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Theorem V.3.3 (“Algebraically Closed”)

Theorem V.3.3

Theorem V.3.3. The following conditions on a field F are equivalent:

(i) Every nonconstant polynomial f ∈ F [x ] has a root in F ;

(ii) every nonconstant polynomial f ∈ F [x ] splits over F ;

(iii) every irreducible polynomial in F [x ] has degree one;

(iv) there is no algebraic extension field of F (except F itself);

(v) there exists a subfield K of F such that F is algebraic over K
and every polynomial in K [x ] splits in F [x ].

Proof. Hypothesize (i). If f is a nonconstant polynomial in F [x ], then by
hypothesis f has a root u1 in F and so by the Factor Theorem (Theorem
III.6.6), x − u1 is a factor of f in F [x ]. Then f (x) = (x − u1)f1(x).

Then
inductively f can be factored in F [x ] into a product of linear terms times a
degree 0 polynomial (i.e., a constant). That is,
f (x) = u0(x − u1)(x − u2) · · · (x − un). So f splits over F and (ii) follows.

() Modern Algebra January 25, 2016 3 / 22



Theorem V.3.3 (“Algebraically Closed”)

Theorem V.3.3

Theorem V.3.3. The following conditions on a field F are equivalent:

(i) Every nonconstant polynomial f ∈ F [x ] has a root in F ;

(ii) every nonconstant polynomial f ∈ F [x ] splits over F ;

(iii) every irreducible polynomial in F [x ] has degree one;

(iv) there is no algebraic extension field of F (except F itself);

(v) there exists a subfield K of F such that F is algebraic over K
and every polynomial in K [x ] splits in F [x ].

Proof. Hypothesize (i). If f is a nonconstant polynomial in F [x ], then by
hypothesis f has a root u1 in F and so by the Factor Theorem (Theorem
III.6.6), x − u1 is a factor of f in F [x ]. Then f (x) = (x − u1)f1(x). Then
inductively f can be factored in F [x ] into a product of linear terms times a
degree 0 polynomial (i.e., a constant). That is,
f (x) = u0(x − u1)(x − u2) · · · (x − un). So f splits over F and (ii) follows.

() Modern Algebra January 25, 2016 3 / 22



Theorem V.3.3 (“Algebraically Closed”)

Theorem V.3.3

Theorem V.3.3. The following conditions on a field F are equivalent:

(i) Every nonconstant polynomial f ∈ F [x ] has a root in F ;

(ii) every nonconstant polynomial f ∈ F [x ] splits over F ;

(iii) every irreducible polynomial in F [x ] has degree one;

(iv) there is no algebraic extension field of F (except F itself);

(v) there exists a subfield K of F such that F is algebraic over K
and every polynomial in K [x ] splits in F [x ].

Proof. Hypothesize (i). If f is a nonconstant polynomial in F [x ], then by
hypothesis f has a root u1 in F and so by the Factor Theorem (Theorem
III.6.6), x − u1 is a factor of f in F [x ]. Then f (x) = (x − u1)f1(x). Then
inductively f can be factored in F [x ] into a product of linear terms times a
degree 0 polynomial (i.e., a constant). That is,
f (x) = u0(x − u1)(x − u2) · · · (x − un). So f splits over F and (ii) follows.

() Modern Algebra January 25, 2016 3 / 22



Theorem V.3.3 (“Algebraically Closed”)

Theorem V.3.3, (i)⇒

Proof (continued). Next, suppose g is an irreducible polynomial in F [x ].
ASSUME g has degree greater than 1.

