Modern Algebra

Chapter V. Fields and Galois Theory

V.3. Splitting Fields, Algebraic Closure, and Normality (Partial)—Proofs of Theorems

Modern Algebra

Theorem V 3.8

corresponding set of polynomials in L[x]. If F is a splitting field of S over set of polynomials (of positive degree) in K[x], and $S'=\{\sigma f_i\}$ the isomorphism $F \cong M$. K and M is a splitting field of S' over L, then σ is extendible to an **Theorem V.3.8.** Let $\sigma: K \to L$ be an isomorphism of fields, $S = \{f_i\}$ a

splitting field of S', then L=M. So σ is in fact an isomorphism giving splits over K. So $S = \{\sigma f\}$ splits over $\sigma(K) = L$ and, since M is the an inductive proof on n. For the base case, if n=1 then F=K and fand $\sigma: K \to L$ is an isomorphism, then $\sigma g \in L[x]$ is irreducible. irreducible factor g of degree greater than 1 (or else F splits over $\mathcal K$ and $f \in K[x]$. Let F be a splitting field of f over K. Let n = [F : K]. We give **Proof for** S **a Finite Set.** Suppose that S consists of a single polynomial [F:K]=1
eq n). Let u be a root of g in F. Since g is irreducible in K[x] $F\cong M$ and the base case is established. If n>1 then f must have an

Theorem V 3 2

exists a splitting field F of f with dimension $[F:K] \leq n!$. **Theorem V.3.2.** If K is a field and $f \in K[x]$ has degree $n \ge 1$, then there

n=1 (or if f splits over K) then F=K is a splitting field and $[F:K] = [F:F] = 1 \le n!.$ **Proof.** We prove this by induction on $n = \deg(f)$. For the base step, if

of f of degree greater than one. By Theorem V.1.10 (Kronecker's splitting field F of $h \in K(u)[x]$ of degree at most (n-1)!. By Exercise of g and $[K(u):K]=\deg(g)>1$. Then by Theorem III.6.6 (the Factor V.3.3, F is a splitting field of f over K. By Theorem V.1.2, Repeating this process (and factoring f) we can produce (inductively) a n-1 (we have only used polynomial g in passing; notice $\deg(g) \leq n$). Theorem) we have f(x) = (x - u)h(x) for some $h \in K(u)[x]$ of degree Theorem) there is a simple extension field K(u) of K such that u is a root If n>1 and f does not split over K, let $g\in K[x]$ be an irreducible factor

result now follows by induction. $[F:K] = [F:K(u)][K(u):K] \le (n-1)! \deg(g) \le (n-1)! n = n!$. The

Modern Algebra

Theorem V 3.8

set of polynomials (of positive degree) in K[x], and $S' = \{\sigma f_i\}$ the isomorphism $F \cong M$. K and M is a splitting field of S' over L, then σ is extendible to an corresponding set of polynomials in L[x]. If F is a splitting field of S over **Theorem V.3.8.** Let $\sigma: K \to L$ be an isomorphism of fields, $S = \{f_i\}$ a

extends to an isomorphism $F \cong M$. splitting field of σf over (intermediate field) L(v) (here, $L \subset L(v) \subset M$). So by the induction hypothesis (since [F:K(u)] < n) we have that τ intermediate field) K(u) (here, $K \subset K(u) \subset F$) and similarly M is a [F:K(u)] < n. By Exercise V.3.2, F is a splitting field of f over (the must have n = [F : K] = [F : K(u)][K(u) : K] by Theorem V.1.2 and so $\tau(u) = v$. By Theorem V.1.6(iii) we have $[K(u):K] = \deg(g) > 1$, we Theorem V.1.8(ii) σ extends to an isomorphism $\tau: K(u) \cong L(v)$ with **Proof for** S **a Finite Set (continued).** If $v \in M$ is a root of σg , then by

Modern Algebra

April 13, 2016 5 / 25

Theorem V.3.11

Corollary V.3.9

Corollary V.3.9. Let K be a field and S a set of polynomials (of positive degree) in K[x]. Then any two splitting fields of S over K are K-isomorphic. In particular, any two algebraic closures of K are

K-isomorphic

Proof. With $\sigma: \mathcal{K} \to \mathcal{K}$ as $\sigma = 1_{\mathcal{K}}$ (the identity on \mathcal{K}) in Theorem V.3.8, we have that if L and M are splitting fields for \mathcal{K} (so $\mathcal{K} \subset L$, $\mathcal{K} \subset M$) then σ extends to an isomorphism $\tau: L \to M$ and the two splitting fields are isomorphic.

