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Theorem V.1.3(vi)

Theorem V.1.3. If F is an extension field of a field K, u, u; € F, and
X C F, then

(vi) the subfield K(X) consists of all elements of the form

f(ui,ua,y ... upn)/g(ur, Uz, ..., up)

= f(ur,uz,...,up)g(ur, g, .., un)_1

where n €N, f, g € K[x1,x2,...,Xn], U1, U2,...,upn € X,
and g(uy, up, ..., u,) #0.
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Theorem V.1.3(vi)

Theorem V.1.3. If F is an extension field of a field K, u, u; € F, and
X C F, then

(vi) the subfield K(X) consists of all elements of the form

f(ui,ua,y ... upn)/g(ur, Uz, ..., up)

= f(ur,uz,...,up)g(ur, g, .., un)_1

where n €N, f, g € K[x1,x2,...,Xn], U1, U2,...,upn € X,
and g(uy, up, ..., u,) #0.

Proof. (vi) Every field that contains K and X must contain the set
E={f(ui,u,...,un)/g(ur,uo,...,up) | nE€N; f g € K[x1,x2,...,Xn];

ui € X; g(ui, up,...,uy) #0}.

Whence K(X) D E.
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Theorem V.1.3(vi) (continued 1)

Proof (continued). (vi) Conversely, if f,g € K[x1,x2,...,xm] and
fi,81 € K[x1,x2,...,x,] then define h, k € K[x1,x2, ..., Xm+n] by

h(x1, X2, .« s Xmen) = F(X1, %2, -« - s Xm) 81 (Xm+1, Xm+25 - - + » Xm-tn)

_g(X17X27 cee 7Xm)f1(Xm+1>Xm+2, ce Xm+n)

and k(x1,x2, ..., Xm+n) = (X1, X2, -+« , Xm )81 (Xm+1, Xm+25 « - « s Xm+n)-
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Theorem V.1.3(vi) (continued 1)

Proof (continued). (vi) Conversely, if f,g € K[x1,x2,...,xm] and
fi,81 € K[x1,x2,...,x,] then define h, k € K[x1,x2, ..., Xm+n] by

h(x1, X2, .« s Xmen) = F(X1, %2, -« - s Xm) 81 (Xm+1, Xm+25 - - + » Xm-tn)

_g(X17X27 cee ,Xm)f]_(Xerl,Xerg, v Xm+n)

and k(x1,x2, ..., Xm+n) = (X1, X2, -+« , Xm )81 (Xm+1, Xm+25 « - « s Xm+n)-
Then for any ui, up, ..., Umn, v, Vva,..., Vv, € X such that
glui,un, ... um) #0, g(vi,va,...,vy) #0,

flu,uz, ... um)  f(vi,ve,... V)  h(uy,u2, ... U;, Vi, Vo, .., V) cE

gu, 2, um) g(vi,va,. .o yvi) k(U1 g,y Uy Vi, Vas ey V)
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Theorem V.1.3(vi) (continued 1)

Proof (continued). (vi) Conversely, if f,g € K[x1,x2,...,xm] and
fi,81 € K[x1,x2,...,x,] then define h, k € K[x1,x2, ..., Xm+n] by

h(x1, X2, .« s Xmen) = F(X1, %2, -« - s Xm) 81 (Xm+1, Xm+25 - - + » Xm-tn)

_g(X17X27 cee ,Xm)f]_(Xerl,Xerg, .. 'Xm+n)
and k(x1,x2, ..., Xm+n) = (X1, X2, -+« , Xm )81 (Xm+1, Xm+25 « - « s Xm+n)-
Then for any ui, up, ..., Umn, v, Vva,..., Vv, € X such that
glui,un, ... um) #0, g(vi,va,...,vy) #0,

flu,uz, ... um)  f(vi,ve,... V)  h(uy,u2, ... U;, Vi, Vo, .., V)

_ — € E.
glui,uo, ... um) gi(vi,vo,...,vn)  k(ui,uo,... Um,vi,va,...,Vp)

Therefore, E is an additive subgroup of (F,+) by Theorem 1.2.5.
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Theorem V.1.3(vi) (continued 2)

Proof (continued). Similarly,

f(ui,u,..., um)/ f(vi,va,...,vp)

glui,uo,...;um)/ gi(vi,va,...,Vp)
_ f(ut, uzy ... Um,y Vi, Vo, ..., Vp) cE
o1, Uz, Um, V1, Vo, .oy V)

and so E \ {0} is a multiplicative subgroup of (F, x) by Theorem 1.2.5. So

E is a field.
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Theorem V.1.3(vi) (continued 2)

Proof (continued). Similarly,

f(ui,u,..., um)/ f(vi,va,...,vp)

glui,uo,...;um)/ gi(vi,va,...,Vp)
_ f(ut, uzy ... Um,y Vi, Vo, ..., Vp) cE
o1, Uz, Um, V1, Vo, .oy V)

and so E \ {0} is a multiplicative subgroup of (F, x) by Theorem 1.2.5. So
E is a field. Since K(x) is the intersection of all fields containing K U X,
then K(X) C E. Therefore K(X) = E. O
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Theorem V.1.3(vii)

Theorem V.1.3(vii)

Theorem V.1.3. If F is an extension field of a field K, u,u; € F, and
X C F, then

(vii) For each v € K(X) (respectively, K[X]) there is a finite
subset X’ of X such that v € K(X’) (respectively, K[X']).
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Theorem V.1.3(vii)

Theorem V.1.3(vii)

Theorem V.1.3. If F is an extension field of a field K, u,u; € F, and
X C F, then

(vii) For each v € K(X) (respectively, K[X]) there is a finite
subset X’ of X such that v € K(X’) (respectively, K[X']).