Then by hypothesis, g has a root u
in F and so (again) by the Factor Theorem (Theorem III.6.6), (x − u) is a
factor of g in F [x ] and so g(x) = (x − u)g1(x) where g1(x) is of degree at
least 1 (and so g1 is not a unit in F [x ] by Exercise III.6.5, because a field
has no nilpotent elements since it has no zero divisors), a
CONTRADICTION. So g must be degree 1 and (iii) follows. Next,
suppose E is an algebraic extension of F . Then, by definition, every
element of E is algebraic over F , so if e ∈ E then e is a root of some
f ∈ F [x ]. But by hypothesis, f splits in F (since (i)⇒(ii)) and so all the
roots of f are in F and hence e ∈ F . That is, E = F and (iv) follows. For
(v), we simply take K = F and then we have trivially that F is algebraic
over K . Since (i)⇒(ii) then we have that every polynomial in K [x ] = F [x ]
splits in F [x ] (constant polynomials have no zeros and “split” is not
defined for them; see page 257). So (v) follows.
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Theorem V.3.3 (“Algebraically Closed”)

Theorem V.3.3, (ii), (iii) ⇒

Proof (continued). Hypothesize (ii). Trivially, (ii)⇒(i) and so from
above, (ii) also implies (iii), (iv), and (v).

Hypothesize (iii) and let f be a nonconstant polynomial in F [x ]. Since F
is a field then F is a unique factorization domain (trivially since F contains
no nonzero nonunits; see Definition III.3.5) and so by Theorem III.6.14, Fx
is a unique factorization domain. So f can be written (uniquely) as a
product of irreducible polynomials in F [x ].

By hypothesis, every irreducible
polynomial in F [x ] is of degree one and so is of the form u0(x − u1) where
u0, u1 ∈ F and u0 6= 0. Then u1 ∈ F is a root of an irreducible factor of f
and so is a root of f . Therefore (i) follows and, as shown above, (ii), (iv),
and (v) follow.
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Theorem V.3.3 (“Algebraically Closed”)

Theorem V.3.3, (iv)⇒

Proof (continued). To show (iv)⇒(i), we consider the contrapositive and
hypothesize the negation of (i). That is, suppose there is a nonconstant
polynomial f ∈ F [x ] which does not have a root in F . As argued above,
F [x ] is a unique factorization domain and so f can be (uniquely) written
as a product of irreducible polynomials.

Consider one of these nonconstant
irreducible factors of f , say g where the degree of g is n. Then by
Kronecker’s Theorem (Theorem V.1.10), there is an extension field F (u)
of F where u is a root of g and [F (u) : F ] = n. By Theorem V.1.11, F (u)
is an algebraic extension of F . So there is an algebraic extension of F
other than F itself (i.e., the negation of (iv) holds). So “not (i) ⇒ not
(iv)” or, equivalently, (iv)⇒(i). As shown above, hypothesizing (iv) then
implies (ii), (iii), and (v).

() Modern Algebra January 25, 2016 6 / 22



Theorem V.3.3 (“Algebraically Closed”)

Theorem V.3.3, (iv)⇒

Proof (continued). To show (iv)⇒(i), we consider the contrapositive and
hypothesize the negation of (i). That is, suppose there is a nonconstant
polynomial f ∈ F [x ] which does not have a root in F . As argued above,
F [x ] is a unique factorization domain and so f can be (uniquely) written
as a product of irreducible polynomials. Consider one of these nonconstant
irreducible factors of f , say g where the degree of g is n. Then by
Kronecker’s Theorem (Theorem V.1.10), there is an extension field F (u)
of F where u is a root of g and [F (u) : F ] = n. By Theorem V.1.11, F (u)
is an algebraic extension of F . So there is an algebraic extension of F
other than F itself (i.e., the negation of (iv) holds).

So “not (i) ⇒ not
(iv)” or, equivalently, (iv)⇒(i). As shown above, hypothesizing (iv) then
implies (ii), (iii), and (v).

