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Theorem V.2.2

Theorem V.2.2

Theorem V.2.2. Let F be an extension field of K and K [x ]. If u ∈ F is a
root of f and σ ∈ AutK (F ), then σ(u) ∈ F is also a root of f .

Proof. Let f =
∑n

i=0 kix
i . Since σ fixes K , σ(0) = 0 and so f (u) = 0

implies

0 = σ(0) = σ(f (u)) = σ

(
n∑

i=0

kix
i

)

=
n∑

i=0

σ(ki )σ(ui ) =
n∑

i=0

ki (σ(u))i = f (σ(u)).
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Lemma V.2.6

Lemma V.2.6

Lemma V.2.6. Let F be an extension field of K with intermediate fields L
and M (say K ⊂ L ⊂ M ⊂ F ). Let H and J be subgroups of
G = AutK (F ). Then:

(i) F ′ = 1 (the identity group) and K ′ = G ;

(i′) 1′ = F ;

(ii) L ⊂ M implies M ′ < L′;

(ii′) H < J implies J ′ ⊂ H ′;

(iii) L ⊂ L′′ and H < H ′′ (where L′′ = (L′)′ and H ′′ = (H ′)′);

(iv) L′ = L′′′ and H ′ = H ′′′.

Proof. (i) Now F ′ = AutF (F ) is the group of automorphisms of F which
fix F and hence must consist only of the identity permutation and so F ′ is
the “identity group.”

Next, K ′ = AutK (F ) = G , since we denote AutK (F )
as G .
(i′) 1′ is the fixed field of the identity group. F is the “universal field” and
the identity group fixes all of F ; i.e., 1′ = F .
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Lemma V.2.6

Lemma V.2.6 (ii)

Lemma V.2.6. Let F be an extension field of K with intermediate fields L
and M (say K ⊂ L ⊂ M ⊂ F ). Let H and J be subgroups of
G = AutK (F ). Then:

(ii) L ⊂ M implies M ′ < L′;

(ii′) H < J implies J ′ ⊂ H ′.

Proof. (ii) Suppose the intermediate fields L,M satisfy L ⊂ M.

An
element of M ′ = AutM(F ) fixes M and with L ⊂ M such an element must
also fix L and so the element is in L′ = AutL(F ). So M ′ < L′.

(ii′) Suppose subgroups H, J of G = AutK (F ) satisfy H < J. Now an
element of J ′ (the fixed field of J) is fixed by every element of J and, since
H < J, also fixed by every element of H. So an element of J ′ is also an
element of H ′. That is, J ′ ⊂ H ′.
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Proof. (iii) Let L be an intermediate field. Then L′ = AutL(F ) is a group,
and L′′ is the fixed field of L′. Now any element of L is fixed by
L′ = AutL(F ).

Also, L′′ includes everything in F fixed by the elements of
L′ = AutL(F ). So L′′ includes all of L (and possibly more); L ⊂ L′′.

Let H by a subgroup of G = AutK (F ). Then H ′ is the fixed field of H.
Now (H ′)′ = H ′′ is the group of permutations of F which fix H ′. So every
element of H fixes all of H ′ and such an element is therefore also in H ′′.
So H < H ′′.
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Lemma V.2.6

Lemma V.2.6 (iv)

Lemma V.2.6. Let F be an extension field of K with intermediate fields L
and M (say K ⊂ L ⊂ M ⊂ F ). Let H and J be subgroups of
G = AutK (F ). Then:

(iv) L′ = L′′′ and H ′ = H ′′′.

Proof. (iv) Let L be an intermediate field. By (iii), L ⊂ L′′ and so by (ii),
L′′′ < L′. Now L′ is a subgroup of G = AutK (F ) and so by (iii) (with H
replaced with L′) we have L′ < L′′′, and so L′ = L′′′.

Let H be a subgroup of G = AutK (F ). By (iii), H < H ′′ and so by (ii′),
H ′′′ ⊂ H ′. Now H ′ is an intermediate field so by (iii) (with L replaced with
H ′) we have H ′ ⊂ H ′′′, and so H ′ = H ′′′.
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Lemma V.2.8

Lemma V.2.8

Lemma V.2.8. Let F be an extension field of K and L,M intermediate
fields with L ⊂ M. If M : L is finite, then [L′ : M ′] ≤ [M : L]. In particular,
if [F : K ] is finite, then |AutK (F )| ≤ [F : K ].

Proof. (Notice that [M : L] and [F : K ] are dimensions of vector spaces;
[L′ : M ′], the index of L′ over M ′, is the number of cosets of L in M.)