For the "in particular" claim, we need to consider the set S of all polynomials in K[x]. By Theorem V.3.4, the splitting field of S is the algebraic closure of K. Again, Theorem V.3.8 with $\sigma=1_K$ yields the result. (This is also shown in Theorem V.3.6.)

Theorem V.3.11. If F is an extension field of K, then the following statements are equivalent.

- (i) F is algebraic and Galois over K.
- (ii) F is separable over K and F is a splitting field over K of a set S of polynomials in K[x].
- (iii) F is a splitting field over K of a set T of separable polynomials in K[x].
- **Proof. (i)** \Rightarrow **(ii)** and **(iii)** If $u \in F$ has irreducible polynomial f, then as in the proof of Lemma V.2.13 (up to the "Consequently, all the roots of f are distinct and lie in E" part) f splits in F[x] into a product of distinct linear factors. Hence (by definition) u is separable over K. Let $\{v_i \mid i \in I\}$ be a basis of F over K and for each $i \in I$ let $f_i \in K[x]$ be the irreducible polynomial of v_i . As just argued, each f_i is separable and splits in F[x] (and also, each v_i is separable over K, by definition). Therefore F is a splitting field over K of $S = \{f_i \mid i \in I\}$ and (ii) follow.

() Modern Algebra April 13, 2016 7 / 25

Theorem V.3.11. If F is an extension field of K, then the following statements are equivalent.

Theorem V.3.11 (continued 1)

- (ii) F is separable over K and F is a splitting field over K of a set S of polynomials in K[x].
- (iii) F is a splitting field over K of a set T of separable polynomials in K[x].
- **Proof.** (ii) \Rightarrow (iii) [Here we need to "move" the hypothesis of separable extension to the conclusion of separable polynomials.] Let $f \in S$ where F is a splitting field over K of set S of polynomials. Let $g \in K[x]$ be a monic irreducible factor of f. Since by hypothesis f splits over K, then (by definition of "splits") f is a product of linear factors in K, and so g is the irreducible polynomial in K[x] of some $u \in F$. Since by hypothesis F is separable over K, then u is separable over K (definition of separable extension) and so g is separable over K (definition of separable element $u \in F$)

Theorem V.3.11 (continued 2)

Theorem V.3.11. If F is an extension field of K, then the following statements are equivalent.

- (ii) F is separable over K and F is a splitting field over K of a set S of polynomials in K[x].
- (iii) F is a splitting field over K of a set T of separable polynomials in K[x].

Proof (continued). (ii) \Rightarrow (iii) So define set T to be the set of all monic irreducible factors in K[x] of polynomials in set S. We have just argued that set T consists of separable polynomials in K[x]. By Exercise V.3.4 ("If F is a splitting field over K of [set S of polynomials in K[x]] then F is also a splitting field over K of the set T of all irreducible factors of polynomials in S.") F is a splitting field of set T.

Modern Algebra April 13, 2016 8 / 25

Modern Algebra

April 13, 2016 9 / 25

Theorem V.3.11 (continued 3)

statements are equivalent. **Theorem V.3.11.** If F is an extension field of K, then the following

- (i) F is algebraic and Galois over K.
- (iii) F is a splitting field over K of a set T of separable polynomials in K[x].

