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Proposition V.2.16 (continued)

Proposition V.2.16. If G is a finite group, then there exists a Galois field
extension with Galois group isomorphic to G.

Proof (continued). Let E; (or G') be the fixed field of G. Since Ej is an
intermediate field, then by the Fundamental Theorem (Theorem V.2.5)
part (ii), K(x1,x2,...,x,) is Galois over E;. We also know that, by the
proof of the Fundamental Theorem (actually, by Theorem V.2.7), the one
to one correspondence is between intermediate field E; and group

E] = Autg (K(x1, x2,...,Xp)) = G (the F of the Fundamental Theorem
corresponds to our K(x1,x2,...,xn) here). So G is the Galois group of the

Galois extension of K(x,x2, ..., Xn) over Ej. O
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Proposition V.2.16

Proposition V.2.16. If G is a finite group, then there exists a Galois field
extension with Galois group isomorphic to G.

Proof. By Cayley's Theorem (Theorem 11.4.6), with |G| = n, G is
isomorphic to a subgroup of S,. Let K be any field and E the subfield of
symmetric rational functions in K(xy,x2,...,x,). As discussed above,
K(x1,x2,...,X,) is a Galois extension of E with Galois group S,. Here we

have the fields and groups:

Fields Groups
K(x1,x2,... %) Autg(K(x1,x2,. .., Xa))
U n
E; G
U n
E Sn
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Lemma V.2.17
Lemma V.2.17. Let K be a field, fi, f>,..., f, the elementary functions in
X1,X2,...,%X, over K and k an integer with 1 < k <n-—1. If
hi,ha, ..., hg € K[x1,x2,...,xp] are the elementary symmetric functions
in x1,x2,...,Xp, then each h; can be written as a polynomial over K in
fl'. f2'| R ] fﬂ and Xk+1‘xk+2‘ <oy X

Proof. The result is true when k = n — 1 since in that case
h=xi4+x+-+xp1=((1+x2+ -+ Xp—1+Xn) — X» = fL — X, and
for2<;j<n

h; = >

1<ih<h<-<ij<n—1

Xy Xp, -+ X;:(all j-tuple products of x1,x2,...,X-1)

- E Xfle‘g e XI:I' — Xn E Xfleg e X]}'_l

1< <ip<-<ij<n 1< <ip<--<ij_1<n-1
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Lemma V.2.17 (continued 1)

Proof (continued). The result is true when k = n — 1 since in that case
hh=x1+x2+-+x1= (X1+X2+---+X,-,_1 —i—X,-_.) — Xp = fi — xp and
for2<j<n

h; = E Xiy Xiy * * * Xij — Xn E

1<i<h<--<ij<n 1<in<ih<--<ij_1<n—1

XinXip =" Xij_y

(all j-tuple products of x1,xa, ..., Xn—1,Xn MINUS

all j-tuple products where one of the elements is x,
and the other j — 1 are from x1, x2,...,Xy—1)

= f]_ — thj—l-

We now proceed by induction on k in reverse order. The base case is to
assume the result is true for k = r + 1 < n — 1; we then show the result

holds for k = r. Assume the base case and let g1, g2,...,g-+1 be the
elementary symmetric functions in xi, x2,...,x,+1 and hy, ha, ..., h, the
elementary symmetric functions in x1, x2, ..., X,.
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Theorem V.2.18

Theorem V.2.18. If K is a field, E the subfield of all symmetric rational
functions in K(x1,x2,..., Xp) and fi, 5., f, the elementary symmetric
functions in x1, x2,...,%,, then E = K(fi, f,...,f).

Proof. We have [K(x1,x2,..., xn) : E] = n! since, as observed above,

AUt (1,560,500 3 %n) = Sp. Sitice 1,505 f, involve some combinations

of x1,x2, ..., xp and K(f, f, ..., fa) contains some of the symmetric

Theorem V.1.2, we have [K(x1, x2,. .., xp) : K(f, oy ..., f,,)] =

[K(x1,x2,...,%) : E][E : K(f, F2y. .., fa)] so to show that

[E: K(fi,fo,...,f)] =1 (and hence E = K(fi,f,...,f,)), if suffices to

show that [K(x1,x2,...,x,) : K(fi,fa,..., )] < n! (which in turn implies

that the value must equal n!).
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Lemma V.2.17 (continued 2)

Proof (continued). We have
h=x1+x24++x=(x1+x2+ 4+ Xx41) — Xr41 = g1 — Xr41. For
25

h = >

1<h<h<-<i{<r

= E XiyXiy === Xip — Xr41 g XipXig * == Xi;

1<h<i<-—<ij<r+l 1<h<h<-<ij_1<r

Xy Xy - + - xi;(all j-tuples of x1,x2,...,x)

(all j-tuples of x1,x2,..., Xr+1 MINUS all j-tuples with

one element of x,,1 and j — 1 elements from x1, x2,...,x,)