Since [M : L] is finite, we give a proof based on induction. Let n = [M : L].
If n = 1 then M + L and so M ′ = L′ and [L′ : M ′] = 1, so the result holds.
Let n > 1 and suppose the theorem holds for all i < n. Since n > 1, there
is some u ∈ M with u 6∈ L. Since [M : L] is finite, then u is algebraic over
L by Theorem V.1.11. Let f ∈ L[x ] be the irreducible monic polynomial of
u, say of degree k > 1. By Theorem V.1.6(iii), [L(u) : L] = k. By
Theorem V.1.1, [M : L] = [M : L(u)][L(u) : L] and so [M : L(u)] = n/k.
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Lemma V.2.8

Lemma V.2.8 (continued 1)

Proof (continued). Schematically:

We now consider two cases.
Case 1. If k < n then 1 < n/k < n; and
Case 2. If k = n.
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Lemma V.2.8

Lemma V.2.8 (continued 2)

Lemma V.2.8. Let F be an extension field of K and L,M intermediate
fields with L ⊂ M. If M : L is finite, then [L′ : M ′] ≤ [M : L]. In particular,
if [F : K ] is finite, then |AutK (F )| ≤ [F : K ].

Proof (continued).
Case 1. If k < n then 1 < n/k < n. By the induction hypothesis, since
i = n/k < n, we have that L ⊂ L(u) implies [L′ : (L(u))′] ≤ [L(u) : L] = k,
and that L(U) ⊂ M implies [(L(u))′ : M ′] ≤ [M : L(u)] = n/k.

Hence

[L′ : M ′] = [L′ : (L(u))′][(L(u))′ : M ′] by Theorem V.1.1

≤ k(n/k) = n = [M : L]

and the theorem holds in this case.
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≤ k(n/k) = n = [M : L]

and the theorem holds in this case.
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M = L(u).

In the final part of the proof, we will construct an injective
map from the set S of all left costs of M ′ in L′ (of which there are
[L′ : M ′] such cosets) to the set T of all distinct roots in F of the
polynomial f ∈ L[x ] (of which there are at most k ≤ n such roots by
Theorem III.6.7). So we have |S | = [L′ : M ′] and |T | ≤ n, the existence of
the injective map from S to T gives that |S | ≤ |T | and it will then follow
that [L′ : M ′] = |S | ≤ |T | ≤ n = [M : L], establishing the theorem in this
second case.
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Lemma V.2.8

Lemma V.2.8 (continued 4)

Proof (continued). Now for the construction of the injective map from S
to T . Let τ ∈ L′ and τM ′ a left coset of M ′ in L′. If σ ∈ M ′ = AutM(F ),
then since u ∈ M (by choice, above) we have that σ(u) = u and so
τσ(u) = τ(u); so every element of the coset τM ′ (this is a group element
which acts on elements of F , u in particular) has the same effect on u and
maps u 7→ τ(u) (that is, there is independence of element σ ∈ M ′).

Since
τ ∈ L′ = AutL(F ) (because τM ′ is a coset in L′) and u is a root of
f ∈ L[x ], then τ(u) is also a root of f by Theorem V.2.2. This implies that
the map S 7→ T given by τM ′ 7→ τ(u) is well-defined (HMMMM; that is,
the mapping actually produces an element of T , the set of roots of f ). If
τ(u) = τ0(u) for τ, τ0 ∈ L′ then τ−1

0 τ(u) = u (L′ is a group of
permutations, so inverses exist) and hence τ0τ fixes u. Since
τ, τ0 ∈ L′ = AutL(F ) then certainly τ, τ0, and τ−1

0 fixes L, so τ−1
o τ fixes

L(u) = M elementwise (recall that a basis for L(u) = M over L is
{1, u, u2, . . . , uk−1} by Theorem V.1.6(iv)) and τ0τ ∈ M ′.
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Lemma V.2.8

Lemma V.2.8 (continued 5)

Lemma V.2.8. Let F be an extension field of K and L,M intermediate
fields with L ⊂ M. If M : L is finite, then [L′ : M ′] ≤ [M : L]. In particular,
if [F : K ] is finite, then |AutK (F )| ≤ [F : K ].

Proof (continued). Consequently by Corollary V.4.3(iii), τ0M
′ = τM ′

and so the map S → T is one to one (injective) and this completes the
second case of the induction. Therefore [L′ : M ′] ≤ [M : L].

For the “in particular” part of the proof, notice that
AutK (F ) ∼= AutK (F )/1 (where “1” is the trivial “identity group”). So
|AutK (F )| = [AutK (F ) : 1].

Also, in the prime notation K ′ = AutK (F ) and
F ′ = AutF (F ) = 1, so |AutK (F )| = [AutK (F ) : 1] = [K ′ : F ′] ≤ [F : K ]
with L = K and M = F , from the above result.
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Lemma V.2.9

Lemma V.2.9

Lemma V.2.9. Let F be an extension field of K and let H, J be
subgroups of the Galois group AutK (F ) with H < J. If [J : H] is finite,
then [H ′ : J ′] ≤ [J : H].

