ¢[g + (f)] = g(u) and
Ylh+ (of)] = h(v) are isomorphisms.
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Theorem V.1.8

Theorem V.1.8(i)

Theorem V.1.8. Let 0 : K — L be an isomorphism of fields, v an
element of some extension field of K and v an element of some extension
field of L. Assume either:

(i) uis transcendental over K and v is transcendental over L.

Then o extends to an isomorphism of fields K(u) 2 L(v) which maps u
onto v.

Proof (continued). (i) Since v is transcendental, by Theorem V.1.5, we
have K(u) = K(x) = L(x) = L(v). The isomorphism form K(u) to L(v) is
an extension of o and so the extension still maps K to L. Since the
isomorphism of K(u) to K(x) maps u to x, the isomorphism of K(x) to
L(x) maps x to x, and the isomorphism of L(x) to L(v) maps x to v, then
the extension of o maps u to v. O
Modern Algebra
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Theorem V.1.8

Theorem V.1.8(ii) (continued)

Theorem V.1.8. Let o : K — L be an isomorphism of fields, v an
element of some extension field of K and v an element of some extension
field of L. Assume either:

(i) uis a root of an irreducible polynomial f € K[x] and v is a
root of of € L[x].

Then o extends to an isomorphism of fields K(u) = L(v) which maps u
onto v.

Proof (continued). By Corollary I11.2.11, the mapping

0 : K[x]/(f) — L[x]/(cf) given by O(g + (f)) = og + (of) is an
isomorphism. Therefore the composition

K(u) o K[x]/(f) 4 L[x]/(of) Y, L(v) is an isomorphism of fields K(u)
and L(v) such that g(u) — g(x) + (f) — og(x) + (of) — og(v). Also,
0ot agrees with o on K (the “constant” rational functions of u in
K(u)) and maps u+— x + (f) — x + (of) — v. ]
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Corollary V.1.9

Corollary V.1.9

Corollary V.1.9. Let E and F each be extension fields of K and let u € E

and v € F be algebraic over K. Then u and v are roots of the same
irreducible polynomial f € K|[x] if and only if there is an isomorphism of
fields K(u) = K(v) which sends v onto v and it the identity on K.

Proof. First, suppose u and v are roots of the same irreducible polynomial
f € K[x]. Then by Theorem V.1.8(ii) with 0 = 1k (the identity on K) we
have of = f and so u (a root of ) and v (a root of f = of) and

K(u) =2 K(v) where the isomorphism between K(u) and K(v) sends u
onto v.

Conversely, suppose ¢ : K(u) — K(v) is an isomorphism with o(u) = v
and o(k) = k for all k € K. Let f € K[x] be the irreducible (monic)
polynomial for which algebraic v is a root. If f =37 kix' then
0="f(u)=Y"gkiu'". Since 0(0) =0then 0 =0 (0) =0 (31, kiu') =
Y0 po(kiu) = Y0 g o(k)o(u') = Yo kio(u) = X0 kiv! = F(v). So

v is a root of f as well.

0

]
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Theorem V.1.10. Kronecker's Theorem

Theorem V.1.10(i). Kronecker's Theorem

Proof (continued). (i) Furthermore, the canonical projection

7 K[x] — K[x]/(f) = F mapping g — g + (f), when restricted to K
(the constant polynomials in K[x]) is a one to one homomorphism (the
canonical projection is a homomorphism, the only “constant” in (f) is the
zero function since (f) consists of all multiples of f by elements in K[x],
and so the kernel of the canonical projection consists only of 0 € K;;
therefore the canonical projection is one to one by Theorem 1.2.3(i)).
Since 7 is one to one, m(K) = K can be considered as a subfield of field
F; that is, F is an extension field of K (provided that K is identified with
7(K)). For x € K[x], let u =7n(x) =x+ (f) € F = K[x]/(f). Then

F = K|[x]/(f) = K(u) by Theorem V.1.6(ii) and, since coset addition and
multiplication is performed by representatives, then
f(u)=f(x+(f))=f(x)+ (f) =0+ (f) =0 (since 0+ (f) is the
additive identity in K[x]/(f) = F). So (i) follows.

0 ]
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Theorem V.1.10. Kronecker's Theorem

Theorem V.1.10. Kronecker's Theorem

Theorem V.1.10. Kronecker’'s Theorem.
If K is a field and f € K[x] a polynomial of degree n, then there exists a
simple extension field F = K(u) of K such that:

(i) u€ Fisaroot of f;
(ii) [K(u): K] < n, with equality holding if and only if f is
irreducible in K[x];
(iii) if £ is irreducible in K[x], then K(u) is unique up to an
isomorphism which is the identity on K.

Proof. (i) WLOG, we may assume f is irreducible (if not, we replace f by
one of its irreducible factors). Then the ideal (f) is maximal in K[x] (by
Corollary 111.6.4, since K is a field, K[x] is a principal ideal domain and by
Theorem 111.3.4(ii) (f) is maximal). So by Theorem 111.2.20, F = K|[x]/(f)
is a field.