some $f_j \in T$) such that $u \in K(v_1, v_2, \dots, v_n)$. Now consider the finite dimensional extension of K; that is, [E:K] is finite. $u \in K(v_1, v_2, \ldots, v_n) \subset K(u_1, u_2, \ldots, u_r) = E$. By Theorem V.1.12, F is a u_1, u_2, \ldots, u_r be the set of all roots (in F) of f_1, f_2, \ldots, f_n . Thus V.1.3(vii) there is finite set $\{v_1, v_2, \dots, v_n\} \subset X$ (so each v_i is a root of definition of splitting field, F = K(X). Let $u \in F \setminus K'$. By Theorem **Proof.** (iii) \Rightarrow (i) F is algebraic over K since any splitting field over K is f_1, f_2, \ldots, f_n which have v_1, v_2, \ldots, v_n as roots (respectively). Let K. Let X be the set of all roots of polynomials in K. Then by the (by definition of splitting field, Definition V.3.1) an algebraic extension of

April 13, 2016 10 / 25

Theorem V.3.11 (continued 5)

at the very beginning of this proof, and there exists $\sigma \in \operatorname{\mathsf{Aut}}_{\mathcal{K}} F$ such that when [F:K] is finite. definition), F is Galois over K. So the theorem holds in general if it holds $\sigma(u) \neq u$, then the fixed field of $\operatorname{Aut}_K F$ must be K. That is (by **Proof (continued).** (iii) \Rightarrow (i) Since u was an arbitrary element of $F \setminus K$

and so by Theorem V.1.2 we have $[F:K] = [F:K_0][K_0:K]$. is the fixed field of $\operatorname{Aut}_K F$ then we have $\operatorname{Aut}_{K_0} F = \operatorname{Aut}_K F$ (this is a Fundamental Theorem (Theorem V.2.5(i)) $[F:K_0]=|{\sf Aut}_{K_0}F|$. Since K_0 extension of K_0 by Artin's Theorem (Theorem V.2.15). By the polynomials $g_1,g_2,\ldots,g_t\in T$ such that F is a splitting field of completing the proof. With [F:K] finite, there exists a finite number of We now prove that the theorem holds for [F:K] is finite, hence remark on page 245). So $[F:K_0]=|\operatorname{Aut}_K F|$. Now we have $K\subset K_0\subset F$ Lemma V.2.8. If K_0 is the fixed field of $Aut_K F$, then F is a Galois $\{g_1,g_2,\ldots,g_t\}$ over K. Furthermore $\mathsf{Aut}_{\mathcal{K}}F$ must be a finite group by

Theorem V.3.11 (continued 4)

automorphism of F) where $\sigma \in Aut_K F$ and $\sigma = \tau$ on E. So that τ can be extended to isomorphism $\sigma: F \to F$ (and so σ is an automorphism of E and hence an isomorphism of E with itself) we have field of T over E. So by Theorem V.3.8 with $\tau: E \to E$ (τ is an intermediate field, then F is a splitting field of S over E.") F is a splitting By Exercise V.3.2 ("If F is a splitting field of S over K and E is an E in the current discussion), then for some $\tau \in \operatorname{Aut}_K E$ we have $\tau(u) \neq u$. V.2.4). Since $u \in E \setminus K$ (we are replacing field F with finite extension field Galois over K; that is, the fixed field of $Aut_K E$ is E itself (Definition dimensional case ([F:K] is finite). Under this assumption, then E is hypothesis, E is a splitting field over K of the finite set of polynomials **Proof (continued).** (iii) \Rightarrow (i) Since each $f_i \in T$ splits in F by $\{f_1, f_2, \dots, f_n\}$ (or equivalently, of the single polynomial $f = f_1 f_2 \cdots f_n$). "Assume for now" that the theorem (i.e., (iii) \Rightarrow (i)) holds in the finite

