Modern Algebra

Chapter V. Fields and Galois Theory

V.1. Field Extensions—Proofs of Theorems



Theorem V.1.3(vi)

 $X \subset F$, then **Theorem V.1.3.** If F is an extension field of a field K, u, u_i $\in F$, and

(vi) the subfield K(X) consists of all elements of the form

$$f(u_1, u_2, ..., u_n)/g(u_1, u_2, ..., u_n)$$

= $f(u_1, u_2, ..., u_n)g(u_1, u_2, ..., u_n)^{-1}$

where $n \in \mathbb{N}$, $f, g \in K[x_1, x_2, ..., x_n]$, $u_1, u_2, ..., u_n \in X$, and $g(u_1, u_2, ..., u_n) \neq 0$.

Proof. (vi) Every field that contains K and X must contain the set

$$E = \{f(u_1, u_2, \dots, u_n)/g(u_1, u_2, \dots, u_n) \mid n \in \mathbb{N}; f, g \in K[x_1, x_2, \dots, x_n];$$

 $u_i \in X; g(u_1, u_2, \ldots, u_n) \neq 0$.

Whence $K(X) \supset E$.

Theorem V.1.3(vi) (continued 2)

Theorem V.1.3(vi) (continued 1)

Modern Algebra

Proof (continued). (vi) Conversely, if $f,g \in K[x_1,x_2,\ldots,x_m]$ and $f_1,g_1\in K[x_1,x_2,\ldots,x_n]$ then define $h,k\in K[x_1,x_2,\ldots,x_{m+n}]$ by

$$h(x_1, x_2, \dots, x_{m+n}) = f(x_1, x_2, \dots, x_m)g_1(x_{m+1}, x_{m+2}, \dots, x_{m+n})$$
$$-g(x_1, x_2, \dots, x_m)f_1(x_{m+1}, x_{m+2}, \dots, x_{m+n})$$

and
$$k(x_1, x_2, ..., x_{m+n}) = g(x_1, x_2, ..., x_m)g_1(x_{m+1}, x_{m+2}, ..., x_{m+n})$$
. Then for any $u_1, u_2, ..., u_m, v_1, v_2, ..., v_n \in X$ such that $g(u_1, u_2, ..., u_m) \neq 0$, $g(v_1, v_2, ..., v_n) \neq 0$,

$$g(u_1, u_2, \ldots, u_m) \neq 0, \ g(v_1, v_2, \ldots, v_n) \neq 0,$$

$$\frac{f(u_1, u_2, \dots, u_m)}{g(u_1, u_2, \dots, u_m)} - \frac{f_1(v_1, v_2, \dots, v_n)}{g_1(v_1, v_2, \dots, v_n)} = \frac{h(u_1, u_2, \dots, u_m, v_1, v_2, \dots, v_n)}{k(u_1, u_2, \dots, u_m, v_1, v_2, \dots, v_n)} \in E.$$

Therefore, E is an additive subgroup of $\langle F, +
angle$ by Theorem I.2.5

Proof (continued). Similarly

$$\frac{f(u_1, u_2, \dots, u_m)}{g(u_1, u_2, \dots, u_m)} / \frac{f_1(v_1, v_2, \dots, v_n)}{g_1(v_1, v_2, \dots, v_n)}$$

$$=\frac{f_2(u_1,u_2,\ldots,u_m,v_1,v_2,\ldots,v_n)}{g_2(u_1,u_2,\ldots,u_m,v_1,v_2,\ldots,v_n)}\in E$$

and so $E \setminus \{0\}$ is a multiplicative subgroup of $\langle F, \times \rangle$ by Theorem I.2.5. So E is a field. Since K(x) is the intersection of all fields containing $K \cup X$,

then
$$K(X) \subset E$$
. Therefore $K(X) = E$.

