Modern Algebra

Chapter V. Fields and Galois Theory

V.3. Splitting Fields, Algebraic Closure, and Normality (Supplement)—Proofs of Theorems

V.3.3 ("Algebraically Closed

Modern Algebra

Theorem V.3.3, (i) \Rightarrow

splits in F[x] (constant polynomials have no zeros and "split" is not over K. Since (i) \Rightarrow (ii) then we have that every polynomial in K[x] = F[x] $f \in F[x]$. But by hypothesis, f splits in F (since (i) \Rightarrow (ii)) and so all the roots of f are in F and hence $e \in F$. That is, E = F and (iv) follows. For element of E is algebraic over F, so if $e \in E$ then e is a root of some suppose E is an algebraic extension of F. Then, by definition, every defined for them; see page 257). So (v) follows CONTRADICTION. So g must be degree 1 and (iii) follows. Next, factor of g in F[x] and so $g(x) = (x - u)g_1(x)$ where $g_1(x)$ is of degree at in F and so (again) by the Factor Theorem (Theorem III.6.6), (x-u) is a ASSUME g has degree greater than 1. Then by hypothesis, g has a root u**Proof (continued).** Next, suppose g is an irreducible polynomial in F[x]. (v), we simply take K=F and then we have trivially that F is algebraic has no nilpotent elements since it has no zero divisors), a least 1 (and so g_1 is not a unit in F[x] by Exercise III.6.5, because a field

Theorem V.3.3

Theorem V.3.3. The following conditions on a field F are equivalent:

- (i) Every nonconstant polynomial $f \in F[x]$ has a root in F;
- (ii) every nonconstant polynomial $f \in F[x]$ splits over F;
- (iii) every irreducible polynomial in F[x] has degree one;
- (iv) there is no algebraic extension field of F (except F itself);
- (v) there exists a subfield K of F such that F is algebraic over Kand every polynomial in K[x] splits in F[x].

degree 0 polynomial (i.e., a constant). That is, inductively f can be factored in F[x] into a product of linear terms times a hypothesis f has a root u_1 in F and so by the Factor Theorem (Theorem III.6.6), $x - u_1$ is a factor of f in F[x]. Then $f(x) = (x - u_1)f_1(x)$. Then **Proof.** Hypothesize (i). If f is a nonconstant polynomial in F[x], then by

 $f(x) = u_0(x - u_1)(x - u_2) \cdots (x - u_n)$. So f splits over F and (ii) follows

Theorem V.3.3, (ii), (iii) \Rightarrow

above, (ii) also implies (iii), (iv), and (v). **Proof (continued).** Hypothesize (ii). Trivially, (ii) \Rightarrow (i) and so from

and (v) follow. and so is a root of f. Therefore (i) follows and, as shown above, (ii), (iv) $u_0,u_1\in F$ and $u_0\neq 0$. Then $u_1\in F$ is a root of an irreducible factor of fpolynomial in F[x] is of degree one and so is of the form $u_0(x-u_1)$ where product of irreducible polynomials in F[x]. By hypothesis, every irreducible is a unique factorization domain. So f can be written (uniquely) as a no nonzero nonunits; see Definition III.3.5) and so by Theorem III.6.14, Fx is a field then F is a unique factorization domain (trivially since F contains Hypothesize (iii) and let f be a nonconstant polynomial in F[x]. Since F

Modern Algebra

January 25, 2016 4 / 22

Modern Algebra January 25, 2016 5 / 22

Theorem V.3.3, (iv)⇒

implies (ii), (iii), and (v). other than F itself (i.e., the negation of (iv) holds). So "not (i) \Rightarrow not is an algebraic extension of F. So there is an algebraic extension of Fof F where u is a root of g and [F(u):F]=n. By Theorem V.1.11, F(u)irreducible factors of f, say g where the degree of g is n. Then by as a product of irreducible polynomials. Consider one of these nonconstant polynomial $f \in F[x]$ which does not have a root in F. As argued above, hypothesize the negation of (i). That is, suppose there is a nonconstant Kronecker's Theorem (Theorem V.1.10), there is an extension field F(u)F[x] is a unique factorization domain and so f can be (uniquely) written **Proof (continued).** To show (iv) \Rightarrow (i), we consider the contrapositive and (iv)" or, equivalently, (iv) \Rightarrow (i). As shown above, hypothesizing (iv) then

