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Theorem V.1.3(vi)

Theorem V.1.3(vi)

Theorem V.1.3. If F is an extension field of a field K , u, ui ∈ F , and
X ⊂ F , then

(vi) the subfield K (X ) consists of all elements of the form

f (u1, u2, . . . , un)/g(u1, u2, . . . , un)

= f (u1, u2, . . . , un)g(u1, u2, . . . , un)
−1

where n ∈ N, f , g ∈ K [x1, x2, . . . , xn], u1, u2, . . . , un ∈ X ,
and g(u1, u2, . . . , un) 6= 0.

Proof. (vi) Every field that contains K and X must contain the set

E = {f (u1, u2, . . . , un)/g(u1, u2, . . . , un) | n ∈ N; f , g ∈ K [x1, x2, . . . , xn];

ui ∈ X ; g(u1, u2, . . . , un) 6= 0}.

Whence K (X ) ⊃ E .
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Theorem V.1.3(vi)

Theorem V.1.3(vi) (continued 1)

Proof (continued). (vi) Conversely, if f , g ∈ K [x1, x2, . . . , xm] and
f1, g1 ∈ K [x1, x2, . . . , xn] then define h, k ∈ K [x1, x2, . . . , xm+n] by

h(x1, x2, . . . , xm+n) = f (x1, x2, . . . , xm)g1(xm+1, xm+2, . . . , xm+n)

−g(x1, x2, . . . , xm)f1(xm+1, xm+2, . . . xm+n)

and k(x1, x2, . . . , xm+n) = g(x1, x2, . . . , xm)g1(xm+1, xm+2, . . . , xm+n).
Then for any u1, u2, . . . , um, v1, v2, . . . , vn ∈ X such that
g(u1, u2, . . . , um) 6= 0, g(v1, v2, . . . , vn) 6= 0,

f (u1, u2, . . . , um)

g(u1, u2, . . . , um)
− f1(v1, v2, . . . , vn)

g1(v1, v2, . . . , vn)
=

h(u1, u2, . . . , um, v1, v2, . . . , vn)

k(u1, u2, . . . , um, v1, v2, . . . , vn)
∈ E .

Therefore, E is an additive subgroup of 〈F ,+〉 by Theorem I.2.5.
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Theorem V.1.3(vi)

Theorem V.1.3(vi) (continued 2)

Proof (continued). Similarly,

f (u1, u2, . . . , um)

g(u1, u2, . . . , um)

/
f1(v1, v2, . . . , vn)

g1(v1, v2, . . . , vn)

=
f2(u1, u2, . . . , um, v1, v2, . . . , vn)

g2(u1, u2, . . . , um, v1, v2, . . . , vn)
∈ E

and so E \ {0} is a multiplicative subgroup of 〈F ,×〉 by Theorem I.2.5. So
E is a field. Since K (x) is the intersection of all fields containing K ∪ X ,
then K (X ) ⊂ E . Therefore K (X ) = E .
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Theorem V.1.3(vii)

Theorem V.1.3(vii)

Theorem V.1.3. If F is an extension field of a field K , u, ui ∈ F , and
X ⊂ F , then

(vii) For each v ∈ K (X ) (respectively, K [X ]) there is a finite
subset X ′ of X such that v ∈ K (X ′) (respectively, K [X ′]).

Proof. (vi) If u ∈ K (X ) then by part (vi),
u = f (u1, u2, . . . , un)/g(u1, u2, . . . , un) for some n ∈ N and
f , g ∈ K [x1, x2, . . . , xn]. So with X ′ = {u1, u2, . . . , un}, u ∈ K (X ′).
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Theorem V.1.5

Theorem V.1.5

Theorem V.1.5. If F is an extension field of K and u ∈ F is
transcendental over K , then there is an isomorphism of fields
K (u) ∼= K (x) which is the identity when restricted to K .

