V.2. Appendix. Symmetric Rational Functions—Proofs of Theorems

Modern Algebra

April 10, 2018 1 / 13

April 10, 2018 3 / 13

Proposition V.2.16 (continued)

Proposition V.2.16. If G is a finite group, then there exists a Galois field extension with Galois group isomorphic to G.

Proof (continued). Let E_1 (or G') be the fixed field of G. Since E_1 is an intermediate field, then by the Fundamental Theorem (Theorem V.2.5) part (ii), $K(x_1, x_2, ..., x_n)$ is Galois over E_1 . We also know that, by the proof of the Fundamental Theorem (actually, by Theorem V.2.7), the one to one correspondence is between intermediate field E_1 and group $E_1' = \operatorname{Aut}_{E_1}(K(x_1, x_2, \dots, x_n)) = G$ (the F of the Fundamental Theorem corresponds to our $K(x_1, x_2, \dots, x_n)$ here). So G is the Galois group of the Galois extension of $K(x_1, x_2, ..., x_n)$ over E_1 .

Proposition V.2.16

Proposition V.2.16. If G is a finite group, then there exists a Galois field extension with Galois group isomorphic to G.

Proof. By Cayley's Theorem (Theorem II.4.6), with |G| = n, G is isomorphic to a subgroup of S_n . Let K be any field and E the subfield of symmetric rational functions in $K(x_1, x_2, \dots, x_n)$. As discussed above, $K(x_1, x_2, \dots, x_n)$ is a Galois extension of E with Galois group S_n . Here we have the fields and groups:

Fields	Groups
$K(x_1, x_2, \ldots, x_n)$	$\operatorname{Aut}_{K}(K(x_{1},x_{2},\ldots,x_{n}))$
U	\cap
E_1	G
U	\cap
Ε	S_n

Lemma V.2.17

Lemma V.2.17. Let K be a field, f_1, f_2, \ldots, f_n the elementary functions in x_1, x_2, \dots, x_n over K and k an integer with $1 \le k \le n-1$. If $h_1, h_2, \ldots, h_k \in K[x_1, x_2, \ldots, x_n]$ are the elementary symmetric functions in x_1, x_2, \dots, x_n , then each h_i can be written as a polynomial over K in f_1, f_2, \ldots, f_n and $x_{k+1}, x_{k+2}, \ldots, x_n$.

Proof. The result is true when k = n - 1 since in that case $h_1 = x_1 + x_2 + \cdots + x_{n-1} = (x_1 + x_2 + \cdots + x_{n-1} + x_n) - x_n = f_1 - x_n$ and for $2 \le j \le n$

$$h_j = \sum_{1 \leq i_1 < i_2 < \dots < i_j \leq n-1} x_{i_1} x_{i_2} \cdots x_{i_j} (\text{all } j\text{-tuple products of } x_1, x_2, \dots, x_{n-1})$$

$$= \sum_{1 \leq i_1 < i_2 < \dots < i_j \leq n} x_{i_1} x_{i_2} \cdots x_{i_j} - x_n \left(\sum_{1 \leq i_1 < i_2 < \dots < i_{j-1} \leq n-1} x_{i_1} x_{i_2} \cdots x_{i_{j-1}} \right).$$

April 10, 2018 Modern Algebra

Lemma V.2.17 (continued 1)

Proof (continued). The result is true when k = n - 1 since in that case $h_1 = x_1 + x_2 + \cdots + x_{n-1} = (x_1 + x_2 + \cdots + x_{n-1} + x_n) - x_n = f_1 - x_n$ and for $2 \le j \le n$

$$h_{j} = \sum_{1 \leq i_{1} < i_{2} < \dots < i_{j} \leq n} x_{i_{1}} x_{i_{2}} \dots x_{i_{j}} - x_{n} \left(\sum_{1 \leq i_{1} < i_{2} < \dots < i_{j-1} \leq n-1} x_{i_{1}} x_{i_{2}} \dots x_{i_{j-1}} \right)$$
(all *j*-tuple products of $x_{1}, x_{2}, \dots, x_{n-1}, x_{n}$ MINUS all *j*-tuple products where one of the elements is x_{n} and the other $j-1$ are from $x_{1}, x_{2}, \dots, x_{n-1}$)
$$= f_{1} - x_{n} h_{j-1}.$$

We now proceed by induction on k in reverse order. The base case is to assume the result is true for $k = r + 1 \le n - 1$; we then show the result holds for k = r. Assume the base case and let g_1, g_2, \dots, g_{r+1} be the elementary symmetric functions in x_1, x_2, \dots, x_{r+1} and h_1, h_2, \dots, h_r the elementary symmetric functions in x_1, x_2, \dots, x_r .