Proof. (Notice that [H ′ : J ′] is the dimension of field H ′ as a vector space
over field J ′; the index [J : H] is the number of cosets of H in J.) Let the
number of cosets of H in J by [J : H] = n.

ASSUME [H ′ : J ′] > n. Then a
basis of H ′ over J ′ has more than n elements (as basis is a linearly
independent spanning set; see page 181) and so there exist
u1, u2, . . . , un+1 ∈ H ′ that are linearly independent over J ′. Let
{τ1, τ2, . . . , τn} be a complete set of representatives of the n left cosets of
H in J. That is, J = τ1H ∪ τ2H ∪ · · · ∪ τnH (since cosets of a subgroup
partition the group; Corollary I.4.3(i),(ii)) and τ−1

i τj ∈ H if and only if
i = j by Corollary I.4.3(iii). Consider the system of n homogeneous linear
equations in n + 1 unknowns with coefficients τi (uj) in field F :
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Lemma V.2.9

Lemma V.2.9 (continued 1)

τ1(u1)x1 + τ1(u2)x2 + τ1(u3)x3 + · · ·+ τ1(un+1)xn+1 = 0

τ2(u1)x1 + τ2(u2)x2 + τ2(u3)x3 + · · ·+ τ2(un+1)xn+1 = 0

τ3(u1)x1 + τ3(u2)x2 + τ3(u3)x3 + · · ·+ τ3(un+1)xn+1 = 0

... (1)

τn(u1)x1 + τn(u2)x2 + τn(u3)x3 + · · ·+ τn(un+1)xn+1 = 0.

Such a system (n homogeneous equations in n + 1 unknowns) has a
nontrivial solution as will be shown in Exercise VII.2.4(d) (see also Lemma
5.1.1 of Real Analysis with an Introduction to Wavelets, Don Hong,
Jianzhong Wang, and Robert Gardner, Academic Press/Elsevier Press,
2005).

Among all such nontrivial solutions choose one, say
x1 = a1, x2 = a2, . . . , xn+1 = an+1 with a minimal number of nonzero ai .
By reindexing if necessary we may assume that x1 = a1, x2 = a2, . . . ,
xr = ar and xr+1 = xr+1 = · · · xn+1 = 0 where ar 6= 0. Since each multiple
of a solution is also a solution then we may also assume a1 = 1F .
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Lemma V.2.9

Lemma V.2.9 (continued 2)
Proof (continued). In the conclusion of the proof below, we will show
that the hypothesis that u1, u2, . . . , un+1 ∈ H ′ are linearly independent
over J ′ implies that there exists σ ∈ J such that
x1 = σa1, x2 = σa2, . . . , xr = σar and xr+1 = xr+2 = · · · = xn+1 = 0 is
also a nontrivial solution to the system of equations (1) and σa2 = a2.
Since the difference of two solutions is also a solution (since the system
(1) is linear and homogeneous) then

x1 = a1 − σa1, x2 = a2 − σa2, . . . , xt = ar − σar , and
xr+1 = xr+2 = · · · = xn+1 = 0 (∗)

is also a solution of the system of equations (1).

But since
a1 − σa1 = 1F − 1F = 0 (σ ∈ J < AutK (F ) implies that σ fixes the
elements of K , including the multiplicative identity) and a2 6= σa2 then
x1 = 0, x2 = a2 − σa2 6= 0, x3 = a3 − σa3, . . . , xr = ar − σar and
xr+1 = xr+2 = · · · = xn+1 = 0 is a nontrivial solution of the system of
equations (1) (since x2 6= 0) with at most r − 1 nonzero entries, a
CONTRADICTION to the minimality of r of nonzero terms is a nontrivial
solution to the system of equations (1).
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Lemma V.2.9

Lemma V.2.9 (continued 3)

Proof (continued). This contradiction shows that the assumption
[H ′ : J ′] > n is false, and hence [H ′ : J ′] ≤ n.

To complete the proof, we must find σ ∈ J with the desired properties.
Now {τ1, τ2, . . . , τn} is a set of representatives of the cosets of H, then
exactly one of the τj , say τ1, is in H itself.