Modern Algebra

March 24, 2016 4 / 26

March 24, 2016 5 / 26

Modern Algebra

Theorem V.1.5

Theorem V 1.3(vii)

 $X \subset F$, then **Theorem V.1.3.** If F is an extension field of a field K, $u, u_i \in F$, and

(vii) For each $v \in \mathcal{K}(X)$ (respectively, $\mathcal{K}[X]$) there is a finite subset X' of X such that $v \in K(X')$ (respectively, K[X']).

Proof. (vi) If $u \in K(X)$ then by part (vi),

 $f,g\in K[x_1,x_2,\ldots,x_n]$. So with $X'=\{u_1,u_2,\ldots,u_n\},\ u\in K(X')$. $u=f(u_1,u_2,\ldots,u_n)/g(u_1,u_2,\ldots,u_n)$ for some $n\in\mathbb{N}$ and

 $K(u) \cong K(x)$ which is the identity when restricted to K. transcendental over K, then there is an isomorphism of fields **Theorem V.1.5.** If F is an extension field of K and $u \in F$ is

subfield of K(x); think of K as the constant rational functions in F(x)). one (a monomorphism). Also, φ is the identity on K (treating K as a $\varphi(f_1/g_1) = f_1(u)/g_1(u) \neq f_2(u)/g_2(u) = \varphi(f_2/g_2)$. Therefore φ is one to from K(x) to K(u) which is the identity on K. By Theorem V.1.3(iv), the image of φ is K(u). So φ is an isomorphism $f_1(u)g_2(u)-f_2(u)g_1(u)\neq 0$ (or else u is algebraic over K), and so $f_1g_2-f_2g_1
eq 0$ (not the 0 polynomial, that is). Now and $\varphi(f_2/g_2)=f_2(u)/g_2(u)$ and since $f_1/g_1\neq f_2/g_2$ then $f_1g_2\neq f_2g_1$ and homomorphism. Now for $f_1/g_1 \neq f_2/g_2$, we have $\varphi(f_1/g_1) = f_1(u)/g_1(u)$ **Proof.** Since u is transcendental then $f(u) \neq 0$, $g(u) \neq 0$ for all nonzero $f,g\in K[x]$. Define $\varphi:K(x) o F$ as $f/g\mapsto f(u)/g(u)$. "Clearly" φ is a

March 24, 2016 7 / 26

Theorem V.1.6. If F is an extension field of K and $u \in F$ is algebraic

Theorem V 1 6

- (i) K(u) = K[u];
- (ii) $K(u) \cong K[x]/(f)$ where $f \in K[x]$ is an irreducible monic and only if f divides g; conditions that f(u) = 0 and g(u) = 0 (where $g \in K[x]$) if polynomial of degree $n \geq 1$ uniquely determined by the
- (iii) [K(u):K]=n;
- (iv) $\{1_K, u, u^2, \dots, u^{n-1}\}$ is a basis of the vector space K(u)
- (v) every element of K(u) can be written uniquely in the form $a_0 + a_1 u + a_2 u^2 + \cdots + a_{n-1} u^{n-1}$ where each $a_i \in K$.
- epimorphism). Since K is a field, by Corollary III.6.4, K[x] is a principal arphi is a ring homomorphism. By Theorem V.1.3(i), arphi is onto (an **Proof.** (i) and (ii) Define $\varphi: K[x] \to K[u]$ as $g \mapsto g(u)$. Then "clearly"

Theorem V.1.6(i) and (ii)

is a field by Theorem III.2.20(i). (notice that K[x] is a principal ideal domain as explained above), and by prime element of K[x] and by Theorem III.3.4(iii), f is irreducible in K[x]is prime. Since (f) is a prime ideal, by Theorem III.3.4(i), f itself is a integral domain (because K is a field), by Theorem III.2.16, the ideal (f)III.2.10), $K[x]/(f) = K[x]/\mathrm{Ker}(\varphi) \cong \mathrm{Im}(\varphi) = K[u]$. Since K[u] is an assume that f is monic. By the First Isomorphism Theorem (Corollary unit in K[x] by Corollary III.6.4 and so polynomial $c^{-1}f$ is monic. By $\deg(f) \geq 1$. Furthermore, if c is the leading coefficient of f then c is a nonzero constant polynomials are not mapped to 0). So f
eq 0 and Since u is algebraic, $Ker(\varphi) \neq \{0\}$. Also, $Ker(\varphi) \neq K[x]$ (for example, III.2.8, so $Ker(\varphi) = (f)$ for some $f \in K[x]$. Notice that $\varphi(f) = f(u) = 0$. **Proof (continued). (i) and (ii)** Now $\mathrm{Ker}(\varphi)$ is an ideal by Theorem Theorem III.3.4(ii), (f) is a maximal ideal in K[x]. Consequently, K[x]/(f)Theorem III.3.2(ii) we have that $(f) = (c^{-1}f)$. Consequently, WLOG we

