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Proposition V.2.16

Proposition V.2.16. If G is a finite group, then there exists a Galois field
extension with Galois group isomorphic to G.
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Proposition V.2.16

Proposition V.2.16
Proposition V.2.16. If G is a finite group, then there exists a Galois field
extension with Galois group isomorphic to G.

Proof. By Cayley's Theorem (Theorem 11.4.6), with |G| = n, G is
isomorphic to a subgroup of S,,. Let K be any field and E the subfield of

symmetric rational functions in K(x1,x2,...,x,). As discussed above,
K(x1,x2,...,xn) is a Galois extension of E with Galois group Sp,.
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Proposition V.2.16

Proposition V.2.16

Proposition V.2.16. If G is a finite group, then there exists a Galois field
extension with Galois group isomorphic to G.

Proof. By Cayley's Theorem (Theorem 11.4.6), with |G| = n, G is

isomorphic to a subgroup of S,,. Let K be any field and E the subfield of
symmetric rational functions in K(x1,x2,...,x,). As discussed above,

K(x1,x2,...,xn) is a Galois extension of E with Galois group S,,. Here we
have the fields and groups:

Fields Groups
K(x1,x2,...,%xn) Autg(K(x1,x2,...,Xn))
U N
E G
U N
E S,
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Proposition V.2.16

Proposition V.2.16 (continued)

Proposition V.2.16. If G is a finite group, then there exists a Galois field
extension with Galois group isomorphic to G.

Proof (continued). Let E; (or G’) be the fixed field of G. Since E; is an

intermediate field, then by the Fundamental Theorem (Theorem V.2.5)
part (i), K(x1,x2,...,xn) is Galois over E;.
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Proposition V.2.16 (continued)

Proposition V.2.16. If G is a finite group, then there exists a Galois field
extension with Galois group isomorphic to G.

Proof (continued). Let E; (or G’) be the fixed field of G. Since E; is an
intermediate field, then by the Fundamental Theorem (Theorem V.2.5)
part (i), K(x1,x2,...,xn) is Galois over E;. We also know that, by the
proof of the Fundamental Theorem (actually, by Theorem V.2.7), the one
to one correspondence is between intermediate field E; and group

E] = Autg, (K(x1,%2,...,Xn)) = G (the F of the Fundamental Theorem
corresponds to our K(x1,x2,...,Xp) here). So G is the Galois group of the
Galois extension of K(x1,x2,...,x,) over Ey. O
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Lemma V.2.17

Lemma V.2.17. Let K be a field, i, f, ..., f, the elementary functions in
X1,X2,...,%X, over K and k an integer with 1 < k<n-—1.If
hi,ho, ..., he € K[Xl,Xz,.

.., Xp] are the elementary symmetric functions
in X1, Xo,.

.., Xp, then each h; can be written as a polynomial over K in
fia f27 RS fn and Xk+1s Xk+25 - -+ y Xn-
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Lemma V.2.17

Lemma V.2.17

Lemma V.2.17. Let K be a field, i, f, ..., f, the elementary functions in
X1,X2,...,%X, over K and k an integer with 1 < k<n-—1.If

hi, ha, ..., he € K[x1,x2,...,xp| are the elementary symmetric functions
in x1,X2,...,Xp, then each h; can be written as a polynomial over K in
fi,fo ..., fpand Xeq1, Xet2, - - -y Xn-

Proof. The result is true when k = n — 1 since in that case

hi=x1+x24+ - +xp-1=(x1+x2+ -+ Xp-1+Xp) — X = i — X, and
for2<;j<n

h; = E Xiy Xiy + - -x,-j(all J-tuple products of x1,x2,...,Xn—1)
1< <ip<--<ij<n—1

= E X,'IX,'2 .. X,J — Xp E X,'IX,'2 cee X,'J._1

1< < <-<ij<n 1<ii<ip<-<ij—1<n—1
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Lemma V.2.17

Lemma V.2.17 (continued 1)

Proof (continued). The result is true when kK = n — 1 since in that case

h=xi+tx+ - +xp1=0a+x2+ +X-1+xa) —Xp = f — X, and
for2<;j<n
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Lemma V.2.17 (continued 1)

Proof (continued). The result is true when kK = n — 1 since in that case
h=xi+tx+ - +xp1=0a+x2+ +X-1+xa) —Xp = f — X, and
for2<;j<n

hj = 2. Xiy Xi =+ * Xjj = Xn > XiaXip * 1" X
1<ii<ir<-+<ij<n 1<ii<ip<-+<ij—1<n-1
(all j-tuple products of x1, x2, ..., Xp—1,x, MINUS
all j-tuple products where one of the elements is x,
and the other j — 1 are from x1,x2,...,Xp—1)

= f]_ — thjfl.