Proof. (vi) If u € K(X) then by part (vi),

u=f(ui,up,...,up)/g(ui,uz,...,u,) for some ne N and
f,g € K[xi,x2,...,%n]. Sowith X" = {u1,u,...,un}, ue K(X). O
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Theorem V.1.5

Theorem V.1.5

Theorem V.1.5. If F is an extension field of K and u € F is
transcendental over K, then there is an isomorphism of fields

~Y

K(u) = K(x) which is the identity when restricted to K.

Proof. Since u is transcendental then f(u) # 0, g(u) # 0 for all nonzero

f,g € K[x]. Define ¢ : K(x) — F as f/g +— f(u)/g(u). “Clearly” ¢ is a
homomorphism.
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Theorem V.1.5

Theorem V.1.5. If F is an extension field of K and u € F is
transcendental over K, then there is an isomorphism of fields
K(u) = K(x) which is the identity when restricted to K.

Proof. Since u is transcendental then f(u) # 0, g(u) # 0 for all nonzero
f,g € K[x]. Define ¢ : K(x) — F as f/g +— f(u)/g(u). “Clearly” ¢ is a
homomorphism. Now for fi /g1 # f/g>, we have ¢(fi/g1) = fi(u)/g1(u)

and (f/g2) = f2(u)/g2(u) and since fi/g1 # f/g> then figr # fg1 and
figr — fg1 # 0 (not the 0 polynomial, that is). Now

f(u)g2(u) — f2(u)g1(u) # 0 (or else u is algebraic over K), and so

o(f/g1) = fi(u)/gi(u) # fa(u)/g2(u) = ¢(f2/g2). Therefore ¢ is one to
one (a monomorphism).
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Theorem V.1.5

Theorem V.1.5. If F is an extension field of K and u € F is
transcendental over K, then there is an isomorphism of fields
K(u) = K(x) which is the identity when restricted to K.

Proof. Since u is transcendental then f(u) # 0, g(u) # 0 for all nonzero
f,g € K[x]. Define ¢ : K(x) — F as f/g +— f(u)/g(u). “Clearly” ¢ is a
homomorphism. Now for fi /g1 # f/g>, we have ¢(fi/g1) = fi(u)/g1(u)
and ¢(f2/g2) = f2(u)/g2(u) and since f/g1 # f2/g2 then figx # frg1 and
figr — fg1 # 0 (not the 0 polynomial, that is). Now

f(u)g2(u) — f2(u)g1(u) # 0 (or else u is algebraic over K), and so
o(f/g1) = fi(u)/g1(u) # fa(u)/g(u) = ©(f2/g2). Therefore ¢ is one to
one (a monomorphism). Also, ¢ is the identity on K (treating K as a
subfield of K(x); think of K as the constant rational functions in F(x)).
By Theorem V.1.3(iv), the image of ¢ is K(u). So ¢ is an isomorphism
from K(x) to K(u) which is the identity on K. O
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Theorem V.1.6

Theorem V.1.6. If F is an extension field of K and u € F is algebraic
over K, then
(i) K(u) = K[l
(i) K(u) = K[x]/(f) where f € K[x] is an irreducible monic
polynomial of degree n > 1 uniquely determined by the
conditions that f(u) = 0 and g(u) = 0 (where g € K[x]) if
and only if f divides g;
(i) [K(u): K] = n;
(iv) {1k, u,u?,...,u""1} is a basis of the vector space K(u)
over K;
(v) every element of K(u) can be written uniquely in the form
ag + aju + au® + -+ a,_1u""! where each a; € K.
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Theorem V.1.6

Theorem V.1.6. If F is an extension field of K and u € F is algebraic

over K, then

(i) K(u) = Klul:

(i) K(u) = K[x]/(f) where f € K[x] is an irreducible monic
polynomial of degree n > 1 uniquely determined by the
conditions that f(u) = 0 and g(u) = 0 (where g € K[x]) if
and only if f divides g;

(i) [K(u): K] = n;

(iv) {1k, u,u?,...,u""1} is a basis of the vector space K(u)
over K;

(v) every element of K(u) can be written uniquely in the form
ag + aju + au® + -+ a,_1u""! where each a; € K.

Proof. (i) and (ii) Define ¢ : K[x] — K[u] as g — g(u). Then “clearly’
¢ is a ring homomorphism. By Theorem V.1.3(i), ¢ is onto (an
epimorphism). Since K is a field, by Corollary 111.6.4, K[x] is a principal
ideal domain.
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Theorem V.1.6(i) and (ii)

Proof (continued). (i) and (ii) Now Ker(¢y) is an ideal by Theorem
111.2.8, so Ker(p) = (f) for some f € K[x]. Notice that ¢(f) = f(u) = 0.
Since u is algebraic, Ker(y) # {0}.
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Theorem V.1.6(i) and (ii)

Proof (continued). (i) and (ii) Now Ker(¢y) is an ideal by Theorem
111.2.8, so Ker(p) = (f) for some f € K[x]. Notice that ¢(f) = f(u) = 0.
Since u is algebraic, Ker(y) # {0}. Also, Ker(yp) # K|[x] (for example,
nonzero constant polynomials are not mapped to 0). So f # 0 and
deg(f) > 1. Furthermore, if c is the leading coefficient of f then c is a
unit in K[x] by Corollary 111.6.4 and so polynomial c~*f is monic.
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Theorem V.1.6(i) and (ii)

Proof (continued). (i) and (ii) Now Ker(¢y) is an ideal by Theorem
111.2.8, so Ker(p) = (f) for some f € K[x]. Notice that ¢(f) = f(u) = 0.
Since u is algebraic, Ker(y) # {0}. Also, Ker(yp) # K|[x] (for example,
nonzero constant polynomials are not mapped to 0). So f # 0 and
deg(f) > 1. Furthermore, if c is the leading coefficient of f then c is a
unit in K[x] by Corollary 111.6.4 and so polynomial c~1f is monic. By
Theorem 111.3.2(ii) we have that (f) = (c~1f). Consequently, WLOG we
assume that f is monic. By the First Isomorphism Theorem (Corollary
111.2.10), K[x]/(f) = K[x]/Ker(¢) = Im(p) = K]u].
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Theorem V.1.6(i) and (ii)