Modern Algebra March 24, 2016 8 / 26

Modern Algebra

March 24, 2016 9 / 26

Theorem V.1.6(i) and (ii) (continued)

divides g So (i) follows of f (by, say, Theorem III.2.5(v)) then g is a multiple of f; that is, fand so $g \in \text{Ker}(\varphi) = (f)$. Since principal ideal (f) consists of all multiples uniqueness claim. Suppose g(u)=0 for $g\in K[x]$. Then $\varphi(g)=g(u)=0$ a subset of the field K(u); that is $K(u) \supset K[u]$, so we must have K(u) = K[u] and (i) follows. We have established (ii), except for the $K \cup \{u\}$ (since K(u) is the intersection of all subfields of F containing **Proof (continued).** Since K(u) is the smallest subfield of F containing $K[u]\cong K[x]/(f)$, then $K(u)\subset K[u]$. However, in general, the ring K[u] is $K \cup \{u\}$), and K[u] is a ring containing $K \cup \{u\}$, but K[u] is a field since

Theorem V.1.6(iv)

over K, then **Theorem V.1.6.** If F is an extension field of K and $u \in F$ is algebraic

- (iv) $\{1_K, u, u^2, \dots, u^{n-1}\}$ is a basis of the vector space K(u)
- deg(h) < deg(f). Therefore, we know that g(x) = q(x)f(x) + h(x) with $q, h \in K[x]$ and form g(u) for some $g \in \mathcal{K}[x]$. By the Division Algorithm (Theorem III.6.2) **Proof.** (iv) By Theorem V.1.3(i), every element of K[u] = K(u) is of the
- combination of 1_K , u, u^2 , ..., u^{n-1} . That is, $\{1_K$, u, u^2 , ..., $u^{n-1}\}$ spans with scalars from K. A basis is a linearly independent spanning set; see the K-vector space K(u). [HERE, a "K-vector space" is a vector space $m < n = \deg(f)$. Thus, every element of K(u) can be written as a linear $g(u) = q(u)f(u) + h(u) = 0 + h(u) = b_0 + b_1u + \cdots + b_mu^m$ with

Theorem V.1.6(iv) (continued)

over K, then **Theorem V.1.6.** If F is an extension field of K and $u \in F$ is algebraic

- (iv) $\{1_K, u, u^2, \dots, u^{n-1}\}$ is a basis of the vector space K(u)
- at most n-1 (some a_i 's could be 0). By (ii), f divides g and deg(f)=n, whence $\{1_K, u, u^2, \dots, u^{n-1}\}$ is linearly independent and hence is a basis so it must be that g=0 (the zero polynomial); that is, $a_i=0$ for all i, independent over K (and hence a basis), suppose **Proof (continued).** (iv) To see that $\{1_K, u, u^2, \dots, u^{n-1}\}$ is linearly $=a_0+a_1u+\cdots+a_{n-1}u^{n-1}\in K[x]$ has u as a root and has a degree of $a_1+a_1u+\cdots+a_{n-1}u^{n-1}=0$ for some $a_i\in K$. Then

Theorem V.1.6(iii) and (v)

