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Theorem V.3.3. The following conditions on a field F are equivalent:
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Theorem V.3.3 (“Algebraically Closed”)

Theorem V.3.3, (i)=

Proof (continued). Next, suppose g is an irreducible polynomial in F|[x].
ASSUME g has degree greater than 1. Then by hypothesis, g has a root u
in F and so (again) by the Factor Theorem (Theorem I11.6.6), (x — u) is a
factor of g in F[x] and so g(x) = (x — u)gi(x) where gi(x) is of degree at
least 1 (and so gj is not a unit in F[x] by Exercise 111.6.5, because a field
has no nilpotent elements since it has no zero divisors), a
CONTRADICTION. So g must be degree 1 and (iii) follows. Next,
suppose E is an algebraic extension of F. Then, by definition, every
element of E is algebraic over F, so if e € E then e is a root of some

f € F[x]. But by hypothesis, f splits in F (since (i)=(ii)) and so all the
roots of f are in F and hence e € F. Thatis, E = F and (iv) follows. For
(v), we simply take K = F and then we have trivially that F is algebraic
over K. Since (i)=-(ii) then we have that every polynomial in K[x] = F[x]
splits in F[x]| (constant polynomials have no zeros and “split” is not
defined for them; see page 257). So (v) follows.
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(i) Every nonconstant polynomial f € F[x] has a root in F;

(ii) every nonconstant polynomial f € F[x] splits over F;

(iii) every irreducible polynomial in F[x] has degree one;

(iv) there is no algebraic extension field of F (except F itself);
(v) there exists a subfield K of F such that F is algebraic over K

and every polynomial in K[x] splits in F[x].

Proof. Hypothesize (i). If f is a nonconstant polynomial in F[x], then by
hypothesis f has a root u; in F and so by the Factor Theorem (Theorem

[11.6.6), x — vy is a factor of f in F[x]. Then f(x) = (x — u1)fi(x). Then

inductively f can be factored in F[x] into a product of linear terms times a
degree 0 polynomial (i.e., a constant). That is,

f(x) = uo(x — u1)(x — up) -+ (x — up). So f splits over F and (ii) follows.
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Theorem V.3.3, (ii), (iii) =

Proof (continued). Hypothesize (ii). Trivially, (ii)=(i) and so from
above, (ii) also implies (iii), (iv), and (v).

Hypothesize (iii) and let f be a nonconstant polynomial in F[x]. Since F
is a field then F is a unique factorization domain (trivially since F contains
no nonzero nonunits; see Definition 111.3.5) and so by Theorem [11.6.14, Fx
is a unique factorization domain. So f can be written (uniquely) as a
product of irreducible polynomials in F[x]. By hypothesis, every irreducible
polynomial in F[x] is of degree one and so is of the form ug(x — u1) where
ug,u1 € F and ug # 0. Then u; € F is a root of an irreducible factor of
and so is a root of f. Therefore (i) follows and, as shown above, (ii), (iv),
and (v) follow.
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Theorem V.3.3 (“Algebraically Closed”)

Theorem V.3.3 (“Algebraically Closed”)