Proof (continued). (i) and (ii) Now Ker(¢y) is an ideal by Theorem
111.2.8, so Ker(p) = (f) for some f € K[x]. Notice that ¢(f) = f(u) = 0.
Since u is algebraic, Ker(y) # {0}. Also, Ker(yp) # K|[x] (for example,
nonzero constant polynomials are not mapped to 0). So f # 0 and
deg(f) > 1. Furthermore, if c is the leading coefficient of f then c is a
unit in K[x] by Corollary 111.6.4 and so polynomial c~1f is monic. By
Theorem 111.3.2(ii) we have that (f) = (c~1f). Consequently, WLOG we
assume that f is monic. By the First Isomorphism Theorem (Corollary
111.2.10), K[x]/(f) = K[x]/Ker(¢) = Im(¢) = K][u]. Since K[u] is an
integral domain (because K is a field), by Theorem 11.2.16, the ideal (f)
is prime. Since (f) is a prime ideal, by Theorem 111.3.4(i), f itself is a
prime element of K[x] and by Theorem I11.3.4(iii), f is irreducible in K[x]
(notice that K|[x] is a principal ideal domain as explained above), and by
Theorem [11.3.4(ii), (f) is a maximal ideal in K[x]. Consequently, K[x]/(f)
is a field by Theorem 111.2.20(i).
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Theorem V.1.6(i) and (ii) (continued)

Proof (continued). Since K(u) is the smallest subfield of F containing
K U {u} (since K(u) is the intersection of all subfields of F containing

K U{u}), and K[u] is a ring containing K U {u}, but K[u] is a field since
Klu] = K[x]/(f), then K(u) C K[u]. However, in general, the ring K[u] is
a subset of the field K(u); that is K(u) D K[u], so we must have

K(u) = K[u] and (i) follows.
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Theorem V.1.6(i) and (ii) (continued)

Proof (continued). Since K(u) is the smallest subfield of F containing
K U {u} (since K(u) is the intersection of all subfields of F containing

K U{u}), and K[u] is a ring containing K U {u}, but K[u] is a field since
Klu] = K[x]/(f), then K(u) C K[u]. However, in general, the ring K[u] is
a subset of the field K(u); that is K(u) D K[u], so we must have

K(u) = K[u] and (i) follows. We have established (ii), except for the
uniqueness claim. Suppose g(u) =0 for g € K[x]. Then ¢(g) = g(u) =0
and so g € Ker(y) = (f). Since principal ideal (f) consists of all multiples
of f (by, say, Theorem 111.2.5(v)) then g is a multiple of f; that is, f
divides g. So (i) follows.
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Theorem V.1.6(iv)

Theorem V.1.6. If F is an extension field of K and u € F is algebraic
over K, then

(iv) {1k, u,u?,...,u""1} is a basis of the vector space K(u)
over K.
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Theorem V.1.6(iv)

Theorem V.1.6. If F is an extension field of K and u € F is algebraic
over K, then
(iv) {1k, u,u?,...,u""1} is a basis of the vector space K(u)
over K.

Proof. (iv) By Theorem V.1.3(i), every element of K[u] = K(u) is of the
form g(u) for some g € K[x]. By the Division Algorithm (Theorem 111.6.2)
we know that g(x) = q(x)f(x) + h(x) with g, h € K[x] and

deg(h) < deg(f). Therefore,

g(u) = q(u)f(u) + h(u) =0+ h(u) = by + biu+ -+ + bpu™ with

m < n = deg(f).
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Theorem V.1.6(iv)

Theorem V.1.6. If F is an extension field of K and u € F is algebraic
over K, then
(iv) {1k, u,u?,...,u""1} is a basis of the vector space K(u)
over K.

Proof. (iv) By Theorem V.1.3(i), every element of K[u] = K(u) is of the
form g(u) for some g € K[x]. By the Division Algorithm (Theorem 111.6.2)
we know that g(x) = q(x)f(x) + h(x) with g, h € K[x] and

deg(h) < deg(f). Therefore,

g(u) = q(u)f(u) + h(u) =0+ h(u) = by + biu+ -+ + bpu™ with

m < n = deg(f). Thus, every element of K(u) can be written as a linear
combination of 1y, u, u?,...,u" 1. Thatis, {1k, u,u?,...,u" "1} spans
the K-vector space K(u). [HERE, a "“K-vector space” is a vector space
with scalars from K. A basis is a linearly independent spanning set; see
page 181.]
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Theorem V.1.6(iv) (continued)

Theorem V.1.6. If F is an extension field of K and u € F is algebraic
over K, then

(iv) {1k, u,u?,...,u""1} is a basis of the vector space K(u)
over K.
Proof (continued). (iv) To see that {1x,u,u?,..., u" 1} is linearly

independent over K (and hence a basis), suppose

a4+ aju+---+ap_1u"1 =0 for some a; € K. Then
g=ao+au+---+a, 10"t € K[x] has u as a root and has a degree of
at most n — 1 (some a;'s could be 0).
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Theorem V.1.6(iv) (continued)

Theorem V.1.6. If F is an extension field of K and u € F is algebraic
over K, then

(iv) {1k, u,u?,...,u""1} is a basis of the vector space K(u)
over K.
Proof (continued). (iv) To see that {1x,u,u?,..., u" 1} is linearly

independent over K (and hence a basis), suppose

a4+ aju+---+ap_1u"1 =0 for some a; € K. Then
g=ao+au+---+a, 10"t € K[x] has u as a root and has a degree of
at most n — 1 (some a;'s could be 0). By (ii), f divides g and deg(f) = n,
so it must be that g = 0 (the zero polynomial); that is, a; = 0 for all i,
whence {1k, u, u?,...,u" "1} is linearly independent and hence is a basis

of K(u). O
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Theorem V.1.6(iii) and (v)