() Modern Algebra January 25, 2016 6 / 22



Theorem V.3.3 (“Algebraically Closed”)

Theorem V.3.3, (iv)⇒

Proof (continued). To show (iv)⇒(i), we consider the contrapositive and
hypothesize the negation of (i). That is, suppose there is a nonconstant
polynomial f ∈ F [x ] which does not have a root in F . As argued above,
F [x ] is a unique factorization domain and so f can be (uniquely) written
as a product of irreducible polynomials. Consider one of these nonconstant
irreducible factors of f , say g where the degree of g is n. Then by
Kronecker’s Theorem (Theorem V.1.10), there is an extension field F (u)
of F where u is a root of g and [F (u) : F ] = n. By Theorem V.1.11, F (u)
is an algebraic extension of F . So there is an algebraic extension of F
other than F itself (i.e., the negation of (iv) holds). So “not (i) ⇒ not
(iv)” or, equivalently, (iv)⇒(i). As shown above, hypothesizing (iv) then
implies (ii), (iii), and (v).

() Modern Algebra January 25, 2016 6 / 22



Theorem V.3.3 (“Algebraically Closed”)

Theorem V.3.3, (iv)⇒

Proof (continued). To show (iv)⇒(i), we consider the contrapositive and
hypothesize the negation of (i). That is, suppose there is a nonconstant
polynomial f ∈ F [x ] which does not have a root in F . As argued above,
F [x ] is a unique factorization domain and so f can be (uniquely) written
as a product of irreducible polynomials. Consider one of these nonconstant
irreducible factors of f , say g where the degree of g is n. Then by
Kronecker’s Theorem (Theorem V.1.10), there is an extension field F (u)
of F where u is a root of g and [F (u) : F ] = n. By Theorem V.1.11, F (u)
is an algebraic extension of F . So there is an algebraic extension of F
other than F itself (i.e., the negation of (iv) holds). So “not (i) ⇒ not
(iv)” or, equivalently, (iv)⇒(i). As shown above, hypothesizing (iv) then
implies (ii), (iii), and (v).

() Modern Algebra January 25, 2016 6 / 22



Theorem V.3.3 (“Algebraically Closed”)

Theorem V.3.3, (v) ⇒

Proof (continued). Hypothesize (v). Let E be an algebraic extension of
F . Since F is hypothesized to be algebraic over K , then by Theorem
V.1.13, E is algebraic over K . Let u ∈ E .

Then u is algebraic over K so
let k(x) be the (monic) irreducible polynomial of u over K . Also, u is
algebraic over F so let f (x) be the (monic) irreducible polynomial of u
over F . Now k(x) ∈ K [x ] ⊂ F [x ] and k(u) = 0, so by Theorem V.1.6(ii),
f divides k. But by hypothesis, k splits in F [x ], so
k = (x − u1)(x − u2) · · · (x − un) for some ui ∈ F . As explained above,
F [x ] is a unique factorization domain, so since f is a factor of k then f
must be a product of some of the (x − ui )’s; in fact, since f is irreducible
it must equal one of the (x − ui ) and since u is a root of both k and f
then one of the (x − ui ) is x − u and f (x) = x − u. Therefore, u ∈ F and
so E = F . Therefore, (iv) follows and, as shown above, (v) also implies
(i), (ii), and (iii).
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Theorem V.3.4 (“Algebraic Closure”)

Theorem V.3.4

Theorem V.3.4. If F is an extension field of K , then the following
conditions are equivalent:

(i) F is algebraic over K and F is algebraically closed;
(ii) F is a splitting field over K of the set of all (irreducible)

polynomials in K [x ].

Proof. Hypothesize (i). Let S be the set of all irreducible polynomials in
K [x ]. Since each polynomial in S is also in F [x ] and F is algebraically
closed, then every polynomial in S splits in F [x ] by Theorem V.3.3(ii) and
every root of every polynomial in S is in F .

Let X be the set of all roots of
all polynomials in S . Then X ⊆ F . So K (X ) ⊆ F . Since F is algebraic
over K , then every element of F is the root of some polynomial in S and so
F ⊆ K [x ]. Therefore K (X ) = F and so F is (by definition) a splitting field
over K of the set S of all (irreducible polynomials in K [x ]. So (i)⇒(ii).
Hypothesize (ii). Let sets S and X be as above. Then F = K (X ). By
Theorem V.1.12, F is algebraic over K . By Theorem V.3.3(v), F is
algebraically closed and (i) follows.
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Lemma V.3.5

Lemma V.3.5

Lemma V.3.5. If F is an algebraic extension field of K , then |F | ≤ ℵ0|K |.