= g} — Xr+1hj_1.
So the result holds for k = r. Therefore, it holds for all k with
1<k<n-1. |
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Theorem V.2.18 (continued 1)

Proof. Let F = K(fi,f,...,f,) and consider the tower of fields:
F C F(xn) C F(xp-1,Xn) C -+ C F(x2,x3,...,%n) C F(x1,x2,...,%n) =
K(fi, f,...,fa)(x1,%2,...,xp). Now K C K(fi,fa,..., 1), so

K(x1,x2,...,xn) C K(f1,f2y..., f)(x1,%2,...,Xn). Also, each

fiyfo,. .. fp€ K(x1,%0,...,%), 50 K(fi,fa, ..., fn) C K(x1,%2,...,%n)
and K(f, hb,...,f)(x1,x2, ..., xn) C K(x1,%2,...,xn) and
F(x1,x0,...,x0) = K(fi,fo, ..., f)(X1, %2, ..., Xn) = K(X1, %2, ..., Xp).
Since F(Xk, Xk+1s+-+sXn) = F(Xk+1, Xk+2, - - - Xn)(Xk ), by Theorem V.1.2
and Theorem V.1.6(iii) it suffices to show that x, is algebraic over F of
degree < n and for each k < n, xi is algebraic of degree < k over

F(Xk+1, Xk+2, - - -, Xn) (then the factorial result will follows). To do this, let
gn(y) € F[y] be the polynomial

gn(y) = (y —x)(y —x2) -+ (y = xa) = y" = iy" "t + -+ (~1)"f,. Since
gn € F[y] has degree n and x, is a root of g,, then x, is algebraic of
degree at most n over F = K(f,f,...,f,) by Theorem V.1.6(ii).
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Theorem V.2.18 (continued 2)

Theorem V.2.18. If K is a field, E the subfield of all symmetric rational
functions in K(x1,x2,...,x,) and A, fp,..., f, the elementary symmetric
functions in x1, x,...,Xx,, then E = K(f,f,...,f).

Proof. Now for each k with 1 < k < n define a monic polynomial:

gk(y) = & W)y = X))y = xks2) - (v — xn)} =

(y —x1)(y = x2) -+ - (v — xk). Then each gx(y) has degree k, x is a root
of gk(y) and the coefficients of gi(y) are precisely the elementary
symmetric functions in xi, X2, ..., x,. By Lemma V.2.17, each gx(y) lies in
F(Xk+1, Xk+2, - - -, Xn)[v], whence xy is algebraic of degree at most k over
F(Xk41, Xk42, -+ -+ Xn). This establishes the "< n!" claim and hence the

original claim. O
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Proposition V.2.20(i)

Proof (continued). If we proceed step by step beginning with g; and

solving for x,. .., gk and solving for xf, ..., and solving for x, we can
convert any polynomial h € K[x1,x2,...,X,] into a polynomial in
fi,foy ..o fpy X1, X2, ..., X in which the highest exponent of any xi is k — 1

(powers of x; can be reduced by multiples of k until the power is less than
k). In other words, h is a linear combination of x;'x5 - - - x» (where for
each k, i < k; so there are n! such expressions) with coefficients in
K[fi,f2,..., fa]. Furthermore, these coefficient polynomials are uniquely
determined since {x;'x2 ---x/» | 0 < iy < k for each k} is linearly
independent over E = K(fi, f, ..., fn) by Lemma V.2.19 (since the set is

a basis for E). This proves (i).
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Proposition V.2.20

elementary symmetric functions in K(x1,x2, ..., Xp).

(i) Every polynomial in K[xi,x2,...,xn] can be written uniquely
as a linear combination of the n! elements x;'x’ - - - x/» (for
each k with 0 < i, < k) with coefficients in K[f1, f, ..., fa];

(ii) every symmetric polynomial in K[x1, X2, ..., x,] lies in
Klfi, fo,.... 1)

Proof. (i) For each k =1,2,...,n, let

gk(y) = (y —x1)(y — x2) - - - (¥ — xk). As shown in the proof of Theorem
V.2.18, the coefficients of gx(y) are polynomials over K is i, ., ..., f, and
Xk41s Xk425 - - - Xn. Since gx is monic of degree k and gx(xx) = 0 then x/
can be expressed as a polynomial over K in fi,fa, ..., fo, Xkt1, Xk42s - - -5 Xn

and the lower powers of xg, x;; for i < k — 1 (set y = xi and rearrange).
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Proposition V.2.20(ii)

Proof. (ii) So any polynomial h € K[x1,x2, ..., x,] can be uniquely
written as a linear combination of x;'xy - - - xj» (with ik < k) with
coefficients in K(fi, f2,...,f,) and in fact this can be done, as shown
above, with coefficients in K[fi, f, ..., f,]. So for h a symmetric
polynomial we have h € E = K(fi, f,...,f,) and the unique linear
combination for his h = hl = hx9x---x9, and the “coefficient” h must
lie in K[f1, f, ..., fy], as claimed in (ii). O
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