Modern Algebra

Chapter V. Fields and Galois Theory

V.2. The Fundamental Theorem (of Galois Theory)—Proofs of Theorems

Theorem V.2.2. Let F be an extension field of K and K[x]. If $u \in F$ is a root of f and $\sigma \in \operatorname{Aut}_K(F)$, then $\sigma(u) \in F$ is also a root of f.

Proof. Let $f = \sum_{i=0}^{n} k_i x^i$. Since σ fixes K, $\sigma(0) = 0$ and so f(u) = 0implies

$$0 = \sigma(0) = \sigma(f(u)) = \sigma\left(\sum_{i=0}^{n} k_i x^i\right)$$

$$=\sum_{i=0}^n \sigma(k_i)\sigma(u^i)=\sum_{i=0}^n k_i(\sigma(u))^i=f(\sigma(u)).$$

Lemma V.2.6

Lemma V.2.6. Let F be an extension field of K with intermediate fields L and M (say $K \subset L \subset M \subset F$). Let H and J be subgroups of $G = Aut_K(F)$. Then:

- (i) F' = 1 (the identity group) and K' = G;
- (i') 1' = F:
- (ii) $L \subset M$ implies M' < L';
- (ii') H < J implies $J' \subset H'$:
- (iii) $L \subset L''$ and H < H'' (where L'' = (L')' and H'' = (H')');
- (iv) L' = L''' and H' = H'''.

Proof. (i) Now $F' = Aut_F(F)$ is the group of automorphisms of F which fix F and hence must consist only of the identity permutation and so F' is the "identity group." Next, $K' = \operatorname{Aut}_K(F) = G$, since we denote $\operatorname{Aut}_K(F)$ as G.

(i') 1' is the fixed field of the identity group. F is the "universal field" and the identity group fixes all of F; i.e., 1' = F.

Lemma V.2.6 (ii)

Theorem V.2.2

Lemma V.2.6. Let F be an extension field of K with intermediate fields L and M (say $K \subset L \subset M \subset F$). Let H and J be subgroups of $G = Aut_K(F)$. Then:

- (ii) $L \subset M$ implies M' < L':
- (ii') H < J implies $J' \subset H'$.
- **Proof.** (ii) Suppose the intermediate fields L, M satisfy $L \subset M$. An element of $M' = \operatorname{Aut}_M(F)$ fixes M and with $L \subset M$ such an element must also fix L and so the element is in $L' = Aut_L(F)$. So M' < L'.
- (ii') Suppose subgroups H, J of $G = Aut_K(F)$ satisfy H < J. Now an element of J' (the fixed field of J) is fixed by every element of J and, since H < J, also fixed by every element of H. So an element of J' is also an element of H'. That is, $J' \subset H'$.

Modern Algebra April 16, 2018 Lemma V.2.6 Lemma V.2.6

Lemma V.2.6 (iii)

Lemma V.2.8

Lemma V.2.6. Let F be an extension field of K with intermediate fields L and M (say $K \subset L \subset M \subset F$). Let H and J be subgroups of $G = Aut_K(F)$. Then:

(iii)
$$L \subset L''$$
 and $H < H''$ (where $L'' = (L')'$ and $H'' = (H')'$).

Proof. (iii) Let L be an intermediate field. Then $L' = \operatorname{Aut}_{L}(F)$ is a group, and L'' is the fixed field of L'. Now any element of L is fixed by $L' = \operatorname{Aut}_{I}(F)$. Also, L" includes everything in F fixed by the elements of $L' = \operatorname{Aut}_L(F)$. So L'' includes all of L (and possibly more); $L \subset L''$.

Let H by a subgroup of $G = Aut_K(F)$. Then H' is the fixed field of H. Now (H')' = H'' is the group of permutations of F which fix H'. So every element of H fixes all of H' and such an element is therefore also in H''. So H < H''.

Lemma V.2.6 (iv)

Lemma V.2.6. Let F be an extension field of K with intermediate fields L and M (say $K \subset L \subset M \subset F$). Let H and J be subgroups of $G = Aut_K(F)$. Then:

(iv)
$$L' = L'''$$
 and $H' = H'''$.

Proof. (iv) Let L be an intermediate field. By (iii), $L \subset L''$ and so by (ii), L''' < L'. Now L' is a subgroup of $G = Aut_K(F)$ and so by (iii) (with H replaced with L') we have L' < L''', and so L' = L'''.

Let H be a subgroup of $G = Aut_K(F)$. By (iii), H < H'' and so by (ii'), $H''' \subset H'$. Now H' is an intermediate field so by (iii) (with L replaced with H') we have $H' \subset H'''$, and so H' = H'''.

Modern Algebra

Lemma V.2.8 (continued 1)

Lemma V.2.8. Let F be an extension field of K and L, M intermediate fields with $L \subset M$. If M : L is finite, then $[L' : M'] \leq [M : L]$. In particular, if [F:K] is finite, then $|\operatorname{Aut}_K(F)| \leq [F:K]$.