Proof. Let T be the set of monic polynomials of positive degree in K [x ].
For each n ∈ N let Tn be the set of all polynomial in T of degree n. Then
|Tn| = |Kn| where Kn = K × K × · · · × K (n factors), since every
polynomial f = xn + an−1x

n−1 + · · ·+ a1x + a0 ∈ T is completely
determined by its n coefficients a0, a1, . . . , an−1 ∈ K .

For each n ∈ N let
fn : Tn → Kn be a bijection. Since the sets Tn for n ∈ N are disjoint (as
are the sets Kn), the map f : T = ∪n∈NTn → ∪n∈NKn, given by
f (u) = fn(u) for u ∈ Tn is a well-defined bijection. Therefore (by the
definition of equal cardinality) |T | = | ∪n∈N Kn|. By Theorem 0.8.12(ii),
| ∪n∈N Kn| = ℵ0|K |. That is, |T | = ℵ0|K |.
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Lemma V.3.5

Lemma V.3.5 (continued 1)

Proof (continued). Next we show that |F | ≤ |T |. Foe each irreducible
f ∈ T , choose an ordering of the (distinct) roots of f in F (which can be
done by the Well-Ordering Principle). Define a mapping from F to T × N
as follows. If a ∈ F , then a is algebraic over K by hypothesis, and there
exists a unique irreducible monic polynomial f ∈ T with f (a) = 0 by
Theorem V.1.6.

Assign to a ∈ F the pair (f , i) ∈ T ×N where a is the ith
root of f in the previously chosen ordering of the roots of f in F . Since
every f ∈ T is in exactly one Tn and each root a of f is associated with a
unique i ∈ N (based on the ordering of the unique roots of f ). So the
mapping is well-defined. Now if a and b in f are mapped to the same
(f , i) then a and b are both roots of f and each appears as the ith root of
f in the ordering of the roots. But the unique roots of f in the ordering of
the roots. But the unique roots of f were ordered, so it must be that
a = b. So the mapping 0f F to T × N is one to one (injective).
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Lemma V.3.5

Lemma V.3.5 (continued 2)

Lemma V.3.5. If F is an algebraic extension field of K , then |F | ≤ ℵ0|K |.

Proof (continued). Whence, |F | ≤ |T × N| (see Definition 0.8.4). By
Definition 0.8.3 (and the definition of ℵ0), |T × N| = |T ||N| = |T |ℵ0.
Since T is infinite, by Theorem 0.8.11 implies |T |ℵ0 = |T |. By the first
paragraph, |T | = ℵ0|T |.

Therefore
|F | ≤ |T × N| = |T ||N| = |T |ℵ0 = |T | = ℵ0|K |.
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Theorem V.3.6 (Existence of Algebraic Closure)

Theorem V.3.6

Theorem V.3.6. Every field K has an algebraic closure. Any two
algebraic closures of K are K -isomorphic.

Proof. Choose a set S such that ℵ0|K | < |S | (which can be done because
|P(A)| > |A| for any set A; this is Theorem 0.8.5). Since |K | ≤ ℵ0|K | by
Theorem 0.8.11, there is by Definition 0.8.4 an injection θ mapping
K → S .

Since S was chosen only for its cardinality, we could redefine the
image of K to be K itself (so θ maps k ∈ K to itself) and replace Im(θ)
with K to get K ⊂ S .
(I) Let S be the class of all fields E such that E is a subset of S and E is
an algebraic extension field of K . So we are using set S as a set of
symbols on which extension fields of K are defined. We now argue that S
is a set. Now a field E in S is completely determined by the subset E of S
and the binary operations of addition and multiplication in E . Now
addition and multiplication (by the definition of binary operation, see page
24) are functions ϕ and ψ, say, mapping E × E to E .
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Theorem V.3.6 (Existence of Algebraic Closure)

Theorem V.3.6(I)

Proof (continued). So we identify ϕ and ψ with their “graphs” (see page
4), which are subsets of E × E × E ⊂ S × S × S . Consequently, there is a
one to one (injective) map τ from S into the set
P = P(S × (S × S × S)× (S × S × S)) (which is a set by the Power
Axiom, see page 3) given by the mapping E 7→ (E , ϕ, ψ) (technically,
mapping to (E , graph of ϕ, graph of ψ)).