Modern Algebra

Theorem V.2.18

Theorem V.2.18. If K is a field, E the subfield of all symmetric rational functions in $K(x_1, x_2, \dots, x_n)$ and f_1, f_2, \dots, f_n the elementary symmetric functions in x_1, x_2, \ldots, x_n , then $E = K(f_1, f_2, \ldots, f_n)$.

Proof. We have $[K(x_1, x_2, \dots, x_n) : E] = n!$ since, as observed above, $\operatorname{Aut}_{E}K(x_{1}, x_{2}, \dots, x_{n}) = S_{n}$. Since $f_{1}, f_{2}, \dots, f_{n}$ involve some combinations of x_1, x_2, \ldots, x_n and $K(f_1, f_2, \ldots, f_n)$ contains some of the symmetric rational functions, so $K(f_1, f_2, \dots, f_n) \subset E \subset K(x_1, x_2, \dots, x_n)$. By Theorem V.1.2, we have $[K(x_1, x_2, ..., x_n) : K(f_1, f_2, ..., f_n)] =$ $[K(x_1, x_2, ..., x_n) : E][E : K(f_1, f_2, ..., f_n)]$ so to show that $[E:K(f_1,f_2,\ldots,f_n)]=1$ (and hence $E=K(f_1,f_2,\ldots,f_n)$), if suffices to show that $[K(x_1, x_2, \dots, x_n) : K(f_1, f_2, \dots, f_n)] \le n!$ (which in turn implies that the value must equal n!).

Lemma V.2.17 (continued 2)

Proof (continued). We have

$$h_1 = x_1 + x_2 + \dots + x_r = (x_1 + x_2 + \dots + x_{r+1}) - x_{r+1} = g_1 - x_{r+1}$$
. For $2 \le j \le r$

$$\begin{array}{ll} h_{j} & = & \displaystyle\sum_{1 \leq i_{1} < i_{2} < \cdots < i_{j} \leq r} x_{i_{1}} x_{i_{2}} \cdots x_{i_{j}} (\text{all } j\text{-tuples of } x_{1}, x_{2}, \ldots, x_{r}) \\ \\ & = & \displaystyle\sum_{1 \leq i_{1} < i_{2} < \cdots < i_{j} \leq r+1} x_{i_{1}} x_{i_{2}} \cdots x_{i_{j}} - x_{r+1} \left(\displaystyle\sum_{1 \leq i_{1} < i_{2} < \cdots < i_{j-1} \leq r} x_{i_{1}} x_{i_{2}} \cdots x_{i_{j}} \right) \\ & \text{(all } j\text{-tuples of } x_{1}, x_{2}, \ldots, x_{r+1} \text{ MINUS all } j\text{-tuples with} \\ & \text{one element of } x_{r+1} \text{ and } j-1 \text{ elements from } x_{1}, x_{2}, \ldots, x_{r}) \\ & = & g_{i} - x_{r+1} h_{i-1}. \end{array}$$

 $1 \le k \le n-1$.

So the result holds for k = r. Therefore, it holds for all k with

Theorem V.2.18 (continued 1)

Proof. Let $F = K(f_1, f_2, \dots, f_n)$ and consider the tower of fields: $F \subset F(x_n) \subset F(x_{n-1}, x_n) \subset \cdots \subset F(x_2, x_3, \ldots, x_n) \subset F(x_1, x_2, \ldots, x_n) =$ $K(f_1, f_2, ..., f_n)(x_1, x_2, ..., x_n)$. Now $K \subset K(f_1, f_2, ..., f_n)$, so $K(x_1, x_2, ..., x_n) \subset K(f_1, f_2, ..., f_n)(x_1, x_2, ..., x_n)$. Also, each $f_1, f_2, \ldots, f_n \in K(x_1, x_2, \ldots, x_n)$, so $K(f_1, f_2, \ldots, f_n) \subset K(x_1, x_2, \ldots, x_n)$ and $K(f_1, f_2, ..., f_n)(x_1, x_2, ..., x_n) \subset K(x_1, x_2, ..., x_n)$ and $F(x_1, x_2, \dots, x_n) = K(f_1, f_2, \dots, f_n)(x_1, x_2, \dots, x_n) = K(x_1, x_2, \dots, x_n).$ Since $F(x_k, x_{k+1}, ..., x_n) = F(x_{k+1}, x_{k+2}, ..., x_n)(x_k)$, by Theorem V.1.2 and Theorem V.1.6(iii) it suffices to show that x_n is algebraic over F of degree $\leq n$ and for each k < n, x_k is algebraic of degree $\leq k$ over $F(x_{k+1}, x_{k+2}, \dots, x_n)$ (then the factorial result will follows). To do this, let $g_n(y) \in F[y]$ be the polynomial $g_n(y) = (y - x_1)(y - x_2) \cdots (y - x_n) = y^n - f_1 y^{n-1} + \cdots + (-1)^n f_n$. Since $g_n \in F[y]$ has degree n and x_n is a root of g_n , then x_n is algebraic of degree at most *n* over $F = K(f_1, f_2, \dots, f_n)$ by Theorem V.1.6(ii).