Proof. (Notice that [M:L] and [F:K] are dimensions of vector spaces; [L':M'], the index of L' over M', is the number of cosets of L in M.) Since [M:L] is finite, we give a proof based on induction. Let n=[M:L]. If n=1 then M+L and so M'=L' and [L':M']=1, so the result holds. Let n > 1 and suppose the theorem holds for all i < n. Since n > 1, there is some $u \in M$ with $u \notin L$. Since [M:L] is finite, then u is algebraic over L by Theorem V.1.11. Let $f \in L[x]$ be the irreducible monic polynomial of u, say of degree k > 1. By Theorem V.1.6(iii), [L(u) : L] = k. By Theorem V.1.1, [M:L] = [M:L(u)][L(u):L] and so [M:L(u)] = n/k.

Proof (continued). Schematically:

$$n \left[\begin{array}{ccc} M & \longmapsto & M' \\ \cup & & \wedge \\ L(u) & \longmapsto & (L(u))' \\ k & & \cup & \wedge \\ L & \longmapsto & L' \\ & & & \text{dimensions} \end{array} \right]$$
dimensions fields Galois groups

We now consider two cases.

Case 1. If k < n then 1 < n/k < n; and Case 2. If k = n.

Modern Algebra

Modern Algebra

Lemma V.2.8 (continued 2)

Lemma V.2.8. Let F be an extension field of K and L, M intermediate fields with $L \subset M$. If M : L is finite, then $[L' : M'] \leq [M : L]$. In particular, if [F:K] is finite, then $|Aut_K(F)| < [F:K]$.

Proof (continued).

Case 1. If k < n then 1 < n/k < n. By the induction hypothesis, since i = n/k < n, we have that $L \subset L(u)$ implies $[L' : (L(u))'] \leq [L(u) : L] = k$, and that $L(U) \subset M$ implies $[(L(u))' : M'] \leq [M : L(u)] = n/k$. Hence

$$[L':M'] = [L':(L(u))'][(L(u))':M']$$
 by Theorem V.1.1
 $\leq k(n/k) = n = [M:L]$

and the theorem holds in this case.

second case.

Proof (continued).

Lemma V.2.8 (continued 3)

if [F:K] is finite, then $|Aut_K(F)| < [F:K]$.

Lemma V.2.8. Let F be an extension field of K and L, M intermediate

Case 2. On the other hand, if k = n then by Theorem V.1.1,

[M:L] = [M:L(u)][L(u):L] and so [M''L(u)] = 1 (as above). So

map from the set S of all left costs of M' in L' (of which there are [L':M'] such cosets) to the set T of all distinct roots in F of the

polynomial $f \in L[x]$ (of which there are at most $k \leq n$ such roots by

Theorem III.6.7). So we have |S| = [L' : M'] and $|T| \le n$, the existence of the injective map from S to T gives that $|S| \leq |T|$ and it will then follow

that $[L':M'] = |S| \le |T| \le n = [M:L]$, establishing the theorem in this

M = L(u). In the final part of the proof, we will construct an injective

fields with $L \subset M$. If M : L is finite, then $[L' : M'] \leq [M : L]$. In particular,

Lemma V.2.8 (continued 5)

Lemma V.2.8 (continued 4)

Proof (continued). Now for the construction of the injective map from S to T. Let $\tau \in L'$ and $\tau M'$ a left coset of M' in L'. If $\sigma \in M' = \operatorname{Aut}_M(F)$, then since $u \in M$ (by choice, above) we have that $\sigma(u) = u$ and so $\tau\sigma(u)=\tau(u)$; so every element of the coset $\tau M'$ (this is a group element which acts on elements of F, u in particular) has the same effect on u and maps $u \mapsto \tau(u)$ (that is, there is independence of element $\sigma \in M'$). Since $\tau \in L' = \operatorname{Aut}_{I}(F)$ (because $\tau M'$ is a coset in L') and u is a root of $f \in L[x]$, then $\tau(u)$ is also a root of f by Theorem V.2.2. This implies that the map $S \mapsto T$ given by $\tau M' \mapsto \tau(u)$ is well-defined (HMMMM; that is, the mapping actually produces an element of T, the set of roots of f). If $\tau(u) = \tau_0(u)$ for $\tau, \tau_0 \in L'$ then $\tau_0^{-1}\tau(u) = u$ (L' is a group of permutations, so inverses exist) and hence $\tau_0\tau$ fixes u. Since $\tau, \tau_0 \in L' = \operatorname{Aut}_L(F)$ then certainly τ, τ_0 , and τ_0^{-1} fixes L, so $\tau_0^{-1}\tau$ fixes L(u) = M elementwise (recall that a basis for L(u) = M over L is $\{1, u, u^2, \dots, u^{k-1}\}\$ by Theorem V.1.6(iv)) and $\tau_0 \tau \in M'$.