Since H ′ = AutH(F ), then τ1

fixes the elements of H ′ and so τ1(ui ) = ui ∈ H ′ for all i = 1, 2, . . . , n + 1.
So the first equation in the system of equations (1) becomes
u1a1 + a2a2 + · · ·+ urar = 0. Now each ai is nonzero for 1 ≤ i ≤ r and
the ui are linearly independent over J ′. So it must be that some ai is not
in J ′, say a2 6∈ J ′. Since J ′ is the fixed field of J, then there is some σ ∈ J
such that σa2 6= a2 (that is, σ does not fix a2).
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Lemma V.2.9

Lemma V.2.9 (continued 4)

Proof (continued). Next, consider a second system of equations (which
we will show to be equivalent to [that is, have the identical solutions as]
the first system of equations (1)):

στ1(u1)x1 + στ1(u2)x2 + στ1(u3)x3 + · · ·+ στ1(un+1)xn+1 = 0

στ2(u1)x1 + στ2(u2)x2 + στ2(u3)x3 + · · ·+ στ2(un+1)xn+1 = 0

στ3(u1)x1 + στ3(u2)x2 + στ3(u3)x3 + · · ·+ στ3(un+1)xn+1 = 0

... (2)

στn(u1)x1 + στn(u2)x2 + στn(u3)x3 + · · ·+ στn(un+1)xn+1 = 0.

Since σ ∈ J < AutK (F ) then σ(0) = 0 and if we apply σ to each of the
equations in the first system (1), then we get the second system (2). Since
x1 = 11, x2 = a2, . . . , xr = ar and xr+1 = xr+2 = · · · xn+1 = 0 is a solution
of system (1), then x1 = σa1, x2 = σa2, . . . , xr = σar and
xr+1 = xr+2 = · · · = xn+1 = 0 is a solution of system (2).
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Lemma V.2.9

Lemma V.2.9 (continued 5)

Proof (continued). We claim that system (2), except for the order of the
equations, is identical with system (1) (so that
x1 = σa1, x2 = σa2, . . . , xr = σar and xr+1 = xr+1 = · · · = xn+1 = 0 is a
solution of system (1); this will show that σ satisfies the conditions
mentioned above). We make two claims:

(i) For any σ ∈ J, the set {στ1, στ2, . . . , στn} ⊂ J is a complete set of
coset representatives of the cosets of H in J.

Sub-Proof. First, since each τi ∈ J and σ ∈ J, then στi ∈ J. Now
στiH = στiH if and only if (στi )

−1(στj) ∈ H by Theorem I.4.3(iii); that
is, τ−1

i σ−1στj = τ−1
i τj ∈ H. Again by Theorem I.4.3(iii), τ−1

i τj ∈ H if
only if τiH = τjH. So στiH = στjH if and only if τiH = τjH. Since
{τ1, τ2, . . . , τn} is a complete set of representatives of the left cosets of H
in J, then so is {στ1, στ2, . . . , στn}. Sub-Q.E.D.
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Lemma V.2.9

Lemma V.2.9 (continued 6)

Proof (continued).
(ii) If ζ and θ are both elements in the same coset of H in J, then (since
ui ∈ H ′) ζ(ui ) = θ(ui ) for i = 1, 2, . . . n + 1.

Sub-Proof. Let ζ, θ ∈ aH. Then ζ = ah1 and θ = ah2 for some h1, h2 ∈ H.

Since H ′ is the fixed field of H and each ui ∈ H ′, then
ζ(ui ) = (ah1)(ui ) = ah1(ui ) = aui and θ(ui ) = (ah2)(ui ) = ah2(ui ) = aui .
So ζ(ui ) = θ(ui ) for i = 1, 2, . . . , n + 1. Sub-Q.E.D.

It now follows from claim (i) that there is some reordering i1, i2, . . . , in+1

of 1, 2, . . . , n + 1 so that for each k = 1, 2, . . . , n + 1, στk and τik are in
the same coset of H in J. By (ii), the kth equation of system (2) (with
coefficients στk(ui )) is identical with the ikth equation of system (1) (with
coefficients τik (ui )). So we have, in particular, that the solution
x1 = a1, x2 = a2, . . . , xr = ar and xr+1 = xr+2 = · · · xn+1 = 0 of system
(2) is also a solution of system (1). We can now pick up at step (∗) and
complete the proof by contradiction.
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Lemma V.2.10

Lemma V.2.10

Lemma V.2.10. Let F be an extension field of K , L and M intermediate
fields with L ⊂ M, and H, J subgroups of the Galois group AutK (F ) with
H < J.

(i) If L is closed and [M : L] finite, then M is closed and
[L′ : M ′] = [M : L];

(ii) if H is closed and [J : H] finite, then J is closed and
[H ′ : J ′] = [J : H];

(iii) if F is a finite dimensional Galois extension of K , then all
intermediate fields and and all subgroups of the Galois group
are closed and AutK (F ) has order [F : K ].