Theorem V.1.6. If F is an extension field of K and $u \in F$ is algebraic

- (ee) every element of K(u) can be written uniquely in the form $a_0 + a_1 u + a_2 u^2 + \cdots + a_{n-1} u^{n-1}$ where each $a_i \in K$.
- space (more precisely, the cardinality of a basis). So part by (iv), **Proof.** (iii) Now [K(u):K] denotes the dimension of K(u) as a K-vector
- then $a_0-b_0=a_1-b_1=\cdots=a_{n-1}-b_{n-1}=0$ and so $a_0=b_0$, $a_1=b_1$, $a_0 + a_1 u + \cdots + a_{n-1} u^{n-1} = b_0 + b_1 u + \cdots + b_{n-1} u^{n-1}$. Then is a basis. For uniqueness, suppose $a_0+a_1u+\cdots+a_{n-1}u^{n-1}$ for some $a_i\in K$ because $\{1_K,u,u^2,\ldots,u^{n-1}\}$ (v) By (iv), every element of K(u) can be written in the form $(a_0-b_0)+(a_1-b_1)u+\cdots+(a_{n-1}-b_{n-1})u^{n-1}=0$ and since [K(u):K]=n. ..., $a_{n-1}=b_{n-1}=0$ and the representation is in fact unique. $\{1_{\mathcal{K}}, u, u^2, \dots, u^{n-1}\}$ is linearly independent (it is a basis by part (iv))

Theorem V 1.8(i)

Theorem V 18

element of some extension field of K and ν an element of some extension field of L. Assume either: **Theorem V.1.8.** Let $\sigma: \mathcal{K} \to \mathcal{L}$ be an isomorphism of fields, u an

- (i) u is transcendental over K and v is transcendental over L; or
- (ii) u is a root of an irreducible polynomial $f \in \mathcal{K}[x]$ and v is a root of $\sigma f \in L[x]$.

Then σ extends to an isomorphism of fields $K(u)\cong L(v)$ which maps u

extended σ is a field isomorphism. one to one and onto, then σ extends to a one to one and onto mapping of some $k, \ell \in L(x)$. Since the mapping above (which we also denote as σ) is h/g for some $h,g\in K[x]$ and every element of L(x) is of the form k/ℓ for the mapping $K[x] \to L[x]$ given by $\sum_{i=0}^n r_i x^i \mapsto \sum_{i=0}^m \sigma(r_i) x^i$ is an **Proof.** (i) Since $\sigma: \mathcal{K} \to \mathcal{L}$ is an isomorphism, then, by Exercise III.5.1, K(x) to L(x) as $g/\ell \mapsto \sigma(g)/\sigma(\ell)$. It is straightforward to verify that this isomorphism. By Theorem V.1.3(iv), every element of K(x) is of the form

> element of some extension field of K and ν an element of some extension **Theorem V.1.8.** Let $\sigma: \mathcal{K} \to \mathcal{L}$ be an isomorphism of fields, u an

Then σ extends to an isomorphism of fields $K(u)\cong L(v)$ which maps u(i) u is transcendental over K and v is transcendental over \emph{L} .

the extension of σ maps u to v. an extension of σ and so the extension still maps K to L. Since the have $K(u)\cong K(x)\cong L(x)\cong L(v)$. The isomorphism form K(u) to L(v) is **Proof (continued).** (i) Since u is transcendental, by Theorem V.1.5, we L(x) maps x to x, and the isomorphism of L(x) to L(v) maps x to v, then isomorphism of K(u) to K(x) maps u to x, the isomorphism of K(x) to

Theorem V.1.8(ii)

field of L. Assume either: element of some extension field of K and ν an element of some extension **Theorem V.1.8.** Let $\sigma: K \to L$ be an isomorphism of fields, u an

u is a root of an irreducible polynomial $f \in K[x]$ and v is a root of $\sigma f \in L[x]$.