Theorem V.2.18 (continued 2)

Theorem V.2.18. If K is a field, E the subfield of all symmetric rational functions in $K(x_1, x_2, \ldots, x_n)$ and f_1, f_2, \ldots, f_n the elementary symmetric functions in x_1, x_2, \ldots, x_n , then $E = K(f_1, f_2, \ldots, f_n)$.

Proof. Now for each k with $1 \le k < n$ define a monic polynomial: $g_k(y) = g_n(y)/\{(y-x_{k+1})(y-x_{k+2})\cdots(y-x_n)\} = (y-x_1)(y-x_2)\cdots(y-x_k)$. Then each $g_k(y)$ has degree k, x_k is a root of $g_k(y)$ and the coefficients of $g_k(y)$ are precisely the elementary symmetric functions in x_1, x_2, \ldots, x_k . By Lemma V.2.17, each $g_k(y)$ lies in $F(x_{k+1}, x_{k+2}, \ldots, x_n)[y]$, whence x_k is algebraic of degree at most k over $F(x_{k+1}, x_{k+2}, \ldots, x_n)$. This establishes the " $\le n$!" claim and hence the original claim.

Modern Algebra

April 10, 2018 10 / 13

Proposition V.2.2

Proposition V.2.20(i)

Proof (continued). If we proceed step by step beginning with g_1 and solving for x_1^1, \ldots, g_k and solving for x_k^k, \ldots , and solving for x_n^n , we can convert any polynomial $h \in K[x_1, x_2, \ldots, x_n]$ into a polynomial in $f_1, f_2, \ldots, f_n, x_1, x_2, \ldots, x_n$ in which the highest exponent of any x_k is k-1 (powers of x_k can be reduced by multiples of k until the power is less than k). In other words, h is a linear combination of $x_1^{i_1}x_2^{i_2}\cdots x_n^{i_n}$ (where for each k, $i_k < k$; so there are n! such expressions) with coefficients in $K[f_1, f_2, \ldots, f_n]$. Furthermore, these coefficient polynomials are uniquely determined since $\{x_1^{i_1}x_2^{i_2}\cdots x_n^{i_n}\mid 0\leq i_k< k \text{ for each }k\}$ is linearly independent over $E=K(f_1, f_2, \ldots, f_n)$ by Lemma V.2.19 (since the set is a basis for E). This proves (i).

Proposition V.2.20

Proposition V.2.20. Let K be a field and let f_1, f_2, \ldots, f_n be the elementary symmetric functions in $K(x_1, x_2, \ldots, x_n)$.

- (i) Every polynomial in $K[x_1, x_2, ..., x_n]$ can be written uniquely as a linear combination of the n! elements $x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n}$ (for each k with $0 \le i_k < k$) with coefficients in $K[f_1, f_2, ..., f_n]$;
- (ii) every symmetric polynomial in $K[x_1, x_2, ..., x_n]$ lies in $K[f_1, f_2, ..., f_n]$.

Proof. (i) For each $k=1,2,\ldots,n$, let $g_k(y)=(y-x_1)(y-x_2)\cdots(y-x_k)$. As shown in the proof of Theorem V.2.18, the coefficients of $g_k(y)$ are polynomials over K is f_1,f_2,\ldots,f_n and $x_{k+1},x_{k+2},\ldots,x_n$. Since g_k is monic of degree k and $g_k(x_k)=0$ then x_k^k can be expressed as a polynomial over K in $f_1,f_2,\ldots,f_n,x_{k+1},x_{k+2},\ldots,x_n$ and the lower powers of x_k, x_k^i for $i \leq k-1$ (set $y=x_k$ and rearrange).

Proposition V.2.20

Proposition V.2.20(ii)

Proof. (ii) So any polynomial $h \in K[x_1, x_2, \ldots, x_n]$ can be uniquely written as a linear combination of $x_1^{i_1}x_2^{i_2}\cdots x_n^{i_n}$ (with $i_k < k$) with coefficients in $K(f_1, f_2, \ldots, f_n)$ and in fact this can be done, as shown above, with coefficients in $K[f_1, f_2, \ldots, f_n]$. So for h a symmetric polynomial we have $h \in E = K(f_1, f_2, \ldots, f_n)$ and the unique linear combination for h is $h = h1 = hx_1^0x_2^0\cdots x_n^0$, and the "coefficient" h must lie in $K[f_1, f_2, \ldots, f_n]$, as claimed in (ii).

Modern Algebra April 10, 2018 12 / 13 () Modern Algebra April 10, 2018 13 / 13