Proof. Since u is transcendental then f (u) 6= 0, g(u) 6= 0 for all nonzero
f , g ∈ K [x ]. Define ϕ : K (x) → F as f /g 7→ f (u)/g(u). “Clearly” ϕ is a
homomorphism. Now for f1/g1 6= f2/g2, we have ϕ(f1/g1) = f1(u)/g1(u)
and ϕ(f2/g2) = f2(u)/g2(u) and since f1/g1 6= f2/g2 then f1g2 6= f2g1 and
f1g2 − f2g1 6= 0 (not the 0 polynomial, that is). Now
f1(u)g2(u)− f2(u)g1(u) 6= 0 (or else u is algebraic over K ), and so
ϕ(f1/g1) = f1(u)/g1(u) 6= f2(u)/g2(u) = ϕ(f2/g2). Therefore ϕ is one to
one (a monomorphism).

Also, ϕ is the identity on K (treating K as a
subfield of K (x); think of K as the constant rational functions in F (x)).
By Theorem V.1.3(iv), the image of ϕ is K (u). So ϕ is an isomorphism
from K (x) to K (u) which is the identity on K .
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Theorem V.1.6

Theorem V.1.6

Theorem V.1.6. If F is an extension field of K and u ∈ F is algebraic
over K , then

(i) K (u) = K [u];

(ii) K (u) ∼= K [x ]/(f ) where f ∈ K [x ] is an irreducible monic
polynomial of degree n ≥ 1 uniquely determined by the
conditions that f (u) = 0 and g(u) = 0 (where g ∈ K [x ]) if
and only if f divides g ;

(iii) [K (u) : K ] = n;

(iv) {1K , u, u
2, . . . , un−1} is a basis of the vector space K (u)

over K ;

(v) every element of K (u) can be written uniquely in the form
a0 + a1u + a2u

2 + · · ·+ an−1u
n−1 where each ai ∈ K .

Proof. (i) and (ii) Define ϕ : K [x ] → K [u] as g 7→ g(u). Then “clearly”
ϕ is a ring homomorphism. By Theorem V.1.3(i), ϕ is onto (an
epimorphism). Since K is a field, by Corollary III.6.4, K [x ] is a principal
ideal domain.
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Theorem V.1.6

Theorem V.1.6(i) and (ii)

Proof (continued). (i) and (ii) Now Ker(ϕ) is an ideal by Theorem
III.2.8, so Ker(ϕ) = (f ) for some f ∈ K [x ]. Notice that ϕ(f ) = f (u) = 0.
Since u is algebraic, Ker(ϕ) 6= {0}. Also, Ker(ϕ) 6= K [x ] (for example,
nonzero constant polynomials are not mapped to 0). So f 6= 0 and
deg(f ) ≥ 1. Furthermore, if c is the leading coefficient of f then c is a
unit in K [x ] by Corollary III.6.4 and so polynomial c−1f is monic.

By
Theorem III.3.2(ii) we have that (f ) = (c−1f ). Consequently, WLOG we
assume that f is monic. By the First Isomorphism Theorem (Corollary
III.2.10), K [x ]/(f ) = K [x ]/Ker(ϕ) ∼= Im(ϕ) = K [u]. Since K [u] is an
integral domain (because K is a field), by Theorem III.2.16, the ideal (f )
is prime. Since (f ) is a prime ideal, by Theorem III.3.4(i), f itself is a
prime element of K [x ] and by Theorem III.3.4(iii), f is irreducible in K [x ]
(notice that K [x ] is a principal ideal domain as explained above), and by
Theorem III.3.4(ii), (f ) is a maximal ideal in K [x ]. Consequently, K [x ]/(f )
is a field by Theorem III.2.20(i).
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Theorem V.1.6

Theorem V.1.6(i) and (ii) (continued)

Proof (continued). Since K (u) is the smallest subfield of F containing
K ∪ {u} (since K (u) is the intersection of all subfields of F containing
K ∪ {u}), and K [u] is a ring containing K ∪ {u}, but K [u] is a field since
K [u] ∼= K [x ]/(f ), then K (u) ⊂ K [u]. However, in general, the ring K [u] is
a subset of the field K (u); that is K (u) ⊃ K [u], so we must have
K (u) = K [u] and (i) follows. We have established (ii), except for the
uniqueness claim. Suppose g(u) = 0 for g ∈ K [x ]. Then ϕ(g) = g(u) = 0
and so g ∈ Ker(ϕ) = (f ). Since principal ideal (f ) consists of all multiples
of f (by, say, Theorem III.2.5(v)) then g is a multiple of f ; that is, f
divides g . So (i) follows.
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Theorem V.1.6

Theorem V.1.6(iv)

Theorem V.1.6. If F is an extension field of K and u ∈ F is algebraic
over K , then

(iv) {1K , u, u
2, . . . , un−1} is a basis of the vector space K (u)

over K .