Theorem V.1.6. If F is an extension field of K and u € F is algebraic
over K, then
(i) [K(u): K] =n;
(v) every element of K(u) can be written uniquely in the form
ap + aju+ au? + - -+ ap_1u™" ! where each a; € K.
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Theorem V.1.6(iii) and (v)

Theorem V.1.6. If F is an extension field of K and u € F is algebraic
over K, then
(i) [K(u): K] =n;
(v) every element of K(u) can be written uniquely in the form
ap + aju+ au? + - -+ ap_1u™" ! where each a; € K.
Proof. (iii) Now [K(u) : K] denotes the dimension of K(u) as a K-vector

space (more precisely, the cardinality of a basis). So part by (iv),
[K(u): K]=n.

Modern Algebra March 24, 2016 13 / 26



Theorem V.1.6(iii) and (v)

Theorem V.1.6. If F is an extension field of K and u € F is algebraic
over K, then
(i) [K(u): K] =n;
(v) every element of K(u) can be written uniquely in the form
ap + aju+ au? + - -+ ap_1u™" ! where each a; € K.
Proof. (iii) Now [K(u) : K] denotes the dimension of K(u) as a K-vector
space (more precisely, the cardinality of a basis). So part by (iv),

[K(u): K]=n.
(v) By (iv), every element of K(u) can be written in the form
ao +aiu+ -+ ap_1u""! for some a; € K because {1k, u,u?,...,u""1}

is a basis. For uniqueness, suppose
a+au+--+apu"t =bo+ biut -+ byqu"t
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Theorem V.1.6(iii) and (v)

Theorem V.1.6. If F is an extension field of K and u € F is algebraic
over K, then

(i) [K(u): K] =n;

(v) every element of K(u) can be written uniquely in the form

ap + aju+ au? + - -+ ap_1u™" ! where each a; € K.

Proof. (iii) Now [K(u) : K] denotes the dimension of K(u) as a K-vector
space (more precisely, the cardinality of a basis). So part by (iv),
[K(u): K]=n.
(v) By (iv), every element of K(u) can be written in the form
ao +aiu+ -+ ap_1u""! for some a; € K because {1k, u,u?,...,u""1}
is a basis. For uniqueness, suppose
ag+au+--+ap_1u"=by+biu+---+ bp_1u""1. Then
(ap — bo) + (a1 — by)u+ -+ (an_1 — bp_1)u™1 = 0 and since

{1k, u,u?,...,u""1} is linearly independent (it is a basis by part (iv))
then ag —bg =a1— b1 =---=ap_1— byp_1 =0 and so ag = by, a1 = b1,
.., an—1 = b,_1 = 0 and the representation is in fact unique. O
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Theorem V.1.8

Theorem V.1.8. Let o : K — L be an isomorphism of fields, u an
element of some extension field of K and v an element of some extension
field of L. Assume either:
(i) u is transcendental over K and v is transcendental over L; or
(ii) wuis a root of an irreducible polynomial f € K[x] and v is a
root of of € L[x].
Then o extends to an isomorphism of fields K(u) = L(v) which maps u
onto v.
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Theorem V.1.8

Theorem V.1.8. Let o : K — L be an isomorphism of fields, u an
element of some extension field of K and v an element of some extension
field of L. Assume either:
(i) u is transcendental over K and v is transcendental over L; or
(ii) wuis a root of an irreducible polynomial f € K[x] and v is a
root of of € L[x].
Then o extends to an isomorphism of fields K(u) = L(v) which maps u
onto v.
Proof. (i) Since o : K — L is an isomorphism, then, by Exercise I11.5.1,
the mapping K[x] — L[x] given by 37 rix = 3" Jo(ri)x" is an
isomorphism. By Theorem V.1.3(iv), every element of K(x) is of the form
h/g for some h, g € K[x| and every element of L(x) is of the form k/¢ for
some k, ! € L(x).
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Theorem V.1.8

Theorem V.1.8. Let o : K — L be an isomorphism of fields, u an
element of some extension field of K and v an element of some extension
field of L. Assume either:
(i) u is transcendental over K and v is transcendental over L; or
(ii) wuis a root of an irreducible polynomial f € K[x] and v is a
root of of € L[x].
Then o extends to an isomorphism of fields K(u) = L(v) which maps u
onto v.
Proof. (i) Since o : K — L is an isomorphism, then, by Exercise I11.5.1,
the mapping K[x] — L[x] given by 37 rix = 3" Jo(ri)x" is an
isomorphism. By Theorem V.1.3(iv), every element of K(x) is of the form
h/g for some h, g € K[x| and every element of L(x) is of the form k/¢ for
some k, ¢ € L(x). Since the mapping above (which we also denote as o) is
one to one and onto, then o extends to a one to one and onto mapping of
K(x) to L(x) as g/l +— o(g)/o(f). It is straightforward to verify that this
extended o is a field isomorphism.
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Theorem V.1.8(i)

Theorem V.1.8. Let 0 : K — L be an isomorphism of fields, u an
element of some extension field of K and v an element of some extension
field of L. Assume either:

(i) u is transcendental over K and v is transcendental over L.

Then o extends to an isomorphism of fields K(u) 2 L(v) which maps u
onto v.

Proof (continued). (i) Since v is transcendental, by Theorem V.1.5, we
have K(u) = K(x) = L(x) = L(v).