Theorem V.3.3, $(v) \Rightarrow$

so E=F. Therefore, (iv) follows and, as shown above, (v) also implies over F. Now $k(x) \in K[x] \subset F[x]$ and k(u) = 0, so by Theorem V.1.6(ii), algebraic over F so let f(x) be the (monic) irreducible polynomial of u(i), (ii), and (iii). then one of the $(x - u_i)$ is x - u and f(x) = x - u. Therefore, $u \in F$ and it must equal one of the $(x - u_i)$ and since u is a root of both k and fmust be a product of some of the $(x - u_i)$'s; in fact, since f is irreducible F[x] is a unique factorization domain, so since f is a factor of k then f $k=(x-u_1)(x-u_2)\cdots(x-u_n)$ for some $u_i\in F$. As explained above, f divides k. But by hypothesis, k splits in F[x], so let k(x) be the (monic) irreducible polynomial of u over K. Also, u is V.1.13, E is algebraic over K. Let $u \in E$. Then u is algebraic over K so **Proof (continued).** Hypothesize (v). Let E be an algebraic extension of F. Since F is hypothesized to be algebraic over K, then by Theorem

Theorem V.3.4 Lemma V 3.5

F is algebraic over K and F is algebraically closed

Theorem V.3.4. If F is an extension field of K, then the following

conditions are equivalent:

F is a splitting field over K of the set of all (irreducible) polynomials in K[x].

algebraically closed and (i) follows. Hypothesize (ii). Let sets S and X be as above. Then F = K(X). By over K of the set S of all (irreducible polynomials in K[x]. So (i) \Rightarrow (ii). over K, then every element of F is the root of some polynomial in S and so all polynomials in S. Then $X \subseteq F$. So $K(X) \subseteq F$. Since F is algebraic every root of every polynomial in S is in F. Let X be the set of all roots of closed, then every polynomial in S splits in F[x] by Theorem V.3.3(ii) and **Proof.** Hypothesize (i). Let S be the set of all irreducible polynomials $F\subseteq K[x]$. Therefore K(X)=F and so F is (by definition) a splitting field K[x]. Since each polynomial in S is also in F[x] and F is algebraically Theorem V.1.12, F is algebraic over K. By Theorem V.3.3(v), F is

January 25, 2016 7 / 22

Lemma V.3.5. If F is an algebraic extension field of K, then $|F| \leq \aleph_0 |K|$.

definition of equal cardinality) $|T| = |\cup_{n \in \mathbb{N}} K^n|$. By Theorem 0.8.12(ii), $f(u)=f_n(u)$ for $u\in T_n$ is a well-defined bijection. Therefore (by the are the sets K^n), the map $f: T = \bigcup_{n \in \mathbb{N}} T_n \to \bigcup_{n \in \mathbb{N}} K^n$, given by determined by its n coefficients $a_0, a_1, \ldots, a_{n-1} \in K$. For each $n \in \mathbb{N}$ let polynomial $f = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \in T$ is completely For each $n \in \mathbb{N}$ let T_n be the set of all polynomial in T of degree n. Then **Proof.** Let T be the set of monic polynomials of positive degree in K[x]. $f_n:T_n o \mathcal{K}^n$ be a bijection. Since the sets T_n for $n\in\mathbb{N}$ are disjoint (as $|\cup_{n\in\mathbb{N}}K^n|=leph_0|K|$. That is, $|T|=leph_0|K|$. $|T_n| = |K^n|$ where $K^n = K \times K \times \cdots \times K$ (n factors), since every

Lemma V.3.5 (continued 2)

Lemma V.3.5 (continued 1)

Proof (continued). Next we show that $|F| \leq |T|$. Foe each irreducible $f \in T$, choose an ordering of the (distinct) roots of f in F (which can be done by the Well-Ordering Principle). Define a mapping from F to $T \times \mathbb{N}$ as follows. If $a \in F$, then a is algebraic over K by hypothesis, and there exists a unique irreducible monic polynomial $f \in T$ with f(a) = 0 by Theorem V.1.6. Assign to $a \in F$ the pair $(f, i) \in T \times \mathbb{N}$ where a is the ith root of f in the previously chosen ordering of the roots of f in F. Since every $f \in T$ is in exactly one T_n and each root a of f is associated with a unique $i \in \mathbb{N}$ (based on the ordering of the unique roots of f). So the mapping is well-defined. Now if a and b in f are mapped to the same (f,i) then a and b are both roots of f and each appears as the ith root of f in the ordering of the roots. But the unique roots of f in the ordering of the roots. But the unique roots of f in the ordering of the mapping f in the ordering of the mapping f in the ordering of f in the ordering of f in the mapping f in the ordering of f in the ordering of f in the mapping f in the ordering of f in the ordering of f in the mapping f in the ordering of f in the o

Lemma V.3.5. If F is an algebraic extension field of K, then $|F| \leq \aleph_0 |K|$.