Proof. (iv) By Theorem V.1.3(i), every element of K [u] = K (u) is of the
form g(u) for some g ∈ K [x ]. By the Division Algorithm (Theorem III.6.2)
we know that g(x) = q(x)f (x) + h(x) with q, h ∈ K [x ] and
deg(h) < deg(f ). Therefore,
g(u) = q(u)f (u) + h(u) = 0 + h(u) = b0 + b1u + · · ·+ bmum with
m < n = deg(f ).

Thus, every element of K (u) can be written as a linear
combination of 1K , u, u

2, . . . , un−1. That is, {1K , u, u
2, . . . , un−1} spans

the K -vector space K (u). [HERE, a “K -vector space” is a vector space
with scalars from K . A basis is a linearly independent spanning set; see
page 181.]
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Theorem V.1.6

Theorem V.1.6(iv) (continued)

Theorem V.1.6. If F is an extension field of K and u ∈ F is algebraic
over K , then

(iv) {1K , u, u
2, . . . , un−1} is a basis of the vector space K (u)

over K .

Proof (continued). (iv) To see that {1K , u, u
2, . . . , un−1} is linearly

independent over K (and hence a basis), suppose
a0 + a1u + · · ·+ an−1u

n−1 = 0 for some ai ∈ K . Then
g = a0 + a1u + · · ·+ an−1u

n−1 ∈ K [x ] has u as a root and has a degree of
at most n − 1 (some ai ’s could be 0). By (ii), f divides g and deg(f ) = n,
so it must be that g = 0 (the zero polynomial); that is, ai = 0 for all i ,
whence {1K , u, u

2, . . . , un−1} is linearly independent and hence is a basis
of K (u).
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Theorem V.1.6

Theorem V.1.6(iii) and (v)

Theorem V.1.6. If F is an extension field of K and u ∈ F is algebraic
over K , then

(iii) [K (u) : K ] = n;
(v) every element of K (u) can be written uniquely in the form

a0 + a1u + a2u
2 + · · ·+ an−1u

n−1 where each ai ∈ K .

Proof. (iii) Now [K (u) : K ] denotes the dimension of K (u) as a K -vector
space (more precisely, the cardinality of a basis). So part by (iv),
[K (u) : K ] = n.

(v) By (iv), every element of K (u) can be written in the form
a0 + a1u + · · ·+ an−1u

n−1 for some ai ∈ K because {1K , u, u
2, . . . , un−1}

is a basis. For uniqueness, suppose
a0 + a1u + · · ·+ an−1u

n−1 = b0 + b1u + · · ·+ bn−1u
n−1. Then

(a0 − b0) + (a1 − b1)u + · · ·+ (an−1 − bn−1)u
n−1 = 0 and since

{1K , u, u
2, . . . , un−1} is linearly independent (it is a basis by part (iv))

then a0 − b0 = a1 − b1 = · · · = an−1 − bn−1 = 0 and so a0 = b0, a1 = b1,
. . . , an−1 = bn−1 = 0 and the representation is in fact unique.
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Theorem V.1.8

Theorem V.1.8

Theorem V.1.8. Let σ : K → L be an isomorphism of fields, u an
element of some extension field of K and v an element of some extension
field of L. Assume either:

(i) u is transcendental over K and v is transcendental over L; or

(ii) u is a root of an irreducible polynomial f ∈ K [x ] and v is a
root of σf ∈ L[x ].

Then σ extends to an isomorphism of fields K (u) ∼= L(v) which maps u
onto v .
Proof. (i) Since σ : K → L is an isomorphism, then, by Exercise III.5.1,
the mapping K [x ] → L[x ] given by

∑n
i=0 rix

i 7→
∑m

i=0 σ(ri )x
i is an

isomorphism. By Theorem V.1.3(iv), every element of K (x) is of the form
h/g for some h, g ∈ K [x ] and every element of L(x) is of the form k/` for
some k, ` ∈ L(x).