Then σ extends to an isomorphism of fields $K(u)\cong L(v)$ which maps u

 $\psi: L[x]/(\sigma f) \to L[v] = L[v]$ given respectively by $\varphi[g+(f)] = g(u)$ and an isomorphism, then $\sigma f \in L[x]$ is monic and irreducible. In the proof of the roots of f and kf (and σf and $k\sigma f$) coincide. Since $\sigma:K[x]\to L[x]$ is $\sigma: K[x] \to L[x]$ maps polynomial kf to $\sigma(kf) = k\sigma(f)$ for all $k \in K$ and **Proof.** (ii) WLOG, we assume f is monic (since the extended isomorphism $\psi[h+(\sigma f)]=h(v)$ are isomorphisms. Theorem V.1.6(ii) the mappings $\varphi: K[x]/(f) \to K[u] = K(u)$ and

Theorem V.1.8(ii) (continued)

field of L. Assume either: element of some extension field of K and ν an element of some extension **Theorem V.1.8.** Let $\sigma: K \to L$ be an isomorphism of fields, u an

(ii) u is a root of an irreducible polynomial $f \in K[x]$ and v is a root of $\sigma f \in L[x]$.

Then σ extends to an isomorphism of fields $K(u)\cong \mathit{L}(v)$ which maps u

isomorphism. Therefore the composition $\theta: K[x]/(f) \to L[x]/(\sigma f)$ given by $\theta(g+(f)) = \sigma g + (\sigma f)$ is an **Proof (continued).** By Corollary III.2.11, the mapping

and L(v) such that $g(u) \mapsto g(x) + (f) \mapsto \sigma g(x) + (\sigma f) \mapsto \sigma g(v)$. Also, $\psi \theta \varphi^{-1}$ agrees with σ on K (the "constant" rational functions of u in $K(u) \stackrel{\varphi^{-1}}{\to} K[x]/(f) \stackrel{\theta}{\to} L[x]/(\sigma f) \stackrel{\psi}{\to} L(v)$ is an isomorphism of fields K(u)K(u)) and maps $u \mapsto x + (f) \mapsto x + (\sigma f) \mapsto v$.

March 24, 2016 16 / 26

Modern Algebra

March 24, 2016 17 / 26

Corollary V 1.9

fields $K(u) \cong K(v)$ which sends u onto v and it the identity on K. irreducible polynomial $f \in K[x]$ if and only if there is an isomorphism and $v \in F$ be algebraic over K. Then u and v are roots of the same **Corollary V.1.9.** Let E and F each be extension fields of K and let ulacktrianН

 $f \in K[x]$. Then by Theorem V.1.8(ii) with $\sigma = 1_K$ (the identity on K) we **Proof.** First, suppose u and v are roots of the same irreducible polynomial $K(u)\cong K(v)$ where the isomorphism between K(u) and K(v) sends uhave $\sigma f = f$ and so u (a root of f) and v (a root of $f = \sigma f$) and

 $0 = f(u) = \sum_{i=0}^{n} k_i u^i. \text{ Since } \sigma(0) = 0 \text{ then } 0 = \sigma(0) = \sigma\left(\sum_{i=0}^{n} k_i u^i\right) = \sum_{i=0}^{n} \sigma(k_i u^i) = \sum_{i=0}^{n} \sigma(k_i) \sigma(u^i) = \sum_{i=0}^{n} k_i \sigma(u)^i = \sum_{i=0}^{n} k_i v^i = f(v). \text{ So}$ polynomial for which algebraic u is a root. If $f = \sum_{i=0}^{n} k_i x^i$ then and $\sigma(k) = k$ for all $k \in K$. Let $f \in K[x]$ be the irreducible (monic) Conversely, suppose $\sigma: K(u) \to K(v)$ is an isomorphism with $\sigma(u) = v$

 ν is a root of f as well.