Proof (continued). Whence, $|F| \leq |T \times \mathbb{N}|$ (see Definition 0.8.4). By Definition 0.8.3 (and the definition of \aleph_0), $|T \times \mathbb{N}| = |T| |\mathbb{N}| = |T| \aleph_0$. Since T is infinite, by Theorem 0.8.11 implies $|T| \aleph_0 = |T|$. By the first paragraph, $|T| = \aleph_0 |T|$. Therefore $|F| \leq |T \times \mathbb{N}| = |T| |\mathbb{N}| = |T| \aleph_0 = |T| = \aleph_0 |K|$.

January 25, 2016

Theorem V.3.6(I)

Theorem V.3.6. Every field K has an algebraic closure. Any two algebraic closures of K are K-isomorphic.

Theorem V 3.6

Proof. Choose a set S such that $\aleph_0|\mathcal{K}|<|S|$ (which can be done because $|\mathcal{P}(A)|>|A|$ for any set A; this is Theorem 0.8.5). Since $|\mathcal{K}|\leq \aleph_0|\mathcal{K}|$ by Theorem 0.8.11, there is by Definition 0.8.4 an injection θ mapping $\mathcal{K}\to S$. Since S was chosen only for its cardinality, we could redefine the image of \mathcal{K} to be \mathcal{K} itself (so θ maps $k\in \mathcal{K}$ to itself) and replace $\mathrm{Im}(\theta)$ with \mathcal{K} to get $\mathcal{K}\subset S$.

(I) Let S be the class of all fields E such that E is a subset of S and E is an algebraic extension field of K. So we are using set S as a set of symbols on which extension fields of K are defined. We now argue that S is a set. Now a field E in S is completely determined by the subset E of S and the binary operations of addition and multiplication in E. Now addition and multiplication (by the definition of binary operation, see page 24) are functions φ and ψ , say, mapping $E \times E$ to E.

Proof (continued). So we identify φ and ψ with their "graphs" (see page 4), which are subsets of $E \times E \times E \subset S \times S \times S$. Consequently, there is a one to one (injective) map τ from S into the set $P = \mathcal{P}(S \times (S \times S \times S) \times (S \times S \times S))$ (which is a set by the Power Axiom, see page 3) given by the mapping $E \mapsto (E, \varphi, \psi)$ (technically, mapping to $(E, \text{graph of } \varphi, \text{graph of } \psi)$). The one to one property of τ follows from the fact that φ and ψ are binary operations and for two different fields E_1 and E_2 in S, either the corresponding φ ;s or ψ 's must differ. Therefore, $\tau(E_1) \neq \tau(E_2)$. Now $\text{Im}(\tau)$ is a set by the "Axiom of Class Formation," namely $\text{Im}(\tau) = \{X \in P \mid X = \tau(E) \text{ for some } E \in S\}$. Since $\tau: S \to P$ is one to one, so τ^{-1} is a function and $\tau^{-1}(\text{Im}(\tau)) = S$. That is, S is the image of a set under a function. Hungerford states that "the axioms of set theory guarantee S is in fact a set."

Modern Algebra

January 25, 2016 13 / 22

Theorem V.3.6(II)

algebraic closures of K are K-isomorphic. **Theorem V.3.6.** Every field K has an algebraic closure. Any two

set ${\mathcal S}$ by defining $E_1 \le E_2$ if and only if E_2 is an extension field of E_1 (and **Proof (continued).** (II) Note that $S \neq \emptyset$ since $K \in S$. Partially oder the maximal element F of S. union of all the fields in the chain. Therefore, by Zorn's Lemma there is a so $E_1\subset E_2$). Then every chain under \leq has an upper bound, namely the

Theorem V.3.6(III)

0.8.10, we have $|S|=|S\setminus F|$. Thus $|F_0\setminus F|<|S|=|S\setminus F|$ and there is an injective (one to one) map $\zeta:F_0\setminus F\to X\setminus F$ by Definition 0.8.4. and $|F_0| \leq \aleph_0 |K|$ by Lemma V.3.5. So, by the argument in the first since we do not have $F_0 \in \mathcal{S}$. Therefore $|F_0 \setminus F| \leq |F_0|$ since $F_0 \setminus F \subset F_0$ algebraic over K (by construction) and F(u) is algebraic over F (by map F_0 into S; the extended ζ is still injective. Extend ζ to all of F_0 by defining ζ as the identity on F and the letting ζ paragraph $|F_0 \setminus F| \le |F_0| \le \aleph_0 |K| < |S|$. Since $|F| \le |F_0| < |S|$ and Theorem V.1.13. Notice that we cannot get a contradiction based on F_0 $F_0 = F(u)$ of F where u is a root of f which does not lie in F. Since F is which does not split over F by Theorem V.3.3(ii). By Kronecker's ASSUME that F is not algebraically closed. Then there is some $f \in F[x]$ **Proof (continued).** (III) We now show that F is algebraically closed $|S| = |(S \setminus F) \cup F| = |S \setminus F| + |F|$ by Definition 0.8.3. So, by Theorem Theorem V.1.12), then F + 0 = F(u) is an algebraic extension of K by Theorem (Theorem V.1.10), there is a proper algebraic extension