Proof. (i) By Lemma V.2.6(iii), M ⊂ M ′′. Since L ⊂ M ⊂ M ′′, by
Theorem V.1.2 we have [M ′′ : L] = [M ′′ : M][M : L] and so
[M : L] ≤ [M ′′ : L]. Now [L′ : M ′] ≤ [M : L] By Lemma V.2.8 and
[M ′′ : L′′] ≤ [L′ : M ′] by Lemma V.2.9.
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Lemma V.2.10

Lemma V.2.10 (continued 1)

Lemma V.2.10. Let F be an extension field of K , L and M intermediate
fields with L ⊂ M, and H, J subgroups of the Galois group AutK (F ) with
H < J.
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Also, [M ′′ : L] = [M : L] so the dimension of M ′′ over L is the same as the
dimension of M over L. Also, by Lemma V.2.6(iii), M ⊂ M ′′ and so
M = M ′′ and M is closed.
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Lemma V.2.10

Lemma V.2.10 (continued 2)

Lemma V.2.10. Let F be an extension field of K , L and M intermediate
fields with L ⊂ M, and H, J subgroups of the Galois group AutK (F ) with
H < J.

(ii) if H is closed and [J : H] finite, then J is closed and
[H ′ : J ′] = [J : H].

Proof. (ii) By Lemma V.2.6(iii), J < J ′′. Since H < J < J ′′ then the
number of cosets of H in J, [J : H] is less than or equal to the number of
cosets of H in J ′′, [J ′′ : H]; that is, [J : H] ≤ [J ′′ : H].

So

[J : H] ≤ [J ′′ : H] = [J ′′ : H ′′] since H = H ′′

≤ [H ′ : J ′] by Lemma V.2.8

≤ [J : H] by Lemma V.2.9.

So we have [H ′ : J ′] = [J : H] as claimed. Also, [J ′′ : H] = [J : H] and so
the number of cosets of H in J equals the number of cosets of H in J ′′.
Therefore |J| = |J ′′|; also J ⊂ J ′′ so we must have J = J ′′.

() Modern Algebra April 16, 2018 23 / 37



Lemma V.2.10

Lemma V.2.10 (continued 2)

Lemma V.2.10. Let F be an extension field of K , L and M intermediate
fields with L ⊂ M, and H, J subgroups of the Galois group AutK (F ) with
H < J.

(ii) if H is closed and [J : H] finite, then J is closed and
[H ′ : J ′] = [J : H].

Proof. (ii) By Lemma V.2.6(iii), J < J ′′. Since H < J < J ′′ then the
number of cosets of H in J, [J : H] is less than or equal to the number of
cosets of H in J ′′, [J ′′ : H]; that is, [J : H] ≤ [J ′′ : H]. So

[J : H] ≤ [J ′′ : H] = [J ′′ : H ′′] since H = H ′′

≤ [H ′ : J ′] by Lemma V.2.8

≤ [J : H] by Lemma V.2.9.

So we have [H ′ : J ′] = [J : H] as claimed.

Also, [J ′′ : H] = [J : H] and so
the number of cosets of H in J equals the number of cosets of H in J ′′.
Therefore |J| = |J ′′|; also J ⊂ J ′′ so we must have J = J ′′.

() Modern Algebra April 16, 2018 23 / 37



Lemma V.2.10

Lemma V.2.10 (continued 2)

Lemma V.2.10. Let F be an extension field of K , L and M intermediate
fields with L ⊂ M, and H, J subgroups of the Galois group AutK (F ) with
H < J.

(ii) if H is closed and [J : H] finite, then J is closed and
[H ′ : J ′] = [J : H].

Proof. (ii) By Lemma V.2.6(iii), J < J ′′. Since H < J < J ′′ then the
number of cosets of H in J, [J : H] is less than or equal to the number of
cosets of H in J ′′, [J ′′ : H]; that is, [J : H] ≤ [J ′′ : H]. So

[J : H] ≤ [J ′′ : H] = [J ′′ : H ′′] since H = H ′′

≤ [H ′ : J ′] by Lemma V.2.8

≤ [J : H] by Lemma V.2.9.

So we have [H ′ : J ′] = [J : H] as claimed. Also, [J ′′ : H] = [J : H] and so
the number of cosets of H in J equals the number of cosets of H in J ′′.
Therefore |J| = |J ′′|; also J ⊂ J ′′ so we must have J = J ′′.

() Modern Algebra April 16, 2018 23 / 37



Lemma V.2.10

Lemma V.2.10 (continued 2)

Lemma V.2.10. Let F be an extension field of K , L and M intermediate
fields with L ⊂ M, and H, J subgroups of the Galois group AutK (F ) with
H < J.

(ii) if H is closed and [J : H] finite, then J is closed and
[H ′ : J ′] = [J : H].