The one to one property of τ
follows from the fact that ϕ and ψ are binary operations and for two
different fields E1 and E2 in S, either the corresponding ϕ;s or ψ’s must
differ, and so the graphs of the corresponding ϕ’s or ψ’s must differ.
Therefore, τ(E1) 6= τ(E2). Now Im(τ) is a set by the “Axiom of Class
Formation,” namely Im(τ) = {X ∈ P | X = τ(E ) for some E ∈ S}. Since
τ : S → P is one to one, so τ−1 is a function and τ−1(Im(τ)) = S. That
is, S is the image of a set under a function. Hungerford states that “the
axioms of set theory guarantee S is in fact a set.”
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Theorem V.3.6 (Existence of Algebraic Closure)

Theorem V.3.6(II)

Theorem V.3.6. Every field K has an algebraic closure. Any two
algebraic closures of K are K -isomorphic.

Proof (continued). (II) Note that S 6= ∅ since K ∈ S. Partially oder the
set S by defining E1 ≤ E2 if and only if E2 is an extension field of E1 (and
so E1 ⊂ E2). Then every chain under ≤ has an upper bound, namely the
union of all the fields in the chain.

Therefore, by Zorn’s Lemma there is a
maximal element F of S.
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Theorem V.3.6 (Existence of Algebraic Closure)

Theorem V.3.6(III)

Proof (continued). (III) We now show that F is algebraically closed.
ASSUME that F is not algebraically closed. Then there is some f ∈ F [x ]
which does not split over F by Theorem V.3.3(ii). By Kronecker’s
Theorem (Theorem V.1.10), there is a proper algebraic extension
F0 = F (u) of F where u is a root of f which does not lie in F .

Since F is
algebraic over K (by construction) and F (u) is algebraic over F (by
Theorem V.1.12), then F + 0 = F (u) is an algebraic extension of K by
Theorem V.1.13. Notice that we cannot get a contradiction based on F0

since we do not have F0 ∈ S. Therefore |F0 \ F | ≤ |F0| since F0 \ F ⊂ F0

and |F0| ≤ ℵ0|K | by Lemma V.3.5. So, by the argument in the first
paragraph |F0 \ F | ≤ |F0| ≤ ℵ0|K | < |S |. Since |F | ≤ |F0| < |S | and
|S | = |(S \ F ) ∪ F | = |S \ F |+ |F | by Definition 0.8.3. So, by Theorem
0.8.10, we have |S | = |S \ F |. Thus |F0 \ F | < |S | = |S \ F | and there is
an injective (one to one) map ζ : F0 \ F → X \ F by Definition 0.8.4.
Extend ζ to all of F0 by defining ζ as the identity on F and the letting ζ
map F0 into S ; the extended ζ is still injective.
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Theorem V.3.6 (Existence of Algebraic Closure)

Theorem V.3.6(III)

Theorem V.3.6. Every field K has an algebraic closure. Any two
algebraic closures of K are K -isomorphic.

Proof (continued). Denote the image of ζ as Im(ζ) = F1. Define in F1

the sum ζ(a) + ζ(b) as ζ(a + b) and define the product ζ(a)ζ(b) as ζ(ab).
Then F1 is a field isomorphic to F0 and ζ : F0 → F1 is an F -isomorphism.
Since F ⊂ F1, then F1 is an extension field of F .