We now proceed by induction on k in reverse order.
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Lemma V.2.17 (continued 1)

Proof (continued). The result is true when kK = n — 1 since in that case

h=xi+tx+ - +xp1=0a+x2+ +X-1+xa) —Xp = f — X, and
for2<;j<n

hj — E Xiy Xy * + * Xij — Xp E Xip Xig ="+ Xij—l

1<ii<ir<-+<ij<n 1<ii<ip<-+<ij—1<n-1
(all j-tuple products of x1, x2, ..., Xp—1,x, MINUS
all j-tuple products where one of the elements is x,
and the other j — 1 are from x1,x2,...,Xp—1)

= f]_ — thjfl.

We now proceed by induction on k in reverse order. The base case is to
assume the result is true for k = r +1 < n — 1; we then show the result
holds for k = r. Assume the base case and let g1, g, ...,&+1 be the
elementary symmetric functions in xi, x2,...,X,+1 and hy, ha, ..., h, the
elementary symmetric functions in xi, x2, ..., X.
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Lemma V.2.17 (continued 2)

Proof (continued). We have

hh=xi+xx+ - +x,=0(1+x2+ -+ X41) — Xr+1 = 81 — Xr+1-
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Lemma V.2.17 (continued 2)

Proof (continued). We have

h1:X1 —{—X2—|—~~-+Xr:(X1 +X2+"‘+Xr+1)—xr+1:gl—Xr+1. For
2<j<r

hi = E Xiy Xip -+ - i (all j-tuples of x1,x,...,x)
1<ii <ip<--<ij<r

= g Xiy Xiy * +* Xj; — Xr41 g Xiy Xiy =+ * Xi;

1<i<ip<--<i<r+1 1< <ip<--<ij_1<r
(all j-tuples of x1,x2,...,x+1 MINUS all j-tuples with
one element of x,41 and j — 1 elements from x1, x2, ..., x)

= g — Xry1hj_1.

So the result holds for k = r.
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Lemma V.2.17 (continued 2)

Proof (continued). We have

h1:X1 —{—X2—|—~~-+Xr:(X1 +X2+"‘+Xr+1)—xr+1:gl—Xr+1. For
2<j<r

hi = E Xiy Xip -+ - i (all j-tuples of x1,x,...,x)
1<ii <ip<--<ij<r

= g Xiy Xiy * +* Xj; — Xr41 g Xiy Xiy =+ * Xi;

1<i<ip<--<i<r+1 1< <ip<--<ij_1<r
(all j-tuples of x1,x2,...,x+1 MINUS all j-tuples with
one element of x,41 and j — 1 elements from x1, x2, ..., x)
= & — Xr+1hj,1.
So the result holds for kK = r. Therefore, it holds for all k with
1<k<n-1. ]
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Theorem V.2.18

Theorem V.2.18. If K is a field, E the subfield of all symmetric rational
functions in K(x1,x2,...,xn) and fi, fa, ..., f, the elementary symmetric
functions in x1,x2, ..., X, then E = K(f,f,..., ).
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Theorem V.2.18

Theorem V.2.18. If K is a field, E the subfield of all symmetric rational
functions in K(x1,x2,...,xn) and fi, fa, ..., f, the elementary symmetric
functions in x1,x2, ..., X, then E = K(f,f,..., ).

Proof. We have [K(x1,x2,...,xn) : E] = n! since, as observed above,
AuteK(x1,x2,...,xn) = Sp. Since fi, fa, ..., f, involve some combinations
of x1,x2,...,xp, and K(fi, f,. .., f,;) contains some of the symmetric
rational functions, so K(fi, f2,...,f) C E C K(x1,x2,...,Xn).
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Theorem V.2.18

Theorem V.2.18. If K is a field, E the subfield of all symmetric rational
functions in K(x1,x2,...,xn) and fi, fa, ..., f, the elementary symmetric
functions in x1,x2, ..., X, then E = K(f,f,..., ).