Since the mapping above (which we also denote as σ) is
one to one and onto, then σ extends to a one to one and onto mapping of
K (x) to L(x) as g/` 7→ σ(g)/σ(`). It is straightforward to verify that this
extended σ is a field isomorphism.
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Theorem V.1.8

Theorem V.1.8(i)

Theorem V.1.8. Let σ : K → L be an isomorphism of fields, u an
element of some extension field of K and v an element of some extension
field of L. Assume either:

(i) u is transcendental over K and v is transcendental over L.

Then σ extends to an isomorphism of fields K (u) ∼= L(v) which maps u
onto v .

Proof (continued). (i) Since u is transcendental, by Theorem V.1.5, we
have K (u) ∼= K (x) ∼= L(x) ∼= L(v). The isomorphism form K (u) to L(v) is
an extension of σ and so the extension still maps K to L. Since the
isomorphism of K (u) to K (x) maps u to x , the isomorphism of K (x) to
L(x) maps x to x , and the isomorphism of L(x) to L(v) maps x to v , then
the extension of σ maps u to v .
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Theorem V.1.8

Theorem V.1.8(ii)

Theorem V.1.8. Let σ : K → L be an isomorphism of fields, u an
element of some extension field of K and v an element of some extension
field of L. Assume either:

(ii) u is a root of an irreducible polynomial f ∈ K [x ] and v is a
root of σf ∈ L[x ].

Then σ extends to an isomorphism of fields K (u) ∼= L(v) which maps u
onto v .

Proof. (ii) WLOG, we assume f is monic (since the extended isomorphism
σ : K [x ] → L[x ] maps polynomial kf to σ(kf ) = kσ(f ) for all k ∈ K and
the roots of f and kf (and σf and kσf ) coincide. Since σ : K [x ] → L[x ] is
an isomorphism, then σf ∈ L[x ] is monic and irreducible.

In the proof of
Theorem V.1.6(ii) the mappings ϕ : K [x ]/(f ) → K [u] = K (u) and
ψ : L[x ]/(σf ) → L[v ] = L[v ] given respectively by ϕ[g + (f )] = g(u) and
ψ[h + (σf )] = h(v) are isomorphisms.
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Theorem V.1.8

Theorem V.1.8(ii) (continued)

Theorem V.1.8. Let σ : K → L be an isomorphism of fields, u an
element of some extension field of K and v an element of some extension
field of L. Assume either:

(ii) u is a root of an irreducible polynomial f ∈ K [x ] and v is a
root of σf ∈ L[x ].

Then σ extends to an isomorphism of fields K (u) ∼= L(v) which maps u
onto v .

Proof (continued). By Corollary III.2.11, the mapping
θ : K [x ]/(f ) → L[x ]/(σf ) given by θ(g + (f )) = σg + (σf ) is an
isomorphism. Therefore the composition

K (u)
ϕ−1

→ K [x ]/(f )
θ→ L[x ]/(σf )

ψ→ L(v) is an isomorphism of fields K (u)
and L(v) such that g(u) 7→ g(x) + (f ) 7→ σg(x) + (σf ) 7→ σg(v). Also,
ψθϕ−1 agrees with σ on K (the “constant” rational functions of u in
K (u)) and maps u 7→ x + (f ) 7→ x + (σf ) 7→ v .
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Theorem V.1.8(ii) (continued)
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Corollary V.1.9

Corollary V.1.9

Corollary V.1.9. Let E and F each be extension fields of K and let u ∈ E
and v ∈ F be algebraic over K . Then u and v are roots of the same
irreducible polynomial f ∈ K [x ] if and only if there is an isomorphism of
fields K (u) ∼= K (v) which sends u onto v and it the identity on K .

Proof. First, suppose u and v are roots of the same irreducible polynomial
f ∈ K [x ]. Then by Theorem V.1.8(ii) with σ = 1K (the identity on K ) we
have σf = f and so u (a root of f ) and v (a root of f = σf ) and
K (u) ∼= K (v) where the isomorphism between K (u) and K (v) sends u
onto v .