Proof. (ii) By Lemma V.2.6(iii), J < J ′′. Since H < J < J ′′ then the
number of cosets of H in J, [J : H] is less than or equal to the number of
cosets of H in J ′′, [J ′′ : H]; that is, [J : H] ≤ [J ′′ : H]. So

[J : H] ≤ [J ′′ : H] = [J ′′ : H ′′] since H = H ′′

≤ [H ′ : J ′] by Lemma V.2.8

≤ [J : H] by Lemma V.2.9.

So we have [H ′ : J ′] = [J : H] as claimed. Also, [J ′′ : H] = [J : H] and so
the number of cosets of H in J equals the number of cosets of H in J ′′.
Therefore |J| = |J ′′|; also J ⊂ J ′′ so we must have J = J ′′.

() Modern Algebra April 16, 2018 23 / 37



Lemma V.2.10

Lemma V.2.10 (continued 3)

Lemma V.2.10. Let F be an extension field of K , L and M intermediate
fields with L ⊂ M, and H, J subgroups of the Galois group AutK (F ) with
H < J. (iii) if F is a finite dimensional Galois extension of K , then all

intermediate fields and and all subgroups of the Galois group
are closed and AutK (F ) has order [F : K ].

Proof. (iii) If E is an intermediate field, K ⊂ E ⊂ F , then
[F : K ] = [F : E ][E : K ] by Theorem V.1.2 and since [F : K ] is
hypothesized to be finite, then [E : K ] is finite.

Since F is Galois over K
then K is closed (see the note on page 246 right after the definition of
closed). So every intermediate field is closed. Now (i) (with L = K and
M = E ) implies that E is closed and [K ′ : E ′] = [E : K ]. In particular, if
E = F then |AutK (F )| = [AutK (E ) : 1] = [K ′ : F ′] = [F : K ] is finite.
Therefore, every subgroup J of AutK (F ) is finite. Now 1′ = F and
1′′ = F ′ = AutF (F ) = 1, so 1 is closed. Now by (ii), J is closed and so
every subgroup of AutK (F ) is closed.
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Lemma V.2.11

Lemma V.2.11

Lemma V.2.11. Let F be an extension field of K .

(i) If E is a stable intermediate field of the extension, then
E ′ = AutE (F ) is a normal subgroup of the Galois group
AutK (F );

(ii) if H is a normal subgroup of AutK (F ), then the fixed field H ′

of H is a stable intermediate field of the extension.

Proof. (i) If u ∈ E and σ ∈ AutK (F ) then σ(u) ∈ E by the stability of E .
Hence for τ ∈ E ′ = AutE (F ) we have τσ(u) = σ(u).

Therefore, for any
σ ∈ AutK (F ), τ ∈ E ′ = AutE (F ), and u ∈ E we have
σ−1τσ(u) = σ−1σ(u) = u. Consequently σ−1τσ ∈ E ′ = AutE (F ) and
hence E ′ is a normal subgroup of AutK (F ) by Theorem I.5.1(iv).
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Lemma V.2.11

Lemma V.2.11 (continued)

Lemma V.2.11. Let F be an extension field of K .

(ii) if H is a normal subgroup of AutK (F ), then the fixed field H ′

of H is a stable intermediate field of the extension.

Proof. (ii) If σ ∈ AutK (F ) and τ ∈ H, then σ−1τσ ∈ H since H is
hypothesized to be a normal subgroup of AutK (F ) (by Theorem I.5.1(iv)).
Therefore, for any u ∈ H ′, σ−1τσ(u) = u (since H ′ denotes the fixed field
of H), which implies that τσ(u) = σ(u) for all τ ∈ H.

This σ(u) ∈ H ′ for
any u ∈ H ′ and for any σ ∈ AutK (F ). This means that H ′ is stable
relative to K and F .
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Lemma V.2.11 (continued)
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Lemma V.2.11

Lemma V.2.11 (continued)
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Lemma V.2.12

Lemma V.2.12

Lemma V.2.12. If F is a Galois extension field of K and E is a stable
intermediate field of the extension, then E is Galois over K .

Proof. If u ∈ E \ K then there exists σ ∈ AutK (F ) such that σ(u) 6= u
since F is Galois over K (meaning K = (AutK (F ))′ = K ′, so u 6∈ K
implies that u is not fixed by some σ ∈ AutK (F )).

Since E is stable then
σ maps E into itself; that is, σ|E ∈ AutK (E ). So for every u ∈ E \K there
is an element of AutK (F ) which does not fix u. So the fixed field of
AutK (F ) is just K ; K = (AutK (F ))′ = K ′. Therefore, E is a Galois
extension of K .
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Lemma V.2.13

Lemma V.2.13

Lemma V.2.13. If F is an extension field of K and E is an intermediate
field of the extension such that E is algebraic and Galois over K , then E is
stable (relative to F and K ).
Proof. If u ∈ E , let f ∈ K [x ] be the irreducible monic polynomial of u
and let u1, u2, . . . , ur be the distinct roots of f that lie in E , where u = u1.
Then r ≤ n = deg(f ) by Theorem III.6.7.