Consequently, since F0 is
a proper algebraic extension of F (and hence of K ), then so is F1. Also, by
construction, F1 ∈ S. So under the partial ordering on S we have F < F1,
but this is a CONTRADICTION to the maximality of F in S. So the
assumption that F is not algebraically closed is false, and so F is
algebraically closed. Since F0 is algebraic over K and F1 is F -isomorphic
to F0, then F1 is algebraic over K . Therefore (by Theorem V.3.4(i)) F is
an algebraic closure of K .

The claim that any two algebraic closures of K are K -isomorphic will be
shown in Corollary V.3.9 below (independently of this theorem).
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Corollary V.3.7 (Existence of Splitting Fields)

Corollary V.3.7

Corollary V.3.7. If K is a field and S a set of polynomials (of positive
degree) in K [x ], then there exists a splitting field of S over K .

Proof. Let F be an algebraic closure of K . Let f ∈ S . As argued above in
the proof of Theorem V.3.3, F [x ] is a unique factorization domain. So f
can be (uniquely) written as a product of irreducible polynomials in K [x ],
say f = f − 1f2 · · · fn.

By Theorem V.3.4(ii), each fi splits in f and so f
itself splits in F . Therefore, F is a splitting field of S over K .
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Theorem V.3.8 (For S infinite)

Theorem V.3.8

Theorem V.3.8. (For S infinite.) Let σ : K → L be an isomorphism of
fields, S = {fi} a set of polynomials (of positive degree) in K [x ], and
S ′ = {σfi} the corresponding set of polynomials in L[x ]. If F is a splitting
field of S over K and M is a splitting field of S ′ over L, then σ is
extendible to an isomorphism F ∼= M.

Proof. Let S be an arbitrary (infinite) set. Let S consist of all triples
(E ,N, τ), where E is an intermediate field of F and K , N is an
intermediate field of M and L, and τ : E → N is an isomorphism that
extends σ (i.e., K ⊂ E ⊂ F , L ⊂ N ⊂ M, and E ∼= N under τ).

Define
(E1,N1, τ1) ≤ (E2,N2, τ2) if E1 ⊂ E2, N1 ⊂ N2, and τ2|E1 = τ1. Then ≤ is
a partial ordering on S and for any chain in S (that is, for any subset of S
which is totally ordered under ≤), say C = {(Ei ,Ni , τi )}i∈I , has a maximal
element, namely (supi∈I Ei ,∪i∈INi , τ) where τ is defined on Ei as τi (and
so τ |Ei

= τi ). So by Zorn’s Lemma, S has a maximal element as
(F0,M0, τ0) ∈ S.
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Theorem V.3.8 (For S infinite)

Theorem V.3.8 (continued)

Proof (continued). We claim that F0 = F and M0 = M, so that τ0 is an
isomorphism and F ∼= M. τ0 is then the desired extension of σ. ASSUME
F0 6= F . Then there is some f ∈ S which does not split over F0 (because
F0 is an intermediate field of F and K ). Since all the roots of f lie in F
(by hypothesis), F contains a splitting field F1 of f over F0.

Similarly, M
contains a splitting field M1 of τ0f = σf over M0. The part of the proof of
thsi theorem where S is a finite set of polynomials (see the regular class
notes for this section; we are using S = {f } here) shows that τ0 can be
extended to an isomorphism τ1 mapping F1 → M1 and yielding F1

∼= M1.
But this means that (F1,M1, τ) ∈ S and (since F0 ⊂ F1 and M0 ⊂ M1)
(F0,M0, τ0) < (F1,M1, τ1). But this CONTRADICTS the maximality of
(F0,M0, τ0). So the assumption that F0 6= F is false and we have F0 = F .
If we assume M0 6= M then we get a similar contradiction (this time
defining F1 as τ−1

0 (M1)). Whence (F ,M, τ0) ∈ S and τ0 is the desired
extension of σ is an isomorphism of F with M.
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F0 6= F . Then there is some f ∈ S which does not split over F0 (because
F0 is an intermediate field of F and K ). Since all the roots of f lie in F
(by hypothesis), F contains a splitting field F1 of f over F0. Similarly, M
contains a splitting field M1 of τ0f = σf over M0. The part of the proof of
thsi theorem where S is a finite set of polynomials (see the regular class
notes for this section; we are using S = {f } here) shows that τ0 can be
extended to an isomorphism τ1 mapping F1 → M1 and yielding F1