Conversely, suppose σ : K (u) → K (v) is an isomorphism with σ(u) = v
and σ(k) = k for all k ∈ K . Let f ∈ K [x ] be the irreducible (monic)
polynomial for which algebraic u is a root. If f =

∑n
i=0 kix

i then
0 = f (u) =

∑n
i=0 kiu

i . Since σ(0) = 0 then 0 = σ(0) = σ
(∑n

i=0 kiu
i
)

=∑n
i=0 σ(kiu

i ) =
∑n

i=0 σ(ki )σ(ui ) =
∑n

i=0 kiσ(u)i =
∑n

i=0 kiv
i = f (v). So

v is a root of f as well.
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have σf = f and so u (a root of f ) and v (a root of f = σf ) and
K (u) ∼= K (v) where the isomorphism between K (u) and K (v) sends u
onto v .
Conversely, suppose σ : K (u) → K (v) is an isomorphism with σ(u) = v
and σ(k) = k for all k ∈ K . Let f ∈ K [x ] be the irreducible (monic)
polynomial for which algebraic u is a root. If f =

∑n
i=0 kix

i then
0 = f (u) =

∑n
i=0 kiu

i . Since σ(0) = 0 then 0 = σ(0) = σ
(∑n

i=0 kiu
i
)

=∑n
i=0 σ(kiu

i ) =
∑n

i=0 σ(ki )σ(ui ) =
∑n

i=0 kiσ(u)i =
∑n

i=0 kiv
i = f (v). So

v is a root of f as well.
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Theorem V.1.10. Kronecker’s Theorem

Theorem V.1.10. Kronecker’s Theorem

Theorem V.1.10. Kronecker’s Theorem.
If K is a field and f ∈ K [x ] a polynomial of degree n, then there exists a
simple extension field F = K (u) of K such that:

(i) u ∈ F is a root of f ;

(ii) [K (u) : K ] ≤ n, with equality holding if and only if f is
irreducible in K [x ];

(iii) if f is irreducible in K [x ], then K (u) is unique up to an
isomorphism which is the identity on K .

Proof. (i) WLOG, we may assume f is irreducible (if not, we replace f by
one of its irreducible factors).

Then the ideal (f ) is maximal in K [x ] (by
Corollary III.6.4, since K is a field, K [x ] is a principal ideal domain and by
Theorem III.3.4(ii) (f ) is maximal). So by Theorem III.2.20, F = K [x ]/(f )
is a field.
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Theorem V.1.10. Kronecker’s Theorem

Theorem V.1.10(i). Kronecker’s Theorem

Proof (continued). (i) Furthermore, the canonical projection
π : K [x ] → K [x ]/(f ) = F mapping g 7→ g + (f ), when restricted to K
(the constant polynomials in K [x ]) is a one to one homomorphism (the
canonical projection is a homomorphism, the only “constant” in (f ) is the
zero function since (f ) consists of all multiples of f by elements in K [x ],
and so the kernel of the canonical projection consists only of 0 ∈ K ;
therefore the canonical projection is one to one by Theorem I.2.3(i)).
Since π is one to one, π(K ) ∼= K can be considered as a subfield of field
F ; that is, F is an extension field of K (provided that K is identified with
π(K )). For x ∈ K [x ], let u = π(x) = x + (f ) ∈ F = K [x ]/(f ).

Then
F = K [x ]/(f ) ∼= K (u) by Theorem V.1.6(ii) and, since coset addition and
multiplication is performed by representatives, then
f (u) = f (x + (f )) = f (x) + (f ) = 0 + (f ) = 0 (since 0 + (f ) is the
additive identity in K [x ]/(f ) = F ). So (i) follows.
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Theorem V.1.10. Kronecker’s Theorem

Theorem V.1.10(ii) and (iii). Kronecker’s Theorem

Theorem V.1.10. Kronecker’s Theorem.
If K is a field and f ∈ K [x ] a polynomial of degree n, then there exists a
simple extension field F = K (u) of K such that:

(ii) [K (u) : K ] ≤ n, with equality holding if and only if f is
irreducible in K [x ];

(iii) if f is irreducible in K [x ], then K (u) is unique up to an
isomorphism which is the identity on K .