Modern Algebra March 24, 2016 15 / 26



Theorem V.1.8(i)

Theorem V.1.8. Let 0 : K — L be an isomorphism of fields, u an
element of some extension field of K and v an element of some extension
field of L. Assume either:

(i) u is transcendental over K and v is transcendental over L.

Then o extends to an isomorphism of fields K(u) 2 L(v) which maps u
onto v.

Proof (continued). (i) Since v is transcendental, by Theorem V.1.5, we
have K(u) = K(x) = L(x) = L(v). The isomorphism form K(u) to L(v) is
an extension of o and so the extension still maps K to L. Since the
isomorphism of K(u) to K(x) maps u to x, the isomorphism of K(x) to
L(x) maps x to x, and the isomorphism of L(x) to L(v) maps x to v, then

the extension of ¢ maps u to v. O
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Theorem V.1.8(ii)

Theorem V.1.8. Let o : K — L be an isomorphism of fields, u an
element of some extension field of K and v an element of some extension
field of L. Assume either:

(ii) wuis a root of an irreducible polynomial f € K[x] and v is a
root of of € L[x].

Then o extends to an isomorphism of fields K(u) = L(v) which maps u
onto v.
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Theorem V.1.8(ii)

Theorem V.1.8. Let o : K — L be an isomorphism of fields, u an
element of some extension field of K and v an element of some extension
field of L. Assume either:

(ii) wuis a root of an irreducible polynomial f € K[x] and v is a
root of of € L[x].

Then o extends to an isomorphism of fields K(u) = L(v) which maps u
onto v.

Proof. (ii) WLOG, we assume f is monic (since the extended isomorphism
o : K[x] — L[x] maps polynomial kf to o(kf) = ko(f) for all k € K and
the roots of f and kf (and of and kof) coincide. Since o : K[x] — L[x] is
an isomorphism, then of € L[x] is monic and irreducible.
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Theorem V.1.8(ii)

Theorem V.1.8. Let o : K — L be an isomorphism of fields, u an
element of some extension field of K and v an element of some extension
field of L. Assume either:

(ii) wuis a root of an irreducible polynomial f € K[x] and v is a
root of of € L[x].

Then o extends to an isomorphism of fields K(u) = L(v) which maps u
onto v.

Proof. (ii) WLOG, we assume f is monic (since the extended isomorphism
o : K[x] — L[x] maps polynomial kf to o(kf) = ko(f) for all k € K and
the roots of f and kf (and of and kof) coincide. Since o : K[x] — L[x] is
an isomorphism, then of € L[x] is monic and irreducible. In the proof of
Theorem V.1.6(ii) the mappings ¢ : K[x]/(f) — K[u] = K(u) and

Y L[x]/(of) — L[v] = L[v] given respectively by ¢[g + (f)] = g(u) and
p[h+ (of)] = h(v) are isomorphisms.
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Theorem V.1.8(ii) (continued)

Theorem V.1.8. Let o : K — L be an isomorphism of fields, u an
element of some extension field of K and v an element of some extension
field of L. Assume either:

(ii) wuis a root of an irreducible polynomial f € K[x] and v is a
root of of € L[x].

Then o extends to an isomorphism of fields K(u) = L(v) which maps u
onto v.

Proof (continued). By Corollary 111.2.11, the mapping

.0 : K[X]P/]-(f) — L[x]/(of) given by 0(g + (f)) = og + (of) is an
isomorphism.
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Theorem V.1.8(ii) (continued)

Theorem V.1.8. Let o : K — L be an isomorphism of fields, u an
element of some extension field of K and v an element of some extension
field of L. Assume either:

(ii) wuis a root of an irreducible polynomial f € K[x] and v is a
root of of € L[x].

Then o extends to an isomorphism of fields K(u) = L(v) which maps u
onto v.

Proof (continued). By Corollary 111.2.11, the mapping

0 : K[x]/(f) — L[x]/(cf) given by 6(g + (f)) = og + (of) is an
isomorphism. Therefore the composition

K(u) N K|x]/(f) LN L[x]/(of) >, L(v) is an isomorphism of fields K(u)
and L(v) such that g(u) — g(x) + (f) — og(x) + (of) — og(v). Also,
YO ~! agrees with o on K (the “constant” rational functions of u in
K(u)) and maps u — x + (f) — x + (of) — v. O
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Corollary V.1.9

Corollary V.1.9

Corollary V.1.9. Let E and F each be extension fields of K and let u € E
and v € F be algebraic over K. Then u and v are roots of the same
irreducible polynomial f € K{[x] if and only if there is an isomorphism of
fields K(u) = K(v) which sends u onto v and it the identity on K.
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Corollary V.1.9

Corollary V.1.9. Let E and F each be extension fields of K and let u € E
and v € F be algebraic over K. Then u and v are roots of the same
irreducible polynomial f € K{[x] if and only if there is an isomorphism of
fields K(u) = K(v) which sends u onto v and it the identity on K.

Proof. First, suppose u and v are roots of the same irreducible polynomial
f € K[x]. Then by Theorem V.1.8(ii) with o = 1k (the identity on K) we
have of = f and so u (a root of ) and v (a root of f = of) and

K(u) = K(v) where the isomorphism between K(u) and K(v) sends u
onto v.
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Corollary V.1.9

Corollary V.1.9. Let E and F each be extension fields of K and let u € E
and v € F be algebraic over K. Then u and v are roots of the same
irreducible polynomial f € K{[x] if and only if there is an isomorphism of
fields K(u) = K(v) which sends u onto v and it the identity on K.

Proof. First, suppose u and v are roots of the same irreducible polynomial
f € K[x]. Then by Theorem V.1.8(ii) with o = 1k (the identity on K) we
have of = f and so u (a root of ) and v (a root of f = of) and

K(u) = K(v) where the isomorphism between K(u) and K(v) sends u
onto v.