Proof. We have [K(x1,x2,...,xn) : E] = n! since, as observed above,
AuteK(x1,x2,...,xn) = Sp. Since fi, fa, ..., f, involve some combinations
of x1,x2,...,xp, and K(fi, f,. .., f,;) contains some of the symmetric
rational functions, so K(fi, f2,...,f,) C E C K(x1,x2,...,Xn). By
Theorem V.1.2, we have [K(x1,x2,...,xn) : K(fi,f, ..., f)] =
[K(x1,x2,...,%n) : E]J[E : K(f1, fa, ..., f,)] so to show that

[E: K(fi,fa...,fy)] =1 (and hence E = K(fi, fa,..., 1)), if suffices to
show that [K(x1,x2,...,xn) : K(f1, f2, ..., fy)] < nl (which in turn implies
that the value must equal n!).
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Theorem V.2.18 (continued 1)

Proof. Let F = K(f1,f,..., ;) and consider the tower of fields:
F C F(xn) C F(Xn—1,%n) C -+ C F(x2,x3,...,%n) C F(x1,X2,...,%n) =
K(f,faye ooy fn) (X1, X2, .oy Xn)-
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Theorem V.2.18 (continued 1)

Proof. Let F = K(f1,f,..., ;) and consider the tower of fields:

F C F(xn) C F(Xn—1,%n) C -+ C F(x2,x3,...,%n) C F(x1,X2,...,%n) =
K(fl,fé,...,f,,)(xl,XQ,...,Xn). Now K C K(fl,fz,...,fn), o)
K(x1,x2,...,xn) C K(f1,f2,...,fn)(x1,%2,...,Xn). Also, each

f, ... € K(xi,x2,...,%p), s0 K(fi,fa, ..., 1) C K(x1,x2,...,Xpn)
and K(fi, fa, ..., fa)(x1,x2, ..., %n) C K(x1,x2,...,%n) and
F(x1,x2, ...y xn) = K(f1, oy ooy Fo) (X1, %25 - -, Xn) = K(X1, X2, . . ., Xn)-
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Theorem V.2.18 (continued 1)

Proof. Let F = K(f1,f,..., ;) and consider the tower of fields:

F C F(xn) C F(Xn—1,%n) C -+ C F(x2,x3,...,%n) C F(x1,X2,...,%n) =
K(fl, foyonn, fn)(Xl,Xz, ... ,X,,). Now K C K(fl, fo,enny fn), o)
K(x1,x2,...,xn) C K(f1,f2,...,fn)(x1,%2,...,Xn). Also, each

f, ... € K(xi,x2,...,%p), s0 K(fi,fa, ..., 1) C K(x1,x2,...,Xpn)
and K(fi, fa, ..., fa)(x1,x2, ..., %n) C K(x1,x2,...,%n) and
F(x1,x2, ...y xn) = K(f1, oy ooy Fo) (X1, %25 - -, Xn) = K(X1, X2, . . ., Xn)-
Since F(Xk, Xk+1,---,Xn) = F(Xk+1, Xk+2, - - - , Xn)(Xk), by Theorem V.1.2
and Theorem V.1.6(iii) it suffices to show that x, is algebraic over F of
degree < n and for each k < n, xi is algebraic of degree < k over

F(Xk+1, Xk+2, - - -, Xn) (then the factorial result will follows). To do this, let
gn(y) € F[y] be the polynomial

gn(y) =y —x)y —=x) - (y =xp) = y" — fiy"* + -+ (=1)"f,. Since
gn € F[y] has degree n and x, is a root of g,, then x, is algebraic of
degree at most n over F = K(fi, fp,...,f,) by Theorem V.1.6(ii).
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Theorem V.2.18 (continued 2)

Theorem V.2.18. If K is a field, E the subfield of all symmetric rational
functions in K(x1,x2,...,x,) and fi, f, ..., f, the elementary symmetric
functions in xq,x2,...,xp, then E = K(fi,fa, ..., f,).

Proof. Now for each k with 1 < k < n define a monic polynomial:

8k(y) = 8n(Y)/A(y = Xt 1)y = xus2) - (y — xn)} =

(y = x1)(y — x2) -+ (¥ — xk). Then each gi(y) has degree k, xi is a root
of gk(y) and the coefficients of gx(y) are precisely the elementary
symmetric functions in xi, x2, ..., Xk.
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Theorem V.2.18 (continued 2)

Theorem V.2.18. If K is a field, E the subfield of all symmetric rational
functions in K(x1,x2,...,x,) and fi, f, ..., f, the elementary symmetric
functions in xq,x2,...,xp, then E = K(fi,fa, ..., f,).