Theorem V.1.10(i). Kronecker's Theorem

f(u) = f(x + (f)) = f(x) + (f) = 0 + (f) = 0 (since 0 + (f) is the $\pi(K)$). For $x \in K[x]$, let $u = \pi(x) = x + (f) \in F = K[x]/(f)$. Then Since π is one to one, $\pi(K) \cong K$ can be considered as a subfield of field therefore the canonical projection is one to one by Theorem I.2.3(i)). and so the kernel of the canonical projection consists only of $0 \in K$; canonical projection is a homomorphism, the only "constant" in (f) is the $\pi: K[x] \to K[x]/(f) = F$ mapping $g \mapsto g + (f)$, when restricted to Kadditive identity in K[x]/(f) = F). So (i) follows. multiplication is performed by representatives, then $F = K[x]/(f) \cong K(u)$ by Theorem V.1.6(ii) and, since coset addition and F; that is, F is an extension field of K (provided that K is identified with zero function since (f) consists of all multiples of f by elements in K[x], **Proof (continued). (i)** Furthermore, the canonical projection (the constant polynomials in K[x]) is a one to one homomorphism (the

Theorem V.1.10. Kronecker's Theorem

Theorem V.1.10. Kronecker's Theorem.

simple extension field F = K(u) of K such that: K is a field and $f \in K[x]$ a polynomial of degree n, then there exists a

- (i) $u \in F$ is a root of f;
- (ii) $[K(u):K] \leq n$, with equality holding if and only if f is irreducible in K[x];
- $(ext{iii})$ if f is irreducible in $\mathcal{K}[x]$, then $\mathcal{K}(u)$ is unique up to an isomorphism which is the identity on K
- Corollary III.6.4, since K is a field, K[x] is a principal ideal domain and by one of its irreducible factors). Then the ideal (f) is maximal in K[x] (by **Proof.** (i) WLOG, we may assume f is irreducible (if not, we replace f by Theorem III.3.4(ii) (f) is maximal). So by Theorem III.2.20, F = K[x]/(f)

Theorem V.1.10(ii) and (iii). Kronecker's Theorem

Theorem V.1.10. Kronecker's Theorem.

simple extension field F = K(u) of K such that: If K is a field and $f \in K[x]$ a polynomial of degree n, then there exists a

- (ii) $[K(u):K] \leq n$, with equality holding if and only if f is irreducible in K[x];
- (iii) if f is irreducible in K[x], then K(u) is unique up to an isomorphism which is the identity on K
- of degree n. As commented above, if f is not irreducible, then we consider an irreducible factor of f (of degree less than n) and (ii) follows). **Proof.** (ii) Theorem V.1.6(iii) shows that [K(u):K]=n for irreducible f
- depend on "which" root of f is used (iii) Corollary V.1.9 implies (iii) and that the extension field does not

Modern Algebra

March 24, 2016 21 / 26

Theorem V 1 11

is finitely generated and algebraic over K. **Theorem V.1.11.** If F is a finite dimensional extension field of K, then F

be linearly dependent over F. So there are $a_i \in K$, not all zero, such that **Proof.** If E is a finite dimensional extension of K, say [F:K] = n. Let Theorem V.1.3(v)) that $F = K(v_1, v_2, \ldots, v_n)$. $\{v_1, v_2, \dots, v_n\}$ is a basis of F over K, then "it is easy to see" (use $a_0 + a_1 u + a_2 u^2 + \cdots + a_n u^n = 0$, which implies that u is algebraic over K. Since u was arbitrary, F is an algebraic extension of K. If $\in F$ (arbitrary). Then the set of n+1 elements $\{1_K, u, u^2, \ldots, u^n\}$ must

Theorem V.1.12

dimensional over K. an algebraic extension of K. If X is a finite set, then F is finite such that F = K(X) and every element of X is algebraic over K, then F is **Theorem V.1.12.** If F is an extension field of K and X is a subset of F

 $v=f(u_1,u_2,\ldots,u_n)/g(u_1,u_2,\ldots,u_n)$ for some $n\in\mathbb{N}$, some **Proof.** If $v \in F$, then by Theorem V.1.3(iv),

 $f,g \in F[x_1,x_2,\ldots,x_n]$ and some $u_1,u_2,\ldots,u_n \in X$. So

 $v \in K(u_1, u_2, \dots, u_n)$. So there is a tower of subfields

algebraic over K and so u_i is algebraic over $K(u_1, u_2, \ldots, u_{i-1})$, say u_i is of degree r_i over $K(u_1, u_2, \ldots, u_{i-1})$. Since $K \subset K(u_1) \subset K(u_1, u_2) \subset \cdots \subset K(u_1, u_2, \ldots, u_n)$. For a given $i \geq 2$, u_i is

 $K(u_1, u_2, \ldots, u_{i-1})(u_i) = K(u_1, u_2, \ldots, u_i)$ by Exercise V.1.4(b), we have

 $[K(u_1, u_2, ..., u_i) : K(u_1, u_2, ..., u_{i-1})] = r_i$ by Theorem V.1.6(iii).