Theorem V.3.3, (iv)= Theorem V.3.3, (v) =
Proof (continued). Hypothesize (v). Let E be an algebraic extension of
Proof (continued). To show (iv)=>(i), we consider the contrapositive and F. Since F is hypothesized to be algebraic over K, then by Theorem
hypothesize the negation of (i). That is, suppose there is a nonconstant V.1.13, E is algebraic over K. Let u € E. Then u is algebraic over K so
polynomial f € F[x] which does not have a root in F. As argued above, let k(x) be the (monic) irreducible polynomial of u over K. Also, u is
F[x] is a unique factorization domain and so f can be (uniquely) written algebraic over F so let f(x) be the (monic) irreducible polynomial of u
as a product of irreducible polynomials. Consider one of these nonconstant over F. Now k(x) € K[x] C F[x] and k(u) = 0, so by Theorem V.1.6(ii),
irreducible factors of f, say g where the degree of g is n. Then by f divides k. But by hypothesis, k splits in F[x], so
Kronecker's Theorem (Theorem V.1.10), there is an extension field F(u) k= (x—u)(x—w)--(x — u,) for some uj € F. As explained above,
of F where u'is a root of g and [F(u) : F] = n. By Theorem V.1.11, F(u) F[x] is a unique factorization domain, so since f is a factor of k then f
is an algebraic extension of F. So there is an algebraic extension of F must be a product of some of the (x — u;)’s; in fact, since f is irreducible
other than F itself (i.e., the negation of (iv) holds). So “not (i) = not it must equal one of the (x — u;) and since u is a root of both k and f
(iv)" or, equivalently, (iv)=>(i). As shown above, hypothesizing (iv) then then one of the (x — ;) is x — u and f(x) = x — u. Therefore, u € F and
implies (ii), (iii), and (v). so E = F. Therefore, (iv) follows and, as shown above, (v) also implies
(i), (i), and (iii). O
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Theorem V.3.4 (“Algebraic Closure™) !
Theorem V.3.4 Lemma V.3.5

Theorem V.3.4. If F is an extension field of K, then the following

conditions are mu:_<m_m:ﬂ. . . Lemma V.3.5. If F is an algebraic extension field of K, then |F| < Xg|K].
(i) F is algebraic over K and F is algebraically closed;

(i) F is a splitting field over K of the set of all (irreducible)

polynomials in K[x]. Proof. Let T be the set of monic polynomials of positive degree in K[x].
Proof. Hypothesize (i). Let S be the set of all irreducible polynomials in For each n € N let T, be the set of all polynomial in T of degree n. Then
K[x]. Since each polynomial in S is also in F[x] and F is algebraically | Tal = |K"| where K" = K x K x --- x K (n factors), since every
closed, then every polynomial in S splits in F[x] by Theorem V.3.3(ii) and polynomial f = x" + a,_1x" 1 + -+ a;x + ag € T is completely
every root of every polynomial in S isin F. Let X be the set of all roots of determined by its n coefficients ag, a1,...,a,—1 € K. For each n € N let
all polynomials in S. Then X C F. So K(X) C F. Since F is algebraic fo: Tn — K" be a bijection. Since the sets T}, for n € N are disjoint (as
over K, then every element of F is the root of some polynomial in S and so are the sets K"), the map f : T = Upen T — UnenK”, given by
F C K[x]. Therefore K(X) = F and so F is (by definition) a splitting field f(u) = fy(u) for u € T, is a well-defined bijection. Therefore (by the
over K of the set S of all (irreducible polynomials in K[x]. So (i)=(ii). definition of equal cardinality) | T| = [ Upeny K”|. By Theorem 0.8.12(ii),
Hypothesize (ii). Let sets S and X be as above. Then F = K(X). By | Unen K" = No|K|. That is, |T| = Ro|K]|.
Theorem V.1.12, F is algebraic over K. By Theorem V.3.3(v), F is
algebraically closed and (i) follows. O
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Lemma V.3.5

Lemma V.3.5 (continued 1)

Proof (continued). Next we show that |F| < |T|. Foe each irreducible

f € T, choose an ordering of the (distinct) roots of f in F (which can be
done by the Well-Ordering Principle). Define a mapping from F to T x N
as follows. If a € F, then a is algebraic over K by hypothesis, and there
exists a unique irreducible monic polynomial f € T with f(a) =0 by
Theorem V.1.6. Assign to a € F the pair (f,i) € T x N where a is the ith
root of f in the previously chosen ordering of the roots of f in F. Since
every f € T is in exactly one T, and each root a of f is associated with a
unique i € N (based on the ordering of the unique roots of f). So the
mapping is well-defined. Now if a and b in f are mapped to the same

(f, i) then a and b are both roots of f and each appears as the ith root of
f in the ordering of the roots. But the unique roots of f in the ordering of
the roots. But the unique roots of f were ordered, so it must be that

a = b. So the mapping Of F to T x N is one to one (injective).