Theorem V.3.6(III)

Theorem V.3.6. Every field K has an algebraic closure. Any two

algebraic closures of K are K-isomorphic.

an algebraic closure of K. algebraically closed. Since F_0 is algebraic over K and F_1 is F-isomorphic assumption that F is not algebraically closed is false, and so F is but this is a CONTRADICTION to the maximality of F in S. So the construction, $F_1 \in \mathcal{S}$. So under the partial ordering on \mathcal{S} we have $F < F_1$, a proper algebraic extension of F (and hence of K), then so is F_1 . Also, by Since $F \subset F_1$, then F_1 is an extension field of F. Consequently, since F_0 is the sum $\zeta(a) + \zeta(b)$ as $\zeta(a+b)$ and define the product $\zeta(a)\zeta(b)$ as $\zeta(ab)$. **Proof** (continued). Denote the image of ζ as $Im(\zeta) = F_1$. Define in F_1 to F_0 , then F_1 is algebraic over K. Therefore (by Theorem V.3.4(i)) F is Then F_1 is a field isomorphic to F_0 and $\zeta:F_0\to F_1$ is an F-isomorphism.

shown in Corollary V.3.9 below (independently of this theorem). The claim that any two algebraic closures of ${\mathcal K}$ are ${\mathcal K}$ -isomorphic will be

Corollary V.3.7

15 / 22

degree) in K[x], then there exists a splitting field of S over KCorollary V.3.7. If K is a field and S a set of polynomials (of positive

itself splits in F. Therefore, F is a splitting field of S over K. say $f = f - 1f_2 \cdots f_n$. By Theorem V.3.4(ii), each f_i splits in f and so fcan be (uniquely) written as a product of irreducible polynomials in K[x], the proof of Theorem V.3.3, F[x] is a unique factorization domain. So f**Proof.** Let F be an algebraic closure of K. Let $f \in S$. As argued above in

January 25, 2016 17 / 22

Theorem V 3 8

extendible to an isomorphism $F \cong M$. field of S over K and M is a splitting field of S' over L, then σ is fields, $S = \{f_i\}$ a set of polynomials (of positive degree) in K[x], and $S' = \{\sigma f_i\}$ the corresponding set of polynomials in L[x]. If F is a splitting **Theorem V.3.8.** (For S infinite.) Let $\sigma: K \to L$ be an isomorphism of

so $au|_{E_i} = au_i$). So by Zorn's Lemma, $\mathcal S$ has a maximal element as element, namely (sup $_{i\in I} E_i, \cup_{i\in I} N_i, \tau$) where τ is defined on E_i as τ_i (and $(F_0,M_0, au_0)\in\mathcal{S}$ which is totally ordered under \leq), say $C = \{(E_i, N_i, \tau_i)\}_{i \in I}$, has a maximal a partial ordering on ${\mathcal S}$ and for any chain in ${\mathcal S}$ (that is, for any subset of ${\mathcal S}$ extends σ (i.e., $K \subset E \subset F$, $L \subset N \subset M$, and $E \cong N$ under τ). Define $(E_1, \mathcal{N}_1, \tau_1) \leq (E_2, \mathcal{N}_2, \tau_2)$ if $E_1 \subset E_2$, $\mathcal{N}_1 \subset \mathcal{N}_2$, and $\tau_2|_{E_1} = \tau_1$. Then \leq is intermediate field of M and L, and $\tau: E \to N$ is an isomorphism that **Proof.** Let S be an arbitrary (infinite) set. Let S consist of all triples (E, \mathcal{N}, au) , where E is an intermediate field of F and $\mathcal{K},~\mathcal{N}$ is an