Conversely, suppose ¢ : K(u) — K(v) is an isomorphism with o(u) = v
and o(k) = k for all k € K. Let f € K[x] be the irreducible (monic)
polynomial for which algebraic v is a root.
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Corollary V.1.9

Corollary V.1.9. Let E and F each be extension fields of K and let u € E
and v € F be algebraic over K. Then u and v are roots of the same
irreducible polynomial f € K{[x] if and only if there is an isomorphism of
fields K(u) = K(v) which sends u onto v and it the identity on K.

Proof. First, suppose u and v are roots of the same irreducible polynomial
f € K[x]. Then by Theorem V.1.8(ii) with o = 1k (the identity on K) we
have of = f and so u (a root of ) and v (a root of f = of) and

K(u) = K(v) where the isomorphism between K(u) and K(v) sends u
onto v.

Conversely, suppose ¢ : K(u) — K(v) is an isomorphism with o(u) = v
and o(k) = k for all k € K. Let f € K[x] be the irreducible (monic)
polynomial for which algebraic v is a root. If f =37 kix' then
0=f(u) = 7 kiu'". Since ¢(0) =0 then 0 = 5(0) =0 (X7, ki) =
Sioo(kiu') =X go(k)a(u') = Yo kio(u) = 37 kiv' = f(v). So

v is a root of f as well.
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Theorem V.1.10. Kronecker's Theorem

Theorem V.1.10. Kronecker’s Theorem.
If K is a field and f € K[x] a polynomial of degree n, then there exists a
simple extension field F = K(u) of K such that:
(i) ue€ Fisaroot of f;
(i) [K(u) : K] < n, with equality holding if and only if £ is
irreducible in K[x];
(iii) if £ is irreducible in K[x], then K(u) is unique up to an
isomorphism which is the identity on K.
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Theorem V.1.10. Kronecker's Theorem

Theorem V.1.10. Kronecker’s Theorem.
If K is a field and f € K[x] a polynomial of degree n, then there exists a
simple extension field F = K(u) of K such that:

(i) ue€ Fisaroot of f;
(i) [K(u) : K] < n, with equality holding if and only if £ is
irreducible in K[x];
(iii) if £ is irreducible in K[x], then K(u) is unique up to an
isomorphism which is the identity on K.

Proof. (i) WLOG, we may assume f is irreducible (if not, we replace f by
one of its irreducible factors).
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Theorem V.1.10. Kronecker's Theorem

Theorem V.1.10. Kronecker's Theorem

Theorem V.1.10. Kronecker’s Theorem.
If K is a field and f € K[x] a polynomial of degree n, then there exists a

simple extension field F = K(u) of K such that:
(i) ue€ Fisaroot of f;
(i) [K(u) : K] < n, with equality holding if and only if £ is
irreducible in K[x];
(iii) if £ is irreducible in K[x], then K(u) is unique up to an
isomorphism which is the identity on K.

Proof. (i) WLOG, we may assume f is irreducible (if not, we replace f by
one of its irreducible factors). Then the ideal (f) is maximal in K[x] (by

Corollary 111.6.4, since K is a field, K[x] is a principal ideal domain and by
Theorem 111.3.4(ii) (f) is maximal). So by Theorem 11.2.20, F = K|[x]/(f)

is a field.
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Theorem V.1.10(i). Kronecker's Theorem

Proof (continued). (i) Furthermore, the canonical projection

7 : K[x] — K[x]/(f) = F mapping g — g + (f), when restricted to K
(the constant polynomials in K[x]) is a one to one homomorphism (the
canonical projection is a homomorphism, the only “constant” in (f) is the
zero function since (f) consists of all multiples of f by elements in K|[x],
and so the kernel of the canonical projection consists only of 0 € K;
therefore the canonical projection is one to one by Theorem 1.2.3(i)).
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Theorem V.1.10(i). Kronecker's Theorem

Proof (continued). (i) Furthermore, the canonical projection

7 : K[x] — K[x]/(f) = F mapping g — g + (f), when restricted to K
(the constant polynomials in K[x]) is a one to one homomorphism (the
canonical projection is a homomorphism, the only “constant” in (f) is the
zero function since (f) consists of all multiples of f by elements in K|[x],
and so the kernel of the canonical projection consists only of 0 € K;
therefore the canonical projection is one to one by Theorem 1.2.3(i)).
Since 7 is one to one, m(K) = K can be considered as a subfield of field
F; that is, F is an extension field of K (provided that K is identified with
7(K)). For x € K[x], let u = m(x) = x + (f) € F = K[x]/(f).
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Theorem V.1.10(i). Kronecker's Theorem

Proof (continued). (i) Furthermore, the canonical projection

7 : K[x] — K[x]/(f) = F mapping g — g + (f), when restricted to K
(the constant polynomials in K[x]) is a one to one homomorphism (the
canonical projection is a homomorphism, the only “constant” in (f) is the
zero function since (f) consists of all multiples of f by elements in K|[x],
and so the kernel of the canonical projection consists only of 0 € K;
therefore the canonical projection is one to one by Theorem 1.2.3(i)).
Since 7 is one to one, m(K) = K can be considered as a subfield of field
F; that is, F is an extension field of K (provided that K is identified with
m(K)). For x € K[x], let u=n(x) =x+ (f) € F = K[x]/(f). Then

F = K[x]/(f) = K(u) by Theorem V.1.6(ii) and, since coset addition and
multiplication is performed by representatives, then

f(u)=f(x+(f)) =f(x)+ (f) =04 (f) = 0 (since 0 + (f) is the
additive identity in K[x]/(f) = F). So (i) follows.
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Theorem V.1.10(ii) and (iii). Kronecker's Theorem

Theorem V.1.10. Kronecker’s Theorem.
If K is a field and f € K[x] a polynomial of degree n, then there exists a
simple extension field F = K(u) of K such that:
(i) [K(u) : K] < n, with equality holding if and only if f is
irreducible in K[x];
(iii) if f is irreducible in K[x], then K(u) is unique up to an
isomorphism which is the identity on K.
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Theorem V.1.10(ii) and (iii). Kronecker's Theorem

Theorem V.1.10. Kronecker’s Theorem.
If K is a field and f € K[x] a polynomial of degree n, then there exists a
simple extension field F = K(u) of K such that:
(i) [K(u) : K] < n, with equality holding if and only if f is
irreducible in K[x];
(iii) if f is irreducible in K[x], then K(u) is unique up to an
isomorphism which is the identity on K.