Lemma V.2.8. Let F be an extension field of K and L, M intermediate fields with $L \subset M$. If M : L is finite, then $[L' : M'] \leq [M : L]$. In particular, if [F:K] is finite, then $|Aut_K(F)| \leq [F:K]$.

Proof (continued). Consequently by Corollary V.4.3(iii), $\tau_0 M' = \tau M'$ and so the map $S \to T$ is one to one (injective) and this completes the second case of the induction. Therefore [L':M'] < [M:L].

For the "in particular" part of the proof, notice that $\operatorname{Aut}_{\kappa}(F) \cong \operatorname{Aut}_{\kappa}(F)/1$ (where "1" is the trivial "identity group"). So $|Aut_K(F)| = [Aut_K(F) : 1]$. Also, in the prime notation $K' = Aut_K(F)$ and $F' = Aut_F(F) = 1$, so $|Aut_K(F)| = [Aut_K(F) : 1] = [K' : F'] \le [F : K]$ with L = K and M = F, from the above result.

Modern Algebra Modern Algebra April 16, 2018 Lemma V.2.9

Lemma V.2.9

Lemma V.2.9. Let F be an extension field of K and let H, J be subgroups of the Galois group $Aut_K(F)$ with H < J. If [J : H] is finite, then [H': J'] < [J: H].

Proof. (Notice that [H':J'] is the dimension of field H' as a vector space over field J'; the index [J:H] is the number of cosets of H in J.) Let the number of cosets of H in J by [J:H]=n. ASSUME [H':J']>n. Then a basis of H' over J' has more than n elements (as basis is a linearly independent spanning set; see page 181) and so there exist $u_1, u_2, \ldots, u_{n+1} \in H'$ that are linearly independent over J'. Let $\{\tau_1, \tau_2, \dots, \tau_n\}$ be a complete set of representatives of the *n* left cosets of H in J. That is, $J = \tau_1 H \cup \tau_2 H \cup \cdots \cup \tau_n H$ (since cosets of a subgroup partition the group; Corollary I.4.3(i),(ii)) and $\tau_i^{-1}\tau_i \in H$ if and only if i = j by Corollary I.4.3(iii). Consider the system of n homogeneous linear equations in n+1 unknowns with coefficients $\tau_i(u_i)$ in field F:

Lemma V.2.9 (continued 2)

Proof (continued). In the conclusion of the proof below, we will show that the hypothesis that $u_1, u_2, \dots, u_{n+1} \in H'$ are linearly independent over J' implies that there exists $\sigma \in J$ such that $x_1 = \sigma a_1, x_2 = \sigma a_2, \dots, x_r = \sigma a_r$ and $x_{r+1} = x_{r+2} = \dots = x_{n+1} = 0$ is also a nontrivial solution to the system of equations (1) and $\sigma a_2 = a_2$. Since the difference of two solutions is also a solution (since the system (1) is linear and homogeneous) then

$$x_1 = a_1 - \sigma a_1, x_2 = a_2 - \sigma a_2, \dots, x_t = a_r - \sigma a_r, \text{ and}$$

 $x_{r+1} = x_{r+2} = \dots = x_{n+1} = 0$ (*)

is also a solution of the system of equations (1). But since $a_1 - \sigma a_1 = 1_F - 1_F = 0$ ($\sigma \in J < Aut_K(F)$ implies that σ fixes the elements of K, including the multiplicative identity) and $a_2 \neq \sigma a_2$ then $x_1 = 0$, $x_2 = a_2 - \sigma a_2 \neq 0$, $x_3 = a_3 - \sigma a_3$, ..., $x_r = a_r - \sigma a_r$ and $x_{r+1} = x_{r+2} = \cdots = x_{n+1} = 0$ is a nontrivial solution of the system of equations (1) (since $x_2 \neq 0$) with at most r-1 nonzero entries, a CONTRADICTION to the minimality of r of nonzero terms is a nontrivial solution to the system of equations (1).

Lemma V.2.9 (continued 1)

$$\tau_{1}(u_{1})x_{1} + \tau_{1}(u_{2})x_{2} + \tau_{1}(u_{3})x_{3} + \dots + \tau_{1}(u_{n+1})x_{n+1} = 0$$

$$\tau_{2}(u_{1})x_{1} + \tau_{2}(u_{2})x_{2} + \tau_{2}(u_{3})x_{3} + \dots + \tau_{2}(u_{n+1})x_{n+1} = 0$$

$$\tau_{3}(u_{1})x_{1} + \tau_{3}(u_{2})x_{2} + \tau_{3}(u_{3})x_{3} + \dots + \tau_{3}(u_{n+1})x_{n+1} = 0$$

$$\vdots \qquad (1)$$

$$\tau_{n}(u_{1})x_{1} + \tau_{n}(u_{2})x_{2} + \tau_{n}(u_{3})x_{3} + \dots + \tau_{n}(u_{n+1})x_{n+1} = 0.$$