Theorem V.1.12 (continued)

such that F = K(X) and every element of X is algebraic over K, then F is dimensional over K. an algebraic extension of K. If X is a finite set, then F is finite **Theorem V.1.12.** If F is an extension field of K and X is a subset of F

arbitrary element of F, then F is algebraic over K. shows that $[K(u_1, u_2, ..., u_n) : K] = r_1 r_2 \cdots r_n$. By Theorem V.1.11, above), then by repeated (i.e., inductive) application of Theorem V.1.2 **Proof (continued).** Let r_1 be the degree of u_1 over K (we had $i \geq 2$ K and so $v \in K(u_1, u_2, \ldots, u_n)$ is algebraic over K. Since v was an $K(u_1,u_2,\ldots,u_n)$ (since the dimension $r_1r_2\cdots r_n$ if finite) is algebraic over

 $[F(u_1, u_2, \dots, u_n) : K] = r_1 r_2 \cdots r_n$ is finite. If X is a finite set, say $X = \{u_1, u_2, \ldots, u_n\}$, then as argued above

I heorem V 1 13

algebraic extension field of K, then F is an algebraic extension of K. **Theorem V.1.13.** If F is an algebraic extension field of E and E is an

finite by Theorem V.1.6(iii) since u is algebraic over $K(b_0,b_1,\ldots,b_n)$, and algebraic over E and so $b_nu^n+b_{n-1}u^{n-1}+\cdots b_1u+b_0=0$ for some V.1.11, u is algebraic over K. Since $u \in F$ is arbitrary, then F is algebraic number of b_i and each is algebraic over K. Therefore $[\mathcal{K}(b_0,b_1,\ldots,b_n):\mathcal{K}]$ is finite by Theorem V.1.12 since there is a finite since u is algebraic over $K(b_0, b_1, \ldots, b_n)$, and $[K(b_0, b_1, \ldots, b_n) : K]$ is $[K(b_0, b_1, \ldots, b_n)(u) : K(b_0, b_1, \ldots, b_n)]$ is finite by Theorem V.1.6(iii) $K \subset K(b_0, b_1, \ldots, b_n) \subset K(b_0, b_1, \ldots, b_n)(u)$, where $K(b_0,b_1,\ldots,b_n)$ of E. Consequently, there is a tower of fields $b_i \in E$ (where $b_n \neq 0$). Therefore, u is algebraic over the subfield **Proof.** Let $u \in F$. Since F is an algebraic extension of E, then u is $[\mathcal{K}(b_0,b_1,\ldots,b_n)(u):\mathcal{K}]$ is finite by Theorem V.1.2. Hence, by Theorem

Modern Algebra

HEOLEH V.T.

Theorem V.1.14

Theorem V.1.14. Let F be an extension field of K and E the set of all elements of F which are algebraic over K. Then E is a subfield of F (which is, of course, algebraic over K).

Proof. For any $u, v \in E$, K(u, v) is an algebraic extension of K by Theorem V.1.12 (since there is a finite number of algebraic elements "adjoined" to K). Since K(u, v) is a field, then $u - v \in K(u, v)$ and $uv^{-1} \in K(u, v)$ for $v \neq 0$. Hence $u - v \in E$ and $uv^{-1} \in E$ (since $K(u, v) \subset E$) and so by Theorem I.2.5, $\langle E, + \rangle$ is a group and $\langle E \setminus \{0\}, \times \rangle$ is a group. Therefore E is a field.

() Modern Algebra March 24, 2016 26 /