Proof. (ii) Theorem V.1.6(iii) shows that [K(u) : K] = n for irreducible f
of degree n. As commented above, if f is not irreducible, then we consider
an irreducible factor of f (of degree less than n) and (ii) follows).
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Theorem V.1.10(ii) and (iii). Kronecker's Theorem

Theorem V.1.10. Kronecker’s Theorem.
If K is a field and f € K[x] a polynomial of degree n, then there exists a
simple extension field F = K(u) of K such that:
(i) [K(u) : K] < n, with equality holding if and only if f is
irreducible in K[x];
(iii) if f is irreducible in K[x], then K(u) is unique up to an
isomorphism which is the identity on K.

Proof. (ii) Theorem V.1.6(iii) shows that [K(u) : K] = n for irreducible f
of degree n. As commented above, if f is not irreducible, then we consider
an irreducible factor of f (of degree less than n) and (ii) follows).

(i) Corollary V.1.9 implies (iii) and that the extension field does not
depend on “which” root of f is used. O
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Theorem V.1.11

Theorem V.1.11. If F is a finite dimensional extension field of K, then F
is finitely generated and algebraic over K.
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Theorem V.1.11

Theorem V.1.11

Theorem V.1.11. If F is a finite dimensional extension field of K, then F
is finitely generated and algebraic over K.

Proof. If E is a finite dimensional extension of K, say [F : K] = n. Let

u € F (arbitrary). Then the set of n+ 1 elements {1k, u, u?, ..., u"} must
be linearly dependent over F.
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Theorem V.1.11

Theorem V.1.11. If F is a finite dimensional extension field of K, then F
is finitely generated and algebraic over K.

Proof. If E is a finite dimensional extension of K, say [F : K] = n. Let

u € F (arbitrary). Then the set of n+ 1 elements {1k, u, u?, ..., u"} must
be linearly dependent over F. So there are a; € K, not all zero, such that
ag + aiu + au® + - - - + a,u” = 0, which implies that v is algebraic over
K. Since u was arbitrary, F is an algebraic extension of K. If
{v1,va,...,vp} is a basis of F over K, then "it is easy to see” (use
Theorem V.1.3(v)) that F = K(vi,va, ..., vy). O
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Theorem V.1.12

Theorem V.1.12. If F is an extension field of K and X is a subset of F
such that F = K(X) and every element of X is algebraic over K, then F is
an algebraic extension of K. If X is a finite set, then F is finite
dimensional over K.
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Theorem V.1.12

Theorem V.1.12. If F is an extension field of K and X is a subset of F
such that F = K(X) and every element of X is algebraic over K, then F is
an algebraic extension of K. If X is a finite set, then F is finite
dimensional over K.

Proof. If v € F, then by Theorem V.1.3(iv),

v="F(ui,up,...,un)/g(u1,un,...,u,) for some n € N, some
f,g € Flx1,x2,...,%,] and some vy, up,...,u, € X. So
vV € K(Ul,UQ,...,un).
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Theorem V.1.12

Theorem V.1.12. If F is an extension field of K and X is a subset of F
such that F = K(X) and every element of X is algebraic over K, then F is
an algebraic extension of K. If X is a finite set, then F is finite
dimensional over K.

Proof. If v € F, then by Theorem V.1.3(iv),

v="F(ui,up,...,un)/g(u1,un,...,u,) for some n € N, some

f,g € Flx1,x2,...,%,] and some vy, up,...,u, € X. So

v € K(u1,u,...,u,). So there is a tower of subfields

K C K(u1) € K(up,u) C -+- C K(ug, u2,...,up,). For a given i > 2, uj is
algebraic over K and so u; is algebraic over K(uy, up, ..., ui_1), say u; is
of degree r; over K(uy, ua, ..., uj_1).
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Theorem V.1.12

Theorem V.1.12. If F is an extension field of K and X is a subset of F
such that F = K(X) and every element of X is algebraic over K, then F is
an algebraic extension of K. If X is a finite set, then F is finite
dimensional over K.

Proof. If v € F, then by Theorem V.1.3(iv),

v="F(ui,up,...,un)/g(u1,un,...,u,) for some n € N, some

f,g € Flx1,x2,...,%,] and some vy, up,...,u, € X. So

v € K(u1,u,...,u,). So there is a tower of subfields

K C K(u1) € K(up,u) C -+- C K(ug, u2,...,up,). For a given i > 2, uj is
algebraic over K and so u; is algebraic over K(uy, up, ..., ui_1), say u; is
of degree rj over K(uy, up,...,uj—1). Since

K(u1, uz,...,ui—1)(uij) = K(u1, u, ..., u;) by Exercise V.1.4(b), we have
[K(u1,u2,...,u;): K(ui, uo,...,ui—1)] = ri by Theorem V.1.6(iii).
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Theorem V.1.12 (continued)

Theorem V.1.12. If F is an extension field of K and X is a subset of F
such that F = K(X) and every element of X is algebraic over K, then F is
an algebraic extension of K. If X is a finite set, then F is finite
dimensional over K.