Such a system (n homogeneous equations in n+1 unknowns) has a nontrivial solution as will be shown in Exercise VII.2.4(d) (see also Lemma 5.1.1 of Real Analysis with an Introduction to Wavelets, Don Hong, Jianzhong Wang, and Robert Gardner, Academic Press/Elsevier Press, 2005). Among all such nontrivial solutions choose one, say $x_1 = a_1, x_2 = a_2, \dots, x_{n+1} = a_{n+1}$ with a minimal number of nonzero a_i . By reindexing if necessary we may assume that $x_1 = a_1, x_2 = a_2, \dots$ $x_r = a_r$ and $x_{r+1} = x_{r+1} = \cdots x_{n+1} = 0$ where $a_r \neq 0$. Since each multiple of a solution is also a solution then we may also assume $a_1 = 1_F$.

Lemma V.2.9 (continued 3)

Proof (continued). This contradiction shows that the assumption [H':J'] > n is false, and hence [H':J'] < n.

To complete the proof, we must find $\sigma \in J$ with the desired properties. Now $\{\tau_1, \tau_2, \dots, \tau_n\}$ is a set of representatives of the cosets of H, then exactly one of the τ_i , say τ_1 , is in H itself. Since $H' = \operatorname{Aut}_H(F)$, then τ_1 fixes the elements of H' and so $\tau_1(u_i) = u_i \in H'$ for all i = 1, 2, ..., n + 1. So the first equation in the system of equations (1) becomes $u_1 a_1 + a_2 a_2 + \cdots + u_r a_r = 0$. Now each a_i is nonzero for 1 < i < r and the u_i are linearly independent over J'. So it must be that some a_i is not in J', say $a_2 \notin J'$. Since J' is the fixed field of J, then there is some $\sigma \in J$ such that $\sigma a_2 \neq a_2$ (that is, σ does not fix a_2).

Modern Algebra April 16, 2018

Lemma V.2.9 (continued 4)

Proof (continued). Next, consider a second system of equations (which we will show to be equivalent to [that is, have the identical solutions as] the first system of equations (1)):

$$\sigma \tau_{1}(u_{1})x_{1} + \sigma \tau_{1}(u_{2})x_{2} + \sigma \tau_{1}(u_{3})x_{3} + \dots + \sigma \tau_{1}(u_{n+1})x_{n+1} = 0$$

$$\sigma \tau_{2}(u_{1})x_{1} + \sigma \tau_{2}(u_{2})x_{2} + \sigma \tau_{2}(u_{3})x_{3} + \dots + \sigma \tau_{2}(u_{n+1})x_{n+1} = 0$$

$$\sigma \tau_{3}(u_{1})x_{1} + \sigma \tau_{3}(u_{2})x_{2} + \sigma \tau_{3}(u_{3})x_{3} + \dots + \sigma \tau_{3}(u_{n+1})x_{n+1} = 0$$

$$\vdots \qquad (2)$$

$$\sigma \tau_n(u_1)x_1 + \sigma \tau_n(u_2)x_2 + \sigma \tau_n(u_3)x_3 + \cdots + \sigma \tau_n(u_{n+1})x_{n+1} = 0.$$

Since $\sigma \in J < \operatorname{Aut}_K(F)$ then $\sigma(0) = 0$ and if we apply σ to each of the equations in the first system (1), then we get the second system (2). Since $x_1 = 1_1, x_2 = a_2, \dots, x_r = a_r$ and $x_{r+1} = x_{r+2} = \dots \times x_{n+1} = 0$ is a solution of system (1), then $x_1 = \sigma a_1, x_2 = \sigma a_2, \dots, x_r = \sigma a_r$ and $x_{r+1} = x_{r+2} = \cdots = x_{n+1} = 0$ is a solution of system (2).

Lemma V.2.9 (continued 6)

Proof (continued).

(ii) If ζ and θ are both elements in the same coset of H in J, then (since $u_i \in H'$) $\zeta(u_i) = \theta(u_i)$ for i = 1, 2, ..., n + 1.

Sub-Proof. Let $\zeta, \theta \in aH$. Then $\zeta = ah_1$ and $\theta = ah_2$ for some $h_1, h_2 \in H$. Since H' is the fixed field of H and each $u_i \in H'$, then $\zeta(u_i) = (ah_1)(u_i) = ah_1(u_i) = au_i$ and $\theta(u_i) = (ah_2)(u_i) = ah_2(u_i) = au_i$. So $\zeta(u_i) = \theta(u_i)$ for i = 1, 2, ..., n + 1. Sub-Q.E.D.

It now follows from claim (i) that there is some reordering $i_1, i_2, \ldots, i_{n+1}$ of $1, 2, \ldots, n+1$ so that for each $k=1, 2, \ldots, n+1$, $\sigma \tau_k$ and τ_{i_k} are in the same coset of H in J. By (ii), the kth equation of system (2) (with coefficients $\sigma \tau_k(u_i)$) is identical with the i_k th equation of system (1) (with coefficients $\tau_{i\nu}(u_i)$). So we have, in particular, that the solution $x_1 = a_1, x_2 = a_2, \dots, x_r = a_r$ and $x_{r+1} = x_{r+2} = \dots \times x_{n+1} = 0$ of system (2) is also a solution of system (1). We can now pick up at step (*) and complete the proof by contradiction.