0
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Theorem V.3.6 (Existence of Algebraic Closure)

Theorem V.3.6

Theorem V.3.6. Every field K has an algebraic closure. Any two
algebraic closures of K are K-isomorphic.

Proof. Choose a set S such that Ro|K| < |S| (which can be done because
|P(A)| > |A| for any set A; this is Theorem 0.8.5). Since |K| < Ng|K| by
Theorem 0.8.11, there is by Definition 0.8.4 an injection # mapping

K — S. Since S was chosen only for its cardinality, we could redefine the
image of K to be K itself (so # maps k € K to itself) and replace Im(6)
with K to get K C S.

(1) Let S be the class of all fields E such that E is a subset of S and E is
an algebraic extension field of K. So we are using set S as a set of
symbols on which extension fields of K are defined. We now argue that S
is a set. Now a field E in S is completely determined by the subset E of S
and the binary operations of addition and multiplication in E. Now
addition and multiplication (by the definition of binary operation, see page
24) are functions ¢ and v, say, mapping E X E to E.

0 ]
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Lemma V.3.5 (continued 2)

Lemma V.3.5. If F is an algebraic extension field of K, then |F| < Xg|K]|.

Proof (continued). Whence, |F| < |T x N| (see Definition 0.8.4). By
Definition 0.8.3 (and the definition of Rg), | T x N| = | T||N| = | T|No.
Since T is infinite, by Theorem 0.8.11 implies | T|Rg = | T|. By the first
paragraph, | T| = Ng|T|. Therefore

[FI < [T xN| = |T[IN| = | T[Ro = | T| = Ro|K]. 0
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Theorem V.3.6 (Existence of Algebraic Closure)

Theorem V.3.6(l)

Proof (continued). So we identify ¢ and 1) with their “graphs” (see page
4), which are subsets of E x E x E C S x S x S. Consequently, there is a
one to one (injective) map 7 from § into the set
P=P(Sx(S%x5x5)x(5xS5xS5)) (which is a set by the Power
Axiom, see page 3) given by the mapping E — (E, p, ) (technically,
mapping to (E, graph of ¢, graph of ¢)). The one to one property of 7
follows from the fact that ¢ and ¢ are binary operations and for two
different fields E; and E; in S, either the corresponding ;s or ¥'s must
differ, and so the graphs of the corresponding 's or v's must differ.
Therefore, 7(E1) # 7(E2). Now Im(7) is a set by the “Axiom of Class
Formation,” namely Im(7) = {X € P | X = 7(E) for some E € S}. Since
7:8 — P is one to one, so 71 is a function and 7 1(Im(7)) = S. That
is, S is the image of a set under a function. Hungerford states that “the
axioms of set theory guarantee S is in fact a set.”
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Theorem V.3.6 (Existence of Algebraic Closure)

Theorem V.3.6(ll)

Theorem V.3.6. Every field K has an algebraic closure. Any two
algebraic closures of K are K-isomorphic.

Proof (continued). (I1) Note that S # & since K € S. Partially oder the
set S by defining E; < E if and only if E; is an extension field of E; (and
so E; C Ep). Then every chain under < has an upper bound, namely the
union of all the fields in the chain. Therefore, by Zorn's Lemma there is a
maximal element F of S.

Modern Algebra

Theorem V.3.6 (Existence of Algebraic Closure)

Theorem V.3.6(lI1)

Theorem V.3.6. Every field K has an algebraic closure. Any two
algebraic closures of K are K-isomorphic.