If τ ∈ AutK (E ), then by
Theorem V.2.2 we have that τ permutes roots of f ; that is, τ permutes
the ui . Therefore the coefficients of the monic polynomial
g(x) = (x − u1)(x − u2) · · · (x − ur ) ∈ E [x ] are fixed by every
τ ∈ AutK (E ), since the coefficients are “symmetric” functions of the ui .
Since E is Galois over K , then K = (AutK (E ))′ = K ′ and so the
coefficients are all in K and g ∈ K [x ]. Now u = u1 is a root of g and
hence irreducible f divides g by Theorem V.1.6(ii). Since g is monic and
deg(g) ≤ deg(f ) (because f divides g) we must have that f = g (or else,
g is a divisor of f since f is irreducible). Consequently, all the roots of f
are distinct and lie in E (as in the case for g).
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Lemma V.2.13

Lemma V.2.13 (continued)

Lemma V.2.13. If F is an extension field of K and E is an intermediate
field of the extension such that E is algebraic and Galois over K , then E is
stable (relative to F and K ).

Proof (continued). Now if σ ∈ AutK (F ), then σ(u) is a root of f by
Theorem V.2.2, whence σ(u) ∈ E . Since u was an arbitrary element of E ,
we have shown that σ ∈ AutK (F ) maps E into itself; that is, E is stable
relative to K and F .
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Lemma V.2.14

Lemma V.2.14

Lemma V.2.14. Let F be an extension field of K and let E be a stable
intermediate field of the extension. Then the quotient group
AutK (F )/AutE (F ) is isomorphic to the group of all automorphisms in
AutK (E ) that are extendible to F .

Proof. Intermediate field E is stable, so (by the definition of stable) every
automorphism σ ∈ AutK (F ) maps E into itself, and hence the mapping
σ 7→ σ|E defines a group homomorphism from AutK (F ) to AutK (E ). The
image of this homomorphism is “clearly” the subgroup of AutK (E ) of all
automorphisms that are extendible to F (of course, the extension of σ|E is
σ itself).

Now the kernel of the homomorphism is all elements of AutK (F )
which are the identity on E ; so the kernel is AutE (F ). By the First
Isomorphism Theorem (Theorem I.5.7) the homomorphism induces an
isomorphism between AutK (F ) modulo the kernel and the image of the
homomorphism. So AutK (F )/AutE (F ) is isomorphic to the group of all
automorphisms in AutK (E ) that are extendible to F .
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Theorem V.2.5. The Fundamental Theorem of Galois Theory

Theorem V.2.5. The Fundamental Theorem of Galois
Theory

Theorem V.2.5. The Fundamental Theorem of Galois Theory.
If F is a finite dimensional Galois extension of K , then there is a one to
one correspondence between the set of all intermediate fields of the
extension and the set of all subgroups of the Galois group AutK (F ) (given
by E 7→ E ′ = AutE (F )) such that:

(i) the relative dimension of two intermediate fields is equal to
the relative index of the corresponding subgroups; in
particular, AutK (F ) has order [F : K ];

(ii) F is Galois over every intermediate field E , but E is Galois
over K if and only if the corresponding subgroup
E ′ = AutE (F ) is normal in G = AutK (F ); in the case G/E ′

is (isomorphic to) the Galois group AutK (E ) of E over K .
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Theorem V.2.5. The Fundamental Theorem of Galois Theory

Theorem V.2.5. The Fundamental Theorem of Galois
Theory (i)

Proof. Theorem V.2.7 shows that there is a one to one correspondence
between the closed intermediate fields and closed subgroups of the Galois
group. By Lemma V.2.10(iii) all intermediate fields are closed and all
subgroups of AutK (F ) are closed. So the one to one correspondence
between closed intermediate fields and closed subgroups is in fact a one to
one correspondence between all intermediate fields and all subgroups. This
correspondence is given by mapping each group H to its fixed field H ′ and
by mapping each field M to its Galois group M ′ = AutM(F ).