Lemma V.2.9 (continued 5)

Proof (continued). We claim that system (2), except for the order of the equations, is identical with system (1) (so that $x_1 = \sigma a_1, x_2 = \sigma a_2, \dots, x_r = \sigma a_r$ and $x_{r+1} = x_{r+1} = \dots = x_{n+1} = 0$ is a solution of system (1); this will show that σ satisfies the conditions mentioned above). We make two claims:

(i) For any $\sigma \in J$, the set $\{\sigma \tau_1, \sigma \tau_2, \dots, \sigma \tau_n\} \subset J$ is a complete set of coset representatives of the cosets of H in J.

Sub-Proof. First, since each $\tau_i \in J$ and $\sigma \in J$, then $\sigma \tau_i \in J$. Now $\sigma \tau_i H = \sigma \tau_i H$ if and only if $(\sigma \tau_i)^{-1}(\sigma \tau_i) \in H$ by Theorem I.4.3(iii); that is, $\tau_i^{-1}\sigma^{-1}\sigma\tau_i = \tau_i^{-1}\tau_i \in H$. Again by Theorem I.4.3(iii), $\tau_i^{-1}\tau_i \in H$ if only if $\tau_i H = \tau_i H$. So $\sigma \tau_i H = \sigma \tau_i H$ if and only if $\tau_i H = \tau_i H$. Since $\{\tau_1, \tau_2, \dots, \tau_n\}$ is a complete set of representatives of the left cosets of H in *J*, then so is $\{\sigma\tau_1, \sigma\tau_2, \dots, \sigma\tau_n\}$. *Sub-Q.E.D.*

Lemma V.2.10

Lemma V.2.10. Let F be an extension field of K, L and M intermediate fields with $L \subset M$, and H, J subgroups of the Galois group $Aut_K(F)$ with H < J.

- (i) If L is closed and [M : L] finite, then M is closed and [L':M'] = [M:L];
- (ii) if H is closed and [J:H] finite, then J is closed and [H': J'] = [J: H];
- (iii) if F is a finite dimensional Galois extension of K, then all intermediate fields and all subgroups of the Galois group are closed and $Aut_K(F)$ has order [F:K].

Proof. (i) By Lemma V.2.6(iii), $M \subset M''$. Since $L \subset M \subset M''$, by Theorem V.1.2 we have [M'':L] = [M'':M][M:L] and so $[M:L] \leq [M'':L]$. Now $[L':M'] \leq [M:L]$ By Lemma V.2.8 and [M'': L''] < [L': M'] by Lemma V.2.9.

V.2.10 Lemma V.2.10

Lemma V.2.10 (continued 1)

Lemma V.2.10. Let F be an extension field of K, L and M intermediate fields with $L \subset M$, and H, J subgroups of the Galois group $\operatorname{Aut}_K(F)$ with H < J.

(i) If L is closed and [M:L] finite, then M is closed and [L':M']=[M:L].

Proof (continued). (i) Combining these inequalities gives

$$[M:L] \le [M'':L] = [M'':L''] \text{ since } L'' = L$$

 $\le [L':M'] \le [M:L].$

Therefore the inequalities reduce to equalities and [L':M']=[M:L]. Also, [M'':L]=[M:L] so the dimension of M'' over L is the same as the dimension of M over L. Also, by Lemma V.2.6(iii), $M\subset M''$ and so M=M'' and M is closed.

Modern Algebra April 16, 2018 22 / 37

Lemma V 2.1

Lemma V.2.10 (continued 3)

Lemma V.2.10. Let F be an extension field of K, L and M intermediate fields with $L \subset M$, and H, J subgroups of the Galois group $\operatorname{Aut}_K(F)$ with H < J. (iii) if F is a finite dimensional Galois extension of K, then all intermediate fields and all subgroups of the Galois group are closed and $\operatorname{Aut}_K(F)$ has order [F:K].

Proof. (iii) If E is an intermediate field, $K \subset E \subset F$, then [F:K] = [F:E][E:K] by Theorem V.1.2 and since [F:K] is hypothesized to be finite, then [E:K] is finite. Since F is Galois over K then K is closed (see the note on page 246 right after the definition of closed). So every intermediate field is closed. Now (i) (with L = K and M = E) implies that E is closed and [K':E'] = [E:K]. In particular, if E = F then $|\operatorname{Aut}_K(F)| = [\operatorname{Aut}_K(E):1] = [K':F'] = [F:K]$ is finite. Therefore, every subgroup J of $\operatorname{Aut}_K(F)$ is finite. Now 1' = F and $1'' = F' = \operatorname{Aut}_F(F) = 1$, so 1 is closed. Now by (ii), J is closed and so every subgroup of $\operatorname{Aut}_K(F)$ is closed.