Proof (continued). Let r; be the degree of u; over K (we had i > 2

above), then by repeated (i.e., inductive) application of Theorem V.1.2
shows that [K(u1, u,...,up) : Kl =nr---r.
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Theorem V.1.12 (continued)

Theorem V.1.12. If F is an extension field of K and X is a subset of F
such that F = K(X) and every element of X is algebraic over K, then F is
an algebraic extension of K. If X is a finite set, then F is finite
dimensional over K.

Proof (continued). Let r; be the degree of u; over K (we had i > 2
above), then by repeated (i.e., inductive) application of Theorem V.1.2
shows that [K(u1, u2,...,up) : K] =nr---r,. By Theorem V.1.11,
K(uy, uz,...,u,) (since the dimension riry - - - ry if finite) is algebraic over
K and so v € K(u1, u2,...,up) is algebraic over K. Since v was an
arbitrary element of F, then F is algebraic over K.
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Theorem V.1.12 (continued)

Theorem V.1.12. If F is an extension field of K and X is a subset of F
such that F = K(X) and every element of X is algebraic over K, then F is
an algebraic extension of K. If X is a finite set, then F is finite
dimensional over K.

Proof (continued). Let r; be the degree of u; over K (we had i > 2
above), then by repeated (i.e., inductive) application of Theorem V.1.2
shows that [K(u1, u2,...,up) : K] =nr---r,. By Theorem V.1.11,
K(uy, uz,...,u,) (since the dimension riry - - - ry if finite) is algebraic over
K and so v € K(u1, u2,...,up) is algebraic over K. Since v was an
arbitrary element of F, then F is algebraic over K.

If X is a finite set, say X = {u1, up,...,u,}, then as argued above
[F(ui,ua, ..., up): K] =nrr---ryis finite. O
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Theorem V.1.13

Theorem V.1.13. If F is an algebraic extension field of E and E is an
algebraic extension field of K, then F is an algebraic extension of K.
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Theorem V.1.13

Theorem V.1.13. If F is an algebraic extension field of E and E is an
algebraic extension field of K, then F is an algebraic extension of K.

Proof. Let u € F. Since F is an algebraic extension of E, then u is
algebraic over E and so byu" + bp_1u" "1 4 - - byu + by = 0 for some
b; € E (where b, # 0). Therefore, u is algebraic over the subfield
K(bo, b1, ..., b,) of E.
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Theorem V.1.13

Theorem V.1.13. If F is an algebraic extension field of E and E is an
algebraic extension field of K, then F is an algebraic extension of K.

Proof. Let u € F. Since F is an algebraic extension of E, then u is
algebraic over E and so byu" + bp_1u" "1 4 - - byu + by = 0 for some

b; € E (where b, # 0). Therefore, u is algebraic over the subfield

K(bo, b1, ..., b,) of E. Consequently, there is a tower of fields

K C K(bg, bi,..., bn) C K(bo, bi,..., b,,)(u), where

[K(bo, b1, ..., bn)(u): K(bo, b1, ..., by)] is finite by Theorem V.1.6(iii)
since u is algebraic over K(bg, b1, ..., bp), and [K(bo, b1,...,bn) : K] is
finite by Theorem V.1.6(iii) since u is algebraic over K (b, b1, ..., by), and
[K(bo, b1, ..., bn) : K] is finite by Theorem V.1.12 since there is a finite
number of b; and each is algebraic over K.
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Theorem V.1.13

Theorem V.1.13. If F is an algebraic extension field of E and E is an
algebraic extension field of K, then F is an algebraic extension of K.

Proof. Let u € F. Since F is an algebraic extension of E, then u is
algebraic over E and so byu" + bp_1u" "1 4 - - byu + by = 0 for some
b; € E (where b, # 0). Therefore, u is algebraic over the subfield

K(bo, b1, ..., b,) of E. Consequently, there is a tower of fields

K C K(bg, bi,..., bn) C K(bo, bi,..., b,,)(u), where

[K(bo, b1, ..., bn)(u): K(bo, b1, ..., by)] is finite by Theorem V.1.6(iii)
since u is algebraic over K(bg, b1, ..., bp), and [K(bo, b1,...,bn) : K] is
finite by Theorem V.1.6(iii) since u is algebraic over K (b, b1, ..., by), and
[K(bo, b1, ..., bn) : K] is finite by Theorem V.1.12 since there is a finite
number of b; and each is algebraic over K. Therefore

[K(bo, b1, ..., bn)(u) : K] is finite by Theorem V.1.2. Hence, by Theorem
V.1.11, u is algebraic over K. Since u € F is arbitrary, then F is algebraic
over K. O

Modern Algebra March 24, 2016 25 / 26



Theorem V.1.14

Theorem V.1.14. Let F be an extension field of K and E the set of all
elements of F which are algebraic over K. Then E is a subfield of F
(which is, of course, algebraic over K).
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Theorem V.1.14

Theorem V.1.14

Theorem V.1.14. Let F be an extension field of K and E the set of all

elements of F which are algebraic over K. Then E is a subfield of F
(which is, of course, algebraic over K).

Proof. For any u,v € E, K(u,v) is an algebraic extension of K by
Theorem V.1.12 (since there is a finite number of algebraic elements
“adjoined” to K. Since K(u, v) is a field, then u — v € K(u, v) and
uv~t € K(u,v) for v # 0.
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Theorem V.1.14

Theorem V.1.14. Let F be an extension field of K and E the set of all
elements of F which are algebraic over K. Then E is a subfield of F
(which is, of course, algebraic over K).

Proof. For any u,v € E, K(u,v) is an algebraic extension of K by
Theorem V.1.12 (since there is a finite number of algebraic elements
“adjoined” to K. Since K(u, v) is a field, then u — v € K(u, v) and

uv=t € K(u,v) for v#0. Hence u — v € E and uv! € E (since

K(u,v) C E) and so by Theorem 1.2.5, (E,+) is a group and (E \ {0}, x)
is a group. Therefore E is a field. O
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