∼= M1.
But this means that (F1,M1, τ) ∈ S and (since F0 ⊂ F1 and M0 ⊂ M1)
(F0,M0, τ0) < (F1,M1, τ1). But this CONTRADICTS the maximality of
(F0,M0, τ0). So the assumption that F0 6= F is false and we have F0 = F .

If we assume M0 6= M then we get a similar contradiction (this time
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Theorem V.3.12 (Generalized Fundamental Theorem of Galois
Theory)

Theorem V.3.12

Theorem V.3.12. (Generalized Fundamental Theorem of Galois
Theory) If F is an algebraic Galois extension field of K , then there is a
one-to-one correspondence between the set of all intermediate fields of the
extension and the set of all closed subgroups of the Galois group AutKF
(given by E 7→ E ′ = AutEF ) such that:

(ii)′ F is Galois over every intermediate field E , but E is Galois
over K if and only if the corresponding subgroup E ′ is
normal in G = AutKF ; in this case G/E ′ is (isomorphic to)
the Galois group AutKE of E over K .

Proof. We will show that every intermediate field E is closed (i.e.,
E = E ′′) and then the one-to-one correspondence is given by Theorem
V.2.7.

Since F is algebraic and Galois over K by hypothesis, then by Theorem
V.3.11 (the (i)⇒(iii) part), F is the splitting field over K of a set T of
separable polynomials.
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Theorem V.3.12 (Generalized Fundamental Theorem of Galois
Theory)

Theorem V.3.12 (continued 1)

Proof. By Exercise V.3.2, F is also a splitting field of T over intermediate
field E . Hence by Theorem V.3.11 (the (iii)⇒(i) part) F is Galois over E ;
that is, E is closed (recall that F is Galois over E if and only if E is
closed—see page 247). The one-to-one correspondence now follows.

Now for (ii′′). Since F is algebraic over K , then every intermediate field E
is algebraic over K . So the first paragraph of the proof of Theorem
V.2.5(i) (which only uses Lemma V.2.11 and Lemma V.2.13, neither of
which requires finite dimensional extensions) carries over to show that E is
Galois over K if and only if E ′ is normal in AutKF .

If E = E ′′ is Galois over K so that E ′ is normal in G = AutKF as shown
above, then E ′′ = E is a stable intermediate field by Lemma V.2.11(ii)
(with H = E and H ′ = E ′′ = E ). Therefore, Lemma V.2.14 implies that
G/E ′ = AutKF/AutEF is isomorphic to the subgroup of AutKE consisting
of those automorphisms that are extendible to F .
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Theorem V.3.12 (Generalized Fundamental Theorem of Galois
Theory)

Theorem V.3.12 (continued 2)

Theorem V.3.12. (Generalized Fundamental Theorem of Galois
Theory) If F is an algebraic Galois extension field of K , then there is a
one-to-one correspondence between the set of all intermediate fields of the
extension and the set of all closed subgroups of the Galois group AutKF
(given by E 7→ E ′ = AutEF ) such that:

(ii)′ F is Galois over every intermediate field E , but E is Galois
over K if and only if the corresponding subgroup E ′ is
normal in G = AutKF ; in this case G/E ′ is (isomorphic to)
the Galois group AutKE of E over K .

Proof. Since F is a splitting field over the set of polynomials T as shown
above, then by Exercise V.3.2, F is also a splitting field over E . Therefore
every K -automorphism in AutKE extends to F by Theorem V.3.8 (where
L = K , T = S = S ′, and M = F so that the extended σ is in fact an
automorphism of F ). So all of AutKE is extendible to F and (by Lemma
V.2.14, mentioned above), AutKE ∼= G/E ′.
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