Lemma V.2.10 (continued 2)

Lemma V.2.10. Let F be an extension field of K, L and M intermediate fields with $L \subset M$, and H, J subgroups of the Galois group $\operatorname{Aut}_K(F)$ with H < J.

(ii) if H is closed and [J:H] finite, then J is closed and [H':J']=[J:H].

Proof. (ii) By Lemma V.2.6(iii), J < J''. Since H < J < J'' then the number of cosets of H in J, [J:H] is less than or equal to the number of cosets of H in J'', [J'':H]; that is, $[J:H] \le [J'':H]$. So

$$[J:H] \le [J'':H] = [J'':H''] \text{ since } H = H''$$

 $\le [H':J'] \text{ by Lemma V.2.8}$
 $\le [J:H] \text{ by Lemma V.2.9.}$

So we have [H':J']=[J:H] as claimed. Also, [J'':H]=[J:H] and so the number of cosets of H in J equals the number of cosets of H in J''. Therefore |J|=|J''|; also $J\subset J''$ so we must have J=J''.

Lemma V 2

Lemma V.2.11

()

Lemma V.2.11. Let F be an extension field of K.

- (i) If E is a stable intermediate field of the extension, then $E' = \operatorname{Aut}_E(F)$ is a normal subgroup of the Galois group $\operatorname{Aut}_K(F)$;
- (ii) if H is a normal subgroup of $Aut_K(F)$, then the fixed field H' of H is a stable intermediate field of the extension.

Proof. (i) If $u \in E$ and $\sigma \in \operatorname{Aut}_K(F)$ then $\sigma(u) \in E$ by the stability of E. Hence for $\tau \in E' = \operatorname{Aut}_E(F)$ we have $\tau \sigma(u) = \sigma(u)$. Therefore, for any $\sigma \in \operatorname{Aut}_K(F)$, $\tau \in E' = \operatorname{Aut}_E(F)$, and $u \in E$ we have $\sigma^{-1}\tau\sigma(u) = \sigma^{-1}\sigma(u) = u$. Consequently $\sigma^{-1}\tau\sigma \in E' = \operatorname{Aut}_E(F)$ and hence E' is a normal subgroup of $\operatorname{Aut}_K(F)$ by Theorem I.5.1(iv).

() Modern Algebra April 16, 2018 24 / 37 () Modern Algebra April 16, 2018 25 / 37

Lemma V.2.11 Lemma V.2.12

Lemma V.2.11 (continued)

Lemma V.2.12

Lemma V.2.11. Let F be an extension field of K.

(ii) if H is a normal subgroup of $Aut_K(F)$, then the fixed field H' of H is a stable intermediate field of the extension.

Proof. (ii) If $\sigma \in Aut_K(F)$ and $\tau \in H$, then $\sigma^{-1}\tau\sigma \in H$ since H is hypothesized to be a normal subgroup of $Aut_K(F)$ (by Theorem I.5.1(iv)). Therefore, for any $u \in H'$, $\sigma^{-1}\tau\sigma(u) = u$ (since H' denotes the fixed field of H), which implies that $\tau \sigma(u) = \sigma(u)$ for all $\tau \in H$. This $\sigma(u) \in H'$ for any $u \in H'$ and for any $\sigma \in \operatorname{Aut}_K(F)$. This means that H' is stable relative to K and F. **Lemma V.2.12.** If F is a Galois extension field of K and E is a stable intermediate field of the extension, then E is Galois over K.

Proof. If $u \in E \setminus K$ then there exists $\sigma \in Aut_K(F)$ such that $\sigma(u) \neq u$ since F is Galois over K (meaning $K = (Aut_K(F))' = K'$, so $u \notin K$ implies that u is not fixed by some $\sigma \in Aut_K(F)$). Since E is stable then σ maps E into itself; that is, $\sigma|_E \in \operatorname{Aut}_K(E)$. So for every $u \in E \setminus K$ there is an element of $Aut_K(F)$ which does not fix u. So the fixed field of $\operatorname{Aut}_K(F)$ is just K; $K = (\operatorname{Aut}_K(F))' = K'$. Therefore, E is a Galois extension of K

Lemma V.2.13

Lemma V.2.13. If F is an extension field of K and E is an intermediate field of the extension such that E is algebraic and Galois over K, then E is stable (relative to F and K).