Theorem V.3.11 (continued 6)

then we will have that $[\mathcal{K}_0:\mathcal{K}]=1$ and so $\mathcal{K}_0=\mathcal{K}$, which implies the fixed field of $\operatorname{Aut}_K F$ is $K_0 = K$; that is, F is a Galois extension of K. **Proof (continued).** (iii) \Rightarrow (i) So if we show that $[F:K] = |Aut_K F|$

since g_1 is separable in F by hypothesis. the roots of the g_i lie in K an dF = K). Let $u \in F$ be a root of g_1 ; then F). If n > 1, then one of th eg;, say g_1 , has degree s > 1 (otherwise all We proceed by induction on n = [F : K], with the case n = 1 being trivial here to apply Theorem V.1.6) and the number of distinct roots of g_1 is s $[\mathcal{K}(u):\mathcal{K}]=\mathsf{deg}(g_1)=s$ by Theorem V.1.6(iii) (we need g_1 irreducible (since this implies that F=K and $\mathsf{Aut}_K F$ consists only of the identity or

Modern Algebra April 13, 2016 12 / 25

Modern Algebra

April 13, 2016 13 / 25

Theorem V.3.11 (continued 7)

than or equal to the number of roots of g_1 ; that is, $[Aut_K F : H] \le s$. Now one) then the number of left cosets of $H = \operatorname{Aut}_{K(u)} F$ in $\operatorname{Aut}_K F$ is less $\sigma \in \operatorname{\mathsf{Aut}}_{\mathcal{K}} F = \mathcal{K}'$ here). Therefore since the mapping is injective (one to $\tau M' \mapsto \tau(u)$ so the $\tau \in L' = \operatorname{Aut}_L F$ of Lemma V.2.8 equals the V.2.8), given by $\sigma H \mapsto \sigma(u)$ (in Lemma V.2.8, the mapping is V.2.8, with $L' = \operatorname{Aut}_L F$) to the set of all roots of g_1 in F (set T in Lemma set S in Lemma V.2.8; and $M' = H = \operatorname{Aut}_{K(u)}F$ in Aut_KF (in Lemma an injective map from the set of all left cosets of $H = \operatorname{Aut}_{K(u)} F$ (this is **Proof (continued).** (iii) \Rightarrow (i) By the second paragraph of the proof of Lemma V.2.8 (with L=k, M=K(u) and $f=g_1$) we have that there is late ٤ there

	0	automorphism $\sigma \in \operatorname{Aut}_K F$ with $\sigma(u) = v$ by Theorem V.3.8.	fields between K and splitting field F), then τ extends to an	and over $K(v)$ (by Exercise V.3.2 since $K(u)$ and $K(v)$ are intermedia	Corollary V.1.9. Since F is a splitting field of $\{g_1, g_2, \ldots, g_t\}$ over $K($.	is an isomorphism $ au: \mathcal{K}(u) \cong \mathcal{K}(v)$ with $ au(u) - v$ and $ au _{\mathcal{K}} = 1_{\mathcal{K}}$ by	if $v \in F$ is any other root of g_1 (which exists since $\deg(g_1) = s > 1$), t	Then of equal to the manifest of tools of \mathbf{g}_1 , that is, [varK $i = i$] $\geq i$.
Thereas V 2 11	Modern Algebra							
	April 13, 2016						$\deg(g_1)=s>1)$, t	

Theorem V.3.11 (continued 8)

 $\sigma(u) = v$ and so every root of g_1 is the image of some coset of H in hypotheses of (iii)). Now by Theorem V.1.2, is clearly separable since it divides some g_i (the g_i are separable by the factors h_j (in K(u)[x]) of the polynomials g_i (by Exercise V.3.4). Each h_j Furthermore, F is a splitting field over K(u) of the set of all irreducible $\operatorname{Aut}_K F$; that is, the mapping is onto and so $[\operatorname{Aut}_K F:H]=s$. **Proof (continued).** (iii) \Rightarrow (i) Now the mapping of cosets takes σH to

$$n = [F : K] = [F : K(u)][K(u) : K] = [F : K(u)]s$$
, or

Fundamental Theorem (Theorem V.2.5(i)) $[F:K(u)]=|\operatorname{Aut}_{K(u)}F|=|H|$ is Galois over K(u) and so the fixed field of $\operatorname{Aut}_{K(u)}F$ is K(u) and by the [F:K(u)]=n/s < n and so by the induction hypothesis we have that F

Theorem V.3.11 (continued 9)