Proof. Now for each k with 1 < k < n define a monic polynomial:

8k(y) = 8n(Y)/A(y = Xt 1)y = xus2) - (y — xn)} =

(y = x1)(y — x2) -+ (¥ — xk). Then each gi(y) has degree k, xi is a root
of gk(y) and the coefficients of gx(y) are precisely the elementary

symmetric functions in xi, x2, ..., xx. By Lemma V.2.17, each gk(y) lies in
F(Xk+1, Xk+2, - - - Xn)[¥], whence x is algebraic of degree at most k over
F(Xk+1, Xk+2,---,Xn). This establishes the “< n!" claim and hence the
original claim. O
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Proposition V.2.20

Proposition V.2.20. Let K be a field and let f1, f>, ..., f, be the

elementary symmetric functions in K(x1, x2,...,Xp).
(i) Every polynomial in K[x1,x2, ..., Xp] can be written uniquely
as a linear combination of the nI elements xj'x2 - - - x/n (for
each k with 0 < i, < k) with coefficients in K[f1, f, ..., f];
(i) every symmetric polynomial in K[x1, X2, ..., xp] lies in
Klfi, B, ..., f].
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Proposition V.2.20

Proposition V.2.20. Let K be a field and let f1, f>, ..., f, be the

elementary symmetric functions in K(x1, x2,...,Xp).
(i) Every polynomial in K[x1,x2, ..., Xp] can be written uniquely
as a linear combination of the nI elements xj'x2 - - - x/n (for
each k with 0 < i, < k) with coefficients in K[f1, f, ..., f];
(i) every symmetric polynomial in K[x1, X2, ..., xp] lies in
Klfi, B, ..., f].

Proof. (i) For each k =1,2,...,n, let
gk(y) = (v —x1)(y —x2) - - - (¥ — xk). As shown in the proof of Theorem
V.2.18, the coefficients of gx(y) are polynomials over K is fi, f5, ..., f, and

Xk+15 Xk+25 -+ - s Xn-
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Proposition V.2.20

Proposition V.2.20. Let K be a field and let f1, f>, ..., f, be the
elementary symmetric functions in K(x1, x2,...,Xp).
(i) Every polynomial in K[xq,x2,...,Xs] can be written uniquely

as a linear combination of the n! elements x;"x3 - - - x;» (for
each k with 0 < i, < k) with coefficients in K[f1, f, ..., f];

(i) every symmetric polynomial in K[x1, X2, ..., xp] lies in
Klf, fa, ..., 1]

Proof. (i) For each k =1,2,...,n, let
gk(y) = (v —x1)(y —x2) - - - (¥ — xk). As shown in the proof of Theorem
V.2.18, the coefficients of gx(y) are polynomials over K is fi, f5, ..., f, and

, Xn. Since gk is monic of degree k and gi(xx) = 0 then xf
y Xn

Xk+15 Xk425 - - -
can be expressed as a polynomial over K in fi, fo, ..., fo, Xkr1, Xkg2, - - -

and the lower powers of x, x,i for i < k — 1 (set y = xx and rearrange).
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Proposition V.2.20(i)

Proof (continued). If we proceed step by step beginning with g; and
solving for x{, ..., gk and solving for x,’(‘, ..., and solving for x;, we can

convert any polynomial h € K[xi,x2,...,Xs] into a polynomial in
fi,fo, ..., fa, X1, X2, ..., Xy in which the highest exponent of any x is k

-1

(powers of xx can be reduced by multiples of k until the power is less than

k).
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Proposition V.2.20(i)

Proof (continued). If we proceed step by step beginning with g; and

solving for x{, ..., gk and solving for x,’(‘, ..., and solving for x;, we can
convert any polynomial h € K[xi,x2,...,Xs] into a polynomial in
fi,fo, ..., fo, X1, X2, ..., Xy in which the highest exponent of any xx is k — 1

(powers of xi can be reduced by multiples of k until the power is less than
k). In other words, h is a linear combination of x;'x3 - - - x» (where for
each k, iy < k; so there are n! such expressions) with coefficients in

K[f, f2, ..., f]. Furthermore, these coefficient polynomials are uniquely
determined since {x{'x2 - -- x/7 | 0 < i\ < k for each k} is linearly
independent over E = K(f1, fa,...,f,) by Lemma V.2.19 (since the set is
a basis for E). This proves (i).
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Proposition V.2.20(ii)

Proof. (ii) So any polynomial h € K[x1, x2, ..., xp| can be uniquely
written as a linear combination of xj'x2 - - - x/n (with i} < k) with
coefficients in K(fi,f2,...,f,) and in fact this can be done, as shown
above, with coefficients in K[f, fa, ..., f].
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Proposition V.2.20(ii)

Proof. (ii) So any polynomial h € K[x1, x2, ..., xp| can be uniquely
written as a linear combination of xj'x2 - - - x/n (with i} < k) with
coefficients in K(fi,f2,...,f,) and in fact this can be done, as shown
above, with coefficients in K{[fi, fp,...,f,]. So for h a symmetric
polynomial we have h € E = K(f, f,...,f,) and the unique linear
combination for his h = hl = hx?x9 - - - x2, and the “coefficient” h must
lie in K[f1,f,..., 1], as claimed in (ii). O
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