Proof (continued). Denote the image of ¢ as Im(¢) = F;. Define in F;
the sum ((a) + ¢(b) as {(a+ b) and define the product ((a)((b) as ((ab).
Then F; is a field isomorphic to Fy and ( : Fp — F; is an F-isomorphism.
Since F C F1, then F is an extension field of F. Consequently, since Fy is
a proper algebraic extension of F (and hence of K), then so is F;. Also, by
construction, F; € S. So under the partial ordering on S we have F < Fq,
but this is a CONTRADICTION to the maximality of F in S. So the
assumption that F is not algebraically closed is false, and so F is
algebraically closed. Since Fy is algebraic over K and F; is F-isomorphic
to Fo, then Fy is algebraic over K. Therefore (by Theorem V.3.4(i)) F is
an algebraic closure of K.

The claim that any two algebraic closures of K are K-isomorphic will be
shown in Corollary V.3.9 below (independently of this theorem). O
0 ]
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Theorem V.3.6 (Existence of Algebraic Closure)

Theorem V.3.6(llI)

Proof (continued). (lll) We now show that F is algebraically closed.
ASSUME that F is not algebraically closed. Then there is some f € F[x]
which does not split over F by Theorem V.3.3(ii). By Kronecker's
Theorem (Theorem V.1.10), there is a proper algebraic extension

Fo = F(u) of F where u is a root of f which does not lie in F. Since F is
algebraic over K (by construction) and F(u) is algebraic over F (by
Theorem V.1.12), then F 4+ 0 = F(u) is an algebraic extension of K by
Theorem V.1.13. Notice that we cannot get a contradiction based on Fy
since we do not have Fyp € S§. Therefore |Fy \ F| < |Fpl| since Fo \ F C Fy
and |Fo| < Ng|K| by Lemma V.3.5. So, by the argument in the first
paragraph |Fo \ F| < |Fo| < Ro|K]| < |S]. Since |F| < |Fo| < |S]| and

IS| =[(S\ F)UF|=|S\ F|+ |F| by Definition 0.8.3. So, by Theorem
0.8.10, we have |S| = |S\ F|. Thus |Fy \ F| < |S| =S\ F| and there is
an injective (one to one) map ¢ : Fo \ F — X \ F by Definition 0.8.4.
Extend ( to all of Fy by defining { as the identity on F and the letting ¢
map Fp into S; the extended ( is still injective.
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Corollary V.3.7 (Existence of Splitting Fields)

Corollary V.3.7

Corollary V.3.7. If K is a field and S a set of polynomials (of positive
degree) in K[x], then there exists a splitting field of S over K.

Proof. Let F be an algebraic closure of K. Let f € S. As argued above in
the proof of Theorem V.3.3, F[x] is a unique factorization domain. So f
can be (uniquely) written as a product of irreducible polynomials in K[x],
say f = f — 1fy-- - f,. By Theorem V.3.4(ii), each f; splits in f and so f
itself splits in F. Therefore, F is a splitting field of S over K. 0
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Theorem V.3.8 (For S infinite)

Theorem V.3.8

Theorem V.3.8. (For S infinite.) Let o : K — L be an isomorphism of
fields, S = {f;} a set of polynomials (of positive degree) in K[x], and

S’ = {of;} the corresponding set of polynomials in L[x]. If F is a splitting
field of S over K and M is a splitting field of S’ over L, then o is
extendible to an isomorphism F = M.

Proof. Let S be an arbitrary (infinite) set. Let S consist of all triples
(E,N,T), where E is an intermediate field of F and K, N is an
intermediate field of M and L, and 7 : E — N is an isomorphism that
extends o (i.e., KCECF,LC NC M, and E = N under 7). Define
Amf ZHVﬂHv < Amwu Zmuﬂmv if E1 C E;, Ny C N>, and ﬁm_mH =71. Then <'is
a partial ordering on S and for any chain in S (that is, for any subset of S
which is totally ordered under <), say C = {(E;, N;, 7i)}ics, has a maximal
element, namely (sup;c; Ej, Uijc;N;, T) where 7 is defined on E; as 7; (and
so T|g, = 7j). So by Zorn’s Lemma, S has a maximal element as

Quov >\\o3dv €S.