Proof. If $u \in E$, let $f \in K[x]$ be the irreducible monic polynomial of uand let u_1, u_2, \ldots, u_r be the distinct roots of f that lie in E, where $u = u_1$. Then $r \leq n = \deg(f)$ by Theorem III.6.7. If $\tau \in \operatorname{Aut}_{K}(E)$, then by Theorem V.2.2 we have that τ permutes roots of f; that is, τ permutes the u_i . Therefore the coefficients of the monic polynomial $g(x) = (x - u_1)(x - u_2) \cdots (x - u_r) \in E[x]$ are fixed by every $\tau \in Aut_K(E)$, since the coefficients are "symmetric" functions of the u_i . Since E is Galois over K, then $K = (Aut_K(E))' = K'$ and so the coefficients are all in K and $g \in K[x]$. Now $u = u_1$ is a root of g and hence irreducible f divides g by Theorem V.1.6(ii). Since g is monic and $deg(g) \le deg(f)$ (because f divides g) we must have that f = g (or else, g is a divisor of f since f is irreducible). Consequently, all the roots of fare distinct and lie in E (as in the case for g).

Lemma V.2.13 (continued)

Lemma V.2.13. If F is an extension field of K and E is an intermediate field of the extension such that E is algebraic and Galois over K, then E is stable (relative to F and K).

Proof (continued). Now if $\sigma \in Aut_K(F)$, then $\sigma(u)$ is a root of f by Theorem V.2.2, whence $\sigma(u) \in E$. Since u was an arbitrary element of E, we have shown that $\sigma \in Aut_K(F)$ maps E into itself; that is, E is stable relative to K and F.

Modern Algebra Modern Algebra

Lemma V.2.14

Lemma V.2.14. Let F be an extension field of K and let E be a stable intermediate field of the extension. Then the quotient group $\operatorname{Aut}_K(F)/\operatorname{Aut}_E(F)$ is isomorphic to the group of all automorphisms in $\operatorname{Aut}_K(E)$ that are extendible to F.

Proof. Intermediate field E is stable, so (by the definition of stable) every automorphism $\sigma \in \operatorname{Aut}_K(F)$ maps E into itself, and hence the mapping $\sigma \mapsto \sigma|_E$ defines a group homomorphism from $\operatorname{Aut}_K(F)$ to $\operatorname{Aut}_K(E)$. The image of this homomorphism is "clearly" the subgroup of $\operatorname{Aut}_K(E)$ of all automorphisms that are extendible to F (of course, the extension of $\sigma|_E$ is σ itself). Now the kernel of the homomorphism is all elements of $\operatorname{Aut}_K(F)$ which are the identity on E; so the kernel is $\operatorname{Aut}_E(F)$. By the First Isomorphism Theorem (Theorem I.5.7) the homomorphism induces an isomorphism between $\operatorname{Aut}_K(F)$ modulo the kernel and the image of the homomorphism. So $\operatorname{Aut}_K(F)/\operatorname{Aut}_E(F)$ is isomorphic to the group of all automorphisms in $\operatorname{Aut}_K(E)$ that are extendible to F.

() Modern Algebra April 16, 2018 30 / 37 () Modern Algebra April 16, 2018 31 / 37

Theorem V.2.5. The Fundamental Theorem of Galois Theory

Theorem V.2.5. The Fundamental Theorem of Galois Theory (i)

Proof. Theorem V.2.7 shows that there is a one to one correspondence between the *closed* intermediate fields and *closed* subgroups of the Galois group. By Lemma V.2.10(iii) all intermediate fields are closed and all subgroups of $\operatorname{Aut}_K(F)$ are closed. So the one to one correspondence between closed intermediate fields and closed subgroups is in fact a one to one correspondence between all intermediate fields and all subgroups. This correspondence is given by mapping each group H to its fixed field H' and by mapping each field M to its Galois group $M' = \operatorname{Aut}_M(F)$.

(i) For intermediate fields L and M (with $L \subset M$) we have by Lemma V.2.10(i) that the relative dimension of the fields [M:L] equals the relative index of the corresponding subgroups [L':M']; that is, [M:L] = [L':M']. The "in particular" part follows from Lemma V.2.10(iii); that is, $|\operatorname{Aut}_K(F)| = [F:K]$.

Theorem V.2.5. The Fundamental Theorem of Galois Theory

Theorem V.2.5. The Fundamental Theorem of Galois Theory.

If F is a finite dimensional Galois extension of K, then there is a one to one correspondence between the set of all intermediate fields of the extension and the set of all subgroups of the Galois group $\operatorname{Aut}_K(F)$ (given by $E \mapsto E' = \operatorname{Aut}_E(F)$) such that:

- (i) the relative dimension of two intermediate fields is equal to the relative index of the corresponding subgroups; in particular, $Aut_K(F)$ has order [F:K];
- (ii) F is Galois over every intermediate field E, but E is Galois over K if and only if the corresponding subgroup $E' = \operatorname{Aut}_E(F)$ is normal in $G = \operatorname{Aut}_K(F)$; in the case G/E' is (isomorphic to) the Galois group $\operatorname{Aut}_K(E)$ of E over K.

Theorem V 2.5. The Fundamental Theorem of Galois Theory

Theorem V.2.5. The Fundamental Theorem of Galois Theory (ii)

(ii) F is Galois over every intermediate field E, but E is Galois over K if and only if the corresponding subgroup $E' = \operatorname{Aut}_E(F)$ is normal in $G = \operatorname{Aut}_K(F)$; in the case G/E' is (isomorphic to) the Galois group $\operatorname{Aut}_K(E)$ of E over K.