Proof (continued). (iii) \Rightarrow (i) Therefore

$$[F:K] = [F:K(u)][K(u):K] \text{ by Theorem V.2.1}$$

$$= |H|s \text{ since } [K(u):K] = s \text{ and } H = \text{Aut}_{K(u)}F$$

$$= |H|[\text{Aut}_K F:H] \text{ since } [\text{Aut}_K F:H] = s$$

what is required (namely, $[F:K]=|{\sf Aut}_KF|)$ for the previous paragraph with the last equality holding because $[\operatorname{Aut}_K F:H]$ is the number of cosets over K for [F:K] not finite. result can be used in the paragraph before that to show that F is Galois to imply that F is Galois over K whenever [F:K] is finite. In turn, this of H in $Aut_K F$, so $[Aut_K F : H] = |Aut_K F|/|H|$. We have now established

Theorem V 3 14

following statements are equivalent. **Theorem V.3.14.** If F is an algebraic extension field of K, then the

- (i) F is normal over K.
- (ii) F is a splitting field over K of some set of polynomials in
- (iii) If K is algebraically closed, contains K, and contains F, then one to one homomorphism and σ fixes K elementwise), then $Im(\sigma) = F$ so that σ is actually a K-automorphism of Ffor any K-monomorphism of fields $\sigma: F \to \overline{K}$ (that is, σ is a (that is, $\sigma \in \mathsf{Aut}_\mathcal{K}(F)$).
- a basis of F over K (every vector space has a basis, so the set of u_i 's exists and since F is normal over K we have the splitting requirement; also, since is the irreducible polynomial in K[x] for some $u_i \in F$, where $\{u_i \mid i \in I\}$ is the u_i form a basis we know that this covers every element in F). **Proof.** (i) \Rightarrow (ii) F is a splitting field over K of $\{f_i \in K[x] \mid i \in I\}$ where f_i

Modern Algebra

Theorem V.3.14 (continued 1)

following statements are equivalent. **Theorem V.3.14.** If F is an algebraic extension field of K, then the

- (ii) F is a splitting field over K of some set of polynomials in
- (iii) If K is algebraically closed, contains K, and contains F, then one to one homomorphism and σ fixes K elementwise), then for any K-monomorphism of fields $\sigma: F \to \overline{K}$ (that is, σ is a (that is, $\sigma \in \operatorname{Aut}_K(F)$). $\mathsf{Im}(\sigma) = F$ so that σ is actually a K-automorphism of F

splits in F, say $f_j = c(x - u_1)(x - u_2) \cdots (x - u_n)$ (where $u_i \in F$, $c \in K$). $\sigma(u)$ (as shown in the two-line proof of Theorem V.2.2). By hypothesis f_i $\sigma:F \to \overline{K}$ a K-monomorphism of fields. If $u \in F$ is a root of f_j then so is **Proof.** (ii) \Rightarrow (iii) Let F be a splitting field of $\{f_i \mid i \in I\}$ over K and

Theorem V.3.14 (continued 3)

following statements are equivalent. **Theorem V.3.14.** If F is an algebraic extension field of K, then the

- (i) F is normal over K.
- (iii) If K is algebraically closed, contains K, and contains F, then one to one homomorphism and σ fixes K elementwise), then for any K-monomorphism of fields $\sigma: F \to \overline{K}$ (that is, σ is a $\mathsf{Im}(\sigma) = F$ so that σ is actually a K-automorphism of F(that is, $\sigma \in \operatorname{Aut}_K(F)$).

 $\sigma(u) = v$ by Corollary V.1.19. that F is normal over K we must show that f splits in F. If $v \in K$ is any with a root $u \in F$. By construction, K contains all roots of f. To show and is algebraically closed and contains F. Let $F \in K[x]$ be irreducible over K by Theorem V.1.13 (since $K \subset F \subset K$). Therefore K contains K**Proof.** (iii) \Rightarrow (i) Let \overline{K} be an algebraic closure of F. Then \overline{K} is algebraic root of f then there is a K-isomorphism of fields $\sigma:K(u)\cong K(
u)$ with