extension of σ is an isomorphism of F with M. defining F_1 as $au_0^{-1}(M_1)$). Whence $(F,M, au_0)\in\mathcal{S}$ and au_0 is the desired If we assume $M_0 \neq M$ then we get a similar contradiction (this time But this means that $(F_1, M_1, au) \in \mathcal{S}$ and (since $F_0 \subset F_1$ and $M_0 \subset M_1$) extended to an isomorphism au_1 mapping $F_1 o M_1$ and yielding $F_1 \cong M_1$ notes for this section; we are using $S = \{f\}$ here) shows that τ_0 can be thsi theorem where S is a finite set of polynomials (see the regular class contains a splitting field M_1 of $\tau_0 f = \sigma f$ over M_0 . The part of the proof of isomorphism and $F\cong M$. τ_0 is then the desired extension of σ . ASSUME **Proof (continued).** We claim that $F_0 = F$ and $M_0 = M$, so that τ_0 is an $(F_0, \mathcal{M}_0, au_0)$. So the assumption that $F_0
eq F$ is false and we have $F_0 = F$. (by hypothesis), F contains a splitting field F_1 of f over F_0 . Similarly, M F_0 is an intermediate field of F and K). Since all the roots of f lie in F $F_0
eq F$. Then there is some $f \in S$ which does not split over F_0 (because $(F_0, \mathcal{M}_0, au_0) < (F_1, \mathcal{M}_1, au_1)$. But this CONTRADICTS the maximality of

Theorem V.3.12

extension and the set of all closed subgroups of the Galois group $Aut_K F$ one-to-one correspondence between the set of all intermediate fields of the **Theory)** If F is an algebraic Galois extension field of K, then there is a Theorem V.3.12. (Generalized Fundamental Theorem of Galois (given by $E\mapsto E'=\operatorname{\mathsf{Aut}}_E F)$ such that:

 $\mathsf{(ii)'}\ F$ is Galois over every intermediate field E, but E is Galois over K if and only if the corresponding subgroup E' is normal in $G = Aut_K F$; in this case G/E' is (isomorphic to) the Galois group $\operatorname{Aut}_K E$ of E over K.

Proof. We will show that every intermediate field E is closed (i.e., $E=E^{\prime\prime})$ and then the one-to-one correspondence is given by Theorem

Since F is algebraic and Galois over K by hypothesis, then by Theorem separable polynomials. V.3.11 (the (i) \Rightarrow (iii) part), F is the splitting field over K of a set T of

Theorem V.3.12 (continued 1)

January 25, 2016 19 / 22

January 25, 2016

closed—see page 247). The one-to-one correspondence now follows that is, E is closed (recall that F is Galois over E if and only if E is field E. Hence by Theorem V.3.11 (the (iii) \Rightarrow (i) part) F is Galois over E; **Proof.** By Exercise V.3.2, F is also a splitting field of T over intermediate

Galois over K if and only if E' is normal in $Aut_K F$. which requires finite dimensional extensions) carries over to show that E V.2.5(i) (which only uses Lemma V.2.11 and Lemma V.2.13, neither of Now for (ii''). Since F is algebraic over K, then every intermediate field algebraic over K. So the first paragraph of the proof of Theorem

of those automorphisms that are extendible to F. $G/E' = Aut_K F/Aut_E F$ is isomorphic to the subgroup of $Aut_K E$ consisting (with H=E and H'=E''=E). Therefore, Lemma V.2.14 implies that above, then E''=E is a stable intermediate field by Lemma V.2.11(ii) If E = E'' is Galois over K so that E' is normal in $G = Aut_K F$ as shown

Modern Algebra January 25, 2016 20 / 22

January 25, 2016 21 / 22

Theo

Theorem V.3.12 (continued 2)

Theorem V.3.12. (Generalized Fundamental Theorem of Galois Theory) If F is an algebraic Galois extension field of K, then there is a one-to-one correspondence between the set of all intermediate fields of the extension and the set of all closed subgroups of the Galois group $\operatorname{Aut}_K F$ (given by $E \mapsto E' = \operatorname{Aut}_E F$) such that:

(ii)' F is Galois over every intermediate field E, but E is Galois over K if and only if the corresponding subgroup E' is normal in $G = \operatorname{Aut}_K F$; in this case G/E' is (isomorphic to) the Galois group $\operatorname{Aut}_K E$ of E over K.

Proof. Since F is a splitting field over the set of polynomials T as shown above, then by Exercise V.3.2, F is also a splitting field over E. Therefore every K-automorphism in $\operatorname{Aut}_K E$ extends to F by Theorem V.3.8 (where L = K, T = S = S', and M = F so that the extended σ is in fact an automorphism of F). So all of $\operatorname{Aut}_K E$ is extendible to F and (by Lemma V.2.14, mentioned above), $\operatorname{Aut}_K E \cong G/E'$.

O Modern Algebra lanuary 25, 2016 22 / 22