Proof. (ii) Theorem V.1.6(iii) shows that [K (u) : K ] = n for irreducible f
of degree n. As commented above, if f is not irreducible, then we consider
an irreducible factor of f (of degree less than n) and (ii) follows).

(iii) Corollary V.1.9 implies (iii) and that the extension field does not
depend on “which” root of f is used.

() Modern Algebra March 24, 2016 21 / 26



Theorem V.1.10. Kronecker’s Theorem

Theorem V.1.10(ii) and (iii). Kronecker’s Theorem

Theorem V.1.10. Kronecker’s Theorem.
If K is a field and f ∈ K [x ] a polynomial of degree n, then there exists a
simple extension field F = K (u) of K such that:

(ii) [K (u) : K ] ≤ n, with equality holding if and only if f is
irreducible in K [x ];

(iii) if f is irreducible in K [x ], then K (u) is unique up to an
isomorphism which is the identity on K .

Proof. (ii) Theorem V.1.6(iii) shows that [K (u) : K ] = n for irreducible f
of degree n. As commented above, if f is not irreducible, then we consider
an irreducible factor of f (of degree less than n) and (ii) follows).

(iii) Corollary V.1.9 implies (iii) and that the extension field does not
depend on “which” root of f is used.

() Modern Algebra March 24, 2016 21 / 26



Theorem V.1.10. Kronecker’s Theorem

Theorem V.1.10(ii) and (iii). Kronecker’s Theorem

Theorem V.1.10. Kronecker’s Theorem.
If K is a field and f ∈ K [x ] a polynomial of degree n, then there exists a
simple extension field F = K (u) of K such that:

(ii) [K (u) : K ] ≤ n, with equality holding if and only if f is
irreducible in K [x ];

(iii) if f is irreducible in K [x ], then K (u) is unique up to an
isomorphism which is the identity on K .

Proof. (ii) Theorem V.1.6(iii) shows that [K (u) : K ] = n for irreducible f
of degree n. As commented above, if f is not irreducible, then we consider
an irreducible factor of f (of degree less than n) and (ii) follows).

(iii) Corollary V.1.9 implies (iii) and that the extension field does not
depend on “which” root of f is used.

() Modern Algebra March 24, 2016 21 / 26



Theorem V.1.11

Theorem V.1.11

Theorem V.1.11. If F is a finite dimensional extension field of K , then F
is finitely generated and algebraic over K .

Proof. If E is a finite dimensional extension of K , say [F : K ] = n. Let
u ∈ F (arbitrary). Then the set of n + 1 elements {1K , u, u

2, . . . , un} must
be linearly dependent over F .

So there are ai ∈ K , not all zero, such that
a0 + a1u + a2u

2 + · · ·+ anu
n = 0, which implies that u is algebraic over

K . Since u was arbitrary, F is an algebraic extension of K . If
{v1, v2, . . . , vn} is a basis of F over K , then “it is easy to see” (use
Theorem V.1.3(v)) that F = K (v1, v2, . . . , vn).
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Theorem V.1.12

Theorem V.1.12

Theorem V.1.12. If F is an extension field of K and X is a subset of F
such that F = K (X ) and every element of X is algebraic over K , then F is
an algebraic extension of K . If X is a finite set, then F is finite
dimensional over K .

Proof. If v ∈ F , then by Theorem V.1.3(iv),
v = f (u1, u2, . . . , un)/g(u1, u2, . . . , un) for some n ∈ N, some
f , g ∈ F [x1, x2, . . . , xn] and some u1, u2, . . . , un ∈ X . So
v ∈ K (u1, u2, . . . , un).

So there is a tower of subfields
K ⊂ K (u1) ⊂ K (u1, u2) ⊂ · · · ⊂ K (u1, u2, . . . , un). For a given i ≥ 2, ui is
algebraic over K and so ui is algebraic over K (u1, u2, . . . , ui−1), say ui is
of degree ri over K (u1, u2, . . . , ui−1). Since
K (u1, u2, . . . , ui−1)(ui ) = K (u1, u2, . . . , ui ) by Exercise V.1.4(b), we have
[K (u1, u2, . . . , ui ) : K (u1, u2, . . . , ui−1)] = ri by Theorem V.1.6(iii).
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Theorem V.1.12

Theorem V.1.12 (continued)

Theorem V.1.12. If F is an extension field of K and X is a subset of F
such that F = K (X ) and every element of X is algebraic over K , then F is
an algebraic extension of K . If X is a finite set, then F is finite
dimensional over K .