R

Theorem V.3.12
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Theorem V.3.12. (Generalized Fundamental Theorem of Galois
Theory) If F is an algebraic Galois extension field of K, then there is a
one-to-one correspondence between the set of all intermediate fields of the
extension and the set of all closed subgroups of the Galois group Autk F
(given by E — E’ = AutgF) such that:

(i) F is Galois over every intermediate field E, but E is Galois
over K if and only if the corresponding subgroup E’ is
normal in G = AutkF; in this case G/E’ is (isomorphic to)
the Galois group Autk E of E over K.

Proof. We will show that every intermediate field E is closed (i.e.,
E = E”) and then the one-to-one correspondence is given by Theorem
V.2.7.

Since F is algebraic and Galois over K by hypothesis, then by Theorem
V.3.11 (the (i)=-(iii) part), F is the splitting field over K of a set T of
separable polynomials.

0 ]
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Theorem V.3.8 (For S infinite)

Theorem V.3.8 (continued)

Proof (continued). We claim that Fp = F and My = M, so that 79 is an
isomorphism and F = M. 7 is then the desired extension of o. ASSUME
Fo # F. Then there is some f € S which does not split over Fy (because
Fo is an intermediate field of F and K). Since all the roots of f lie in F
(by hypothesis), F contains a splitting field F; of f over Fy. Similarly, M
contains a splitting field My of 7of = of over My. The part of the proof of
thsi theorem where S is a finite set of polynomials (see the regular class
notes for this section; we are using S = {f} here) shows that 7y can be
extended to an isomorphism 71 mapping F1 — M; and yielding F; = M;.
But this means that (F;, M1, 7) € S and (since Fo C F1 and My C My)
(Fo, Mo, m0) < (F1, M1, 71). But this CONTRADICTS the maximality of
(Fo, Mo, 70). So the assumption that Fy # F is false and we have Fy = F.
If we assume My # M then we get a similar contradiction (this time
defining F1 as 75 '(M1)). Whence (F, M, 75) € S and 7y is the desired
extension of ¢ is an isomorphism of F with M. [
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Theorem V.3.12 (continued 1)

Proof. By Exercise V.3.2, F is also a splitting field of T over intermediate
field E. Hence by Theorem V.3.11 (the (iii)=(i) part) F is Galois over E;
that is, E is closed (recall that F is Galois over E if and only if E is
closed—see page 247). The one-to-one correspondence now follows.

Now for (ii"”). Since F is algebraic over K, then every intermediate field E
is algebraic over K. So the first paragraph of the proof of Theorem
V.2.5(i) (which only uses Lemma V.2.11 and Lemma V.2.13, neither of
which requires finite dimensional extensions) carries over to show that E is
Galois over K if and only if E’ is normal in AutkF.

If E= E" is Galois over K so that E’ is normal in G = AutxF as shown
above, then E” = E is a stable intermediate field by Lemma V.2.11(ii)
(with H = E and H' = E” = E). Therefore, Lemma V.2.14 implies that
G/E’ = Autk F/AutgF is isomorphic to the subgroup of Autk E consisting
of those automorphisms that are extendible to F.
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Theory)

Theorem V.3.12 (continued 2)

Theorem V.3.12. (Generalized Fundamental Theorem of Galois
Theory) If F is an algebraic Galois extension field of K, then there is a
one-to-one correspondence between the set of all intermediate fields of the
extension and the set of all closed subgroups of the Galois group Autk F
(given by E — E’ = AutgF) such that:

(i) F is Galois over every intermediate field E, but E is Galois
over K if and only if the corresponding subgroup E’ is
normal in G = AutkF; in this case G/E’ is (isomorphic to)
the Galois group Autk E of E over K.

Proof. Since F is a splitting field over the set of polynomials T as shown
above, then by Exercise V.3.2, F is also a splitting field over E. Therefore
every K-automorphism in Autk E extends to F by Theorem V.3.8 (where
L=K, T=S5S=5' and M = F so that the extended o is in fact an
automorphism of F). So all of AutkE is extendible to F and (by Lemma
V.2.14, mentioned above), AutxE = G/E’. O