Proof. F is Galois over E since E is closed (see the comment after the definition of closed), so F is Galois over every intermediate field. E is finite dimensional over K (since F is; see Theorem V.1.2) and hence, by Theorem V.1.11, F is algebraic over K. Consequently if E is Galois over E then E satisfies the hypotheses of Lemma V.2.13 and so E is stable relative to E and E0. By Lemma V.2.11(i), E'1 = AutE1 is normal in E2 = AutE3 is normal in E3 = AutE4 is normal in E4 = AutE5 is normal in E5 = AutE6 is normal in E6 = AutE7 is normal in E8 = AutE8 is a stable intermediate field.

() Modern Algebra April 16, 2018 32 / 37 () Modern Algebra April 16, 2018 33 / 37

Theorem V.2.5. The Fundamental Theorem of Galois Theory (ii) (continued)

Proof (continued). We establish that all intermediate fields are closed, so E = E'' and E is stable. Therefore by Lemma V.2.12, E is Galois over E (this is the second part of the claim of (ii), the converse of the first part).

Now for the "in the case" part. Let $E' = \operatorname{Aut}_E(F)$ be normal in $G = \operatorname{Aut}_K(F)$, or equivalently, let E be Galois over K. We have seen at the beginning of the proof that all intermediate fields and subgroups are closed, so E and E' are closed. Since F is Galois over K then $G' = (\operatorname{Aut}_K(F))' = K$. Now the elements of G/E' are cosets of E', so |G/E'| = [G:E']. Hence

$$|G/E'|$$
 = $[G:E']$
 = $[E'':G']$ by Lemma V.2.10(ii)
 = $[E:K]$ since $E=E''$ and $K=G'$.

Modern Algebra

Theorem V.2.15. Artii

Theorem V.2.15. Artin

Theorem V.2.15. (Artin.)

Let F be a field, G a group of automorphisms of F, and K the fixed field of G in F. Then F is Galois over K. If G is finite, then F is a finite dimensional Galois extension of K with Galois group G.

Proof. Since K is the fixed field of G in F, then for each $u \in F \setminus K$ there must be a $\sigma \in G$ such that $\sigma(u) \neq u$. By the definition of G as a group of automorphisms of F which fixes K elementwise, we have $G < \operatorname{Aut}_K(F)$ (since $\operatorname{Aut}_K(F)$ fixes K elementwise, as well as possibly other things). So each such $\sigma \in G$ is also in $\operatorname{Aut}_K(F)$ and therefore the fixed field of $\operatorname{Aut}_K(F)$ is K itself. Whence (by definition) F is Galois over K, establishing the first claim.

Theorem V.2.5. The Fundamental Theorem of Galois Theory (ii)

(ii) F is Galois over every intermediate field E, but E is Galois over K if and only if the corresponding subgroup $E' = \operatorname{Aut}_E(F)$ is normal in $G = \operatorname{Aut}_K(F)$; in the case G/E' is (isomorphic to) the Galois group $\operatorname{Aut}_K(E)$ of E over K.

Proof. We saw above that E'' is stable and E = E'', so E is stable. By Lemma V.2.14, $G/E' = \operatorname{Aut}_K(F)/\operatorname{Aut}_E(F)$ is isomorphic to a subgroup of $\operatorname{Aut}_K(E)$. Since we have just shown that |G/E'| = [E : K], then this subgroup of $\operatorname{Aut}_K(E)$ is of order [E : K]. Since E is Galois over E (by hypothesis, here) then part (i) shows that $|\operatorname{Aut}_K(E)| = [E : K]$. Since E is isomorphic to a subgroup of $\operatorname{Aut}_K(E)$ of order E is and $\operatorname{Aut}_K(E)$ itself is of order E is of order E itself. E is E and E is E is E and E is E in E in E in E in E in E in E is E in E

Theorem V.2.15.

Theorem V.2.15. Artin (continued)

Proof (continued). If G is finite, then by Lemma V.2.9 (with H=1 and J=G, which gives |G|=[G:1] is finite) we have

$$[F:K] = [1':G']$$
 since $1' = F$ and $G' = K$
(fixed fields of 1 and G , respectively)
 $\leq [G:1]$ by Lemma V.2.9
 $= |G|$.

Consequently, F is finite dimensional over K. So F is a finite dimensional Galois extension of K, and so by Lemma V.2.10(iii) all intermediate groups are closed and so G = G''. Since the fixed field of G is G' = K (and hence G'' = K') we have that the Galois group of F over K is

$$Aut_K(F) = K'$$
 by the prime notation
= G'' as just observed
= G since G is closed.

April 16, 2018 37 /

Modern Al

Modern Algebra

April 16, 201

36 / 37

Modern Algebra