Proof (continued). Let r1 be the degree of u1 over K (we had i ≥ 2
above), then by repeated (i.e., inductive) application of Theorem V.1.2
shows that [K (u1, u2, . . . , un) : K ] = r1r2 · · · rn. By Theorem V.1.11,
K (u1, u2, . . . , un) (since the dimension r1r2 · · · rn if finite) is algebraic over
K and so v ∈ K (u1, u2, . . . , un) is algebraic over K . Since v was an
arbitrary element of F , then F is algebraic over K .

If X is a finite set, say X = {u1, u2, . . . , un}, then as argued above
[F (u1, u2, . . . , un) : K ] = r1r2 · · · rn is finite.
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Theorem V.1.13

Theorem V.1.13

Theorem V.1.13. If F is an algebraic extension field of E and E is an
algebraic extension field of K , then F is an algebraic extension of K .

Proof. Let u ∈ F . Since F is an algebraic extension of E , then u is
algebraic over E and so bnu

n + bn−1u
n−1 + · · · b1u + b0 = 0 for some

bi ∈ E (where bn 6= 0). Therefore, u is algebraic over the subfield
K (b0, b1, . . . , bn) of E .

Consequently, there is a tower of fields
K ⊂ K (b0, b1, . . . , bn) ⊂ K (b0, b1, . . . , bn)(u), where
[K (b0, b1, . . . , bn)(u) : K (b0, b1, . . . , bn)] is finite by Theorem V.1.6(iii)
since u is algebraic over K (b0, b1, . . . , bn), and [K (b0, b1, . . . , bn) : K ] is
finite by Theorem V.1.6(iii) since u is algebraic over K (b0, b1, . . . , bn), and
[K (b0, b1, . . . , bn) : K ] is finite by Theorem V.1.12 since there is a finite
number of bi and each is algebraic over K . Therefore
[K (b0, b1, . . . , bn)(u) : K ] is finite by Theorem V.1.2. Hence, by Theorem
V.1.11, u is algebraic over K . Since u ∈ F is arbitrary, then F is algebraic
over K .
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Proof. Let u ∈ F . Since F is an algebraic extension of E , then u is
algebraic over E and so bnu

n + bn−1u
n−1 + · · · b1u + b0 = 0 for some

bi ∈ E (where bn 6= 0). Therefore, u is algebraic over the subfield
K (b0, b1, . . . , bn) of E . Consequently, there is a tower of fields
K ⊂ K (b0, b1, . . . , bn) ⊂ K (b0, b1, . . . , bn)(u), where
[K (b0, b1, . . . , bn)(u) : K (b0, b1, . . . , bn)] is finite by Theorem V.1.6(iii)
since u is algebraic over K (b0, b1, . . . , bn), and [K (b0, b1, . . . , bn) : K ] is
finite by Theorem V.1.6(iii) since u is algebraic over K (b0, b1, . . . , bn), and
[K (b0, b1, . . . , bn) : K ] is finite by Theorem V.1.12 since there is a finite
number of bi and each is algebraic over K . Therefore
[K (b0, b1, . . . , bn)(u) : K ] is finite by Theorem V.1.2. Hence, by Theorem
V.1.11, u is algebraic over K . Since u ∈ F is arbitrary, then F is algebraic
over K .
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Theorem V.1.14

Theorem V.1.14. Let F be an extension field of K and E the set of all
elements of F which are algebraic over K . Then E is a subfield of F
(which is, of course, algebraic over K ).

Proof. For any u, v ∈ E , K (u, v) is an algebraic extension of K by
Theorem V.1.12 (since there is a finite number of algebraic elements
“adjoined” to K ). Since K (u, v) is a field, then u − v ∈ K (u, v) and
uv−1 ∈ K (u, v) for v 6= 0.

Hence u − v ∈ E and uv−1 ∈ E (since
K (u, v) ⊂ E ) and so by Theorem I.2.5, 〈E ,+〉 is a group and 〈E \ {0},×〉
is a group. Therefore E is a field.
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