(i) For intermediate fields L and M (with L ⊂ M) we have by Lemma
V.2.10(i) that the relative dimension of the fields [M : L] equals the
relative index of the corresponding subgroups [L′ : M ′]; that is,
[M : L] = [L′ : M ′]. The “in particular” part follows from Lemma
V.2.10(iii); that is, |AutK (F )| = [F : K ].
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Theorem V.2.5. The Fundamental Theorem of Galois Theory

Theorem V.2.5. The Fundamental Theorem of Galois
Theory (ii)

(ii) F is Galois over every intermediate field E , but E is Galois
over K if and only if the corresponding subgroup
E ′ = AutE (F ) is normal in G = AutK (F ); in the case G/E ′

is (isomorphic to) the Galois group AutK (E ) of E over K .

Proof. F is Galois over E since E is closed (see the comment after the
definition of closed), so F is Galois over every intermediate field. E is
finite dimensional over K (since F is; see Theorem V.1.2) and hence, by
Theorem V.1.11, F is algebraic over K . Consequently if E is Galois over K
then E satisfies the hypotheses of Lemma V.2.13 and so E is stable
relative to F and K . By Lemma V.2.11(i), E ′ = AutE (F ) is normal in
G = AutK (F ) (this is the first part of the claim of (ii)).

Conversely, if
E ′ = AutE (F ) is normal in G = AutK (F ), then by Lemma V.2.11(ii), E ′′

is a stable intermediate field.
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Theorem V.2.5. The Fundamental Theorem of Galois Theory

Theorem V.2.5. The Fundamental Theorem of Galois
Theory (ii) (continued)

Proof (continued). We establish that all intermediate fields are closed, so
E = E ′′ and E is stable. Therefore by Lemma V.2.12, E is Galois over K
(this is the second part of the claim of (ii), the converse of the first part).

Now for the “in the case” part.

Let E ′ = AutE (F ) be normal in
G = AutK (F ), or equivalently, let E be Galois over K . We have seen at
the beginning of the proof that all intermediate fields and subgroups are
closed, so E and E ′ are closed. Since F is Galois over K then
G ′ = (AutK (F ))′ = K . Now the elements of G/E ′ are cosets of E ′, so
|G/E ′| = [G : E ′]. Hence

|G/E ′| = [G : E ′]

= [E ′′ : G ′] by Lemma V.2.10(ii)

= [E : K ] since E = E ′′ and K = G ′.
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Theorem V.2.5. The Fundamental Theorem of Galois Theory

Theorem V.2.5. The Fundamental Theorem of Galois
Theory (ii)

(ii) F is Galois over every intermediate field E , but E is Galois
over K if and only if the corresponding subgroup
E ′ = AutE (F ) is normal in G = AutK (F ); in the case G/E ′

is (isomorphic to) the Galois group AutK (E ) of E over K .

Proof. We saw above that E ′′ is stable and E = E ′′, so E is stable. By
Lemma V.2.14, G/E ′ = AutK (F )/AutE (F ) is isomorphic to a subgroup of
AutK (E ). Since we have just shown that |G/E ′| = [E : K ], then this
subgroup of AutK (E ) is of order [E : K ]. Since E is Galois over K (by
hypothesis, here) then part (i) shows that |AutK (E )| = [E : K ].

Since
G/E ′ is isomorphic to a subgroup of AutK (E ) of order [E : K ] and
AutK (E ) itself is of order [E : K ], then
G/E ′ = AutK (F )/AutE (F ) ∼= AutK (E ).
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Theorem V.2.15. Artin

Theorem V.2.15. Artin

Theorem V.2.15. (Artin.)
Let F be a field, G a group of automorphisms of F , and K the fixed field
of G in F . Then F is Galois over K . If G is finite, then F is a finite
dimensional Galois extension of K with Galois group G .

Proof. Since K is the fixed field of G in F , then for each u ∈ F \ K there
must be a σ ∈ G such that σ(u) 6= u.

By the definition of G as a group of
automorphisms of F which fixes K elementwise, we have G < AutK (F )
(since AutK (F ) fixes K elementwise, as well as possibly other things). So
each such σ ∈ G is also in AutK (F ) and therefore the fixed field of
AutK (F ) is K itself. Whence (by definition) F is Galois over K ,
establishing the first claim.
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Theorem V.2.15. Artin

Theorem V.2.15. Artin (continued)

Proof (continued). If G is finite, then by Lemma V.2.9 (with H = 1 and
J = G , which gives |G | = [G : 1] is finite) we have

[F : K ] = [1′ : G ′] since 1′ = F and G ′ = K

(fixed fields of 1 and G , respectively)

≤ [G : 1] by Lemma V.2.9

= |G |.
Consequently, F is finite dimensional over K . So F is a finite dimensional
Galois extension of K , and so by Lemma V.2.10(iii) all intermediate groups
are closed and so G = G ′′. Since the fixed field of G is G ′ = K (and hence
G ′′ = K ′) we have that the Galois group of F over K is

AutK (F ) = K ′ by the prime notation

= G ′′ as just observed

= G since G is closed.
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