0
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Theorem V.1.10. Kronecker's Theorem

Theorem V.1.10(ii) and (iii). Kronecker's Theorem

Theorem V.1.10. Kronecker’s Theorem.
If K is a field and f € K[x] a polynomial of degree n, then there exists a
simple extension field F = K(u) of K such that:
(ii) [K(u): K] < n, with equality holding if and only if f is
irreducible in K[x];
(iii) if f is irreducible in K[x], then K(u) is unique up to an
isomorphism which is the identity on K.

Proof. (ii) Theorem V.1.6(iii) shows that [K(u) : K] = n for irreducible f
of degree n. As commented above, if f is not irreducible, then we consider
an irreducible factor of f (of degree less than n) and (ii) follows).

(iii) Corollary V.1.9 implies (iii) and that the extension field does not
depend on “which” root of f is used. O

- 0
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Theorem V.1.11

Theorem V.1.11. If F is a finite dimensional extension field of K, then F
is finitely generated and algebraic over K.

Proof. If E is a finite dimensional extension of K, say [F : K] = n. Let

u € F (arbitrary). Then the set of n+ 1 elements {1k, u, u?, ..., u"} must
be linearly dependent over F. So there are a; € K, not all zero, such that
ag + aiu+ au® + - - - + a,u" = 0, which implies that u is algebraic over
K. Since u was arbitrary, F is an algebraic extension of K. If
{vi,v2,...,vp} is a basis of F over K, then "it is easy to see” (use
Theorem V.1.3(v)) that F = K(v1, va, ..., vp). O

Modern Algebra

Theorem V.1.12

Theorem V.1.12 (continued)

Theorem V.1.12. If F is an extension field of K and X is a subset of F
such that F = K(X) and every element of X is algebraic over K, then F is
an algebraic extension of K. If X is a finite set, then F is finite
dimensional over K.

Proof (continued). Let r; be the degree of u; over K (we had i > 2
above), then by repeated (i.e., inductive) application of Theorem V.1.2
shows that [K(u1, up,...,uy): K] =rr---r,. By Theorem V.1.11,
K(u1, ua, ..., u,) (since the dimension rir - - - r, if finite) is algebraic over
K and so v € K(uy, u,...,up) is algebraic over K. Since v was an
arbitrary element of F, then F is algebraic over K.

If X is a finite set, say X = {u1, up,
_”\HA:T us, .

..., Un}, then as argued above
Jup) s Kl =rr---ryis finite. O

0 ]
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Theorem V.1.12

Theorem V.1.12

Theorem V.1.12. If F is an extension field of K and X is a subset of F
such that F = K(X) and every element of X is algebraic over K, then F is
an algebraic extension of K. If X is a finite set, then F is finite
dimensional over K.

Proof. If v € F, then by Theorem V.1.3(iv),

v="f(uy,up,...,un)/g(u1,un,...,u,) for some n € N, some
f,g € F[xi,x2,...,xp] and some uy, up,...,u, € X. So
v € K(u1, ua,...,u,). So there is a tower of subfields

K C K(u1) C K(ui,up) C -+ C K(u1,up,...,up). Foragiven i > 2, u;is
algebraic over K and so v; is algebraic over K(ui, up, ..., ui—1), say u; is
of degree r; over K(uy, up,...,uj—1). Since

K(u1, up, ..., ui—1)(u;) = K(u1, uo, . .., u;) by Exercise V.1.4(b), we have
[K(u1,uz,...,ui) : K(u1, u2,...,ui—1)] = ri by Theorem V.1.6(iii).
0 ] Modern Algebra March 24, 2016 23 / 26

Theorem V.1.13

Theorem V.1.13

Theorem V.1.13. If F is an algebraic extension field of E and E is an
algebraic extension field of K, then F is an algebraic extension of K.

Proof. Let u € F. Since F is an algebraic extension of E, then u is
algebraic over E and so b,u" + b,_1u" "1 4+ - byu + by = 0 for some

b; € E (where b, # 0). Therefore, u is algebraic over the subfield

K(bo, b1, ..., b,) of E. Consequently, there is a tower of fields

K C XA\QOU by,..., @:v C \AA®ou bi,..., @:VAEV_ where

[K(bo, b1, .-, bn)(u): K(bo, b1, ..., bp)] is finite by Theorem V.1.6(iii)
since u is algebraic over K(by, b1, ..., b,), and [K(bo, b1,...,bp) : K] is
finite by Theorem V.1.6(iii) since u is algebraic over K(bg, b1, ..., by), and
[K(bo, b1, -, bn) : K] is finite by Theorem V.1.12 since there is a finite
number of b; and each is algebraic over K. Therefore

[K(bo, b1, ..., bn)(u) : K] is finite by Theorem V.1.2. Hence, by Theorem
V.1.11, u is algebraic over K. Since u € F is arbitrary, then F is algebraic
over K. O]
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Theorem V.1.14

Theorem V.1.14. Let F be an extension field of K and E the set of all
elements of F which are algebraic over K. Then E is a subfield of F
(which is, of course, algebraic over K).

Proof. For any u,v € E, K(u,v) is an algebraic extension of K by
Theorem V.1.12 (since there is a finite number of algebraic elements
“adjoined” to K. Since K(u,v) is a field, then u — v € K(u,v) and

uv~t € K(u,v) for v #0. Hence u — v € E and uv~! € E (since

K(u,v) C E) and so by Theorem 1.2.5, (E,+) is a group and (E \ {0}, x)
is a group. Therefore E is a field. [