Theorem V.3.14 (continued 2)

following statements are equivalent. **Theorem V.3.14.** If F is an algebraic extension field of K, then the

- $\mathsf{(ii)}\ F$ is a splitting field over $\mathcal K$ of some set of polynomials in
- (iii) If K is algebraically closed, contains K, and contains F, then one to one homomorphism and σ fixes K elementwise), then $Im(\sigma) = F$ so that σ is actually a K-automorphism of Ffor any K-monomorphism of fields $\sigma:F
 ightarrow\overline{K}$ (that is, σ is a (that is, $\sigma \in \operatorname{\mathsf{Aut}}_{\mathcal{K}}(F)$).

 $\sigma \in \operatorname{Aut}_K F$ (so σ is a "K-automorphism of F"). all the f_i . It follows from Theorem V.1.3(vi) that $\sigma(F) = F$ and hence must simply permute the u_i . But F is generated over K by all the roots of $\sigma(u_i)$ must be one of u_1, u_2, \ldots, u_n for every i. Since σ is one to one, it Factor Theorem (Theorem III.6.6), $x - \sigma(u_i)$ must be a factor of f_j and so domain by Corollary III.6.4 and $\sigma(u_i)$ is a root of f_i for all i, then by the **Proof (continued).** (ii) \Rightarrow (iii) Since $\overline{K}[x]$ is a unique factorization

Theorem V.3.14 (continued 4)

18 / 25

following statements are equivalent. **Theorem V.3.14.** If F is an algebraic extension field of K, then the

- (i) F is normal over K.
- (iii) If K is algebraically closed, contains K, and contains F, then one to one homomorphism and σ fixes K elementwise), then for any K-monomorphism of fields $\sigma: F \to \overline{K}$ (that is, σ is (that is, $\sigma \in \operatorname{\mathsf{Aut}}_{\mathcal{K}}(F)$). $\mathsf{Im}(\sigma) = F$ so that σ is actually a K-automorphism of F

f splits in F. So F is normal over K. V.3.2, σ extends to a K-automorphism of K. Now $\sigma|_{\mathcal{F}}$ is a monomorphism **Proof (continued).** (iii) \Rightarrow (i) By Theorems V.3.4 and V.3.8 and Exercise Therefore $u=\sigma(u)\in F$ which implies that all roots of f are in F; that is, $F
ightarrow \overline{K}$ and, since by hypothesis ${\sf Im}(\sigma) = F$, we have $\sigma(F) = F$. (one to one, since σ is hypothesized to be a monomorphism) mapping

Modern Algebra April 13, 2016 20 / 25 Modern Algebra April 13, 2016 21 / 25

Theorem V.3.16 (continued 1)

Theorem V.3.16. If E is an algebraic extension field of K, then there

Theorem V 3 16

exists an extension field F of E such that:

- (i) F is normal over K;
- (ii) No proper subfield of F containing E is normal over K;
- (iii) If E is separable over K, then F is Galois over K;
- $\mathsf{(iv)}\ [\mathit{F}:\mathit{K}]$ is finite if and only if $[\mathit{E}:\mathit{K}]$ is finite.

The field F is uniquely determined up to an E-isomorphism

Whence F is normal over K by Theorem V.3.14 (the (ii) \Rightarrow (i) part). over E, then F is also a splitting field of S over K by Exercise V.3.3. the irreducible polynomial of u_i . If F is a splitting field of $S = \{f_i \mid i \in I\}$ **Proof.** (i) Let $X = \{u_i \mid i \in I\}$ be a basis of E over K and let $f_i \in K[x]$ be

> exists an extension field F of E such that: **Theorem V.3.16.** If E is an algebraic extension field of K, then there

- (iii) If E is separable over K, then F is Galois over K;
- $\mathsf{(iv)}\ [\mathit{F}:\mathit{K}]$ is finite if and only if $[\mathit{E}:\mathit{K}]$ is finite.

The field F is uniquely determined up to an E-isomorphism

Theorem V.3.11 (the (iii) \Rightarrow (i) part), F is Galois over K. $S = \{f_i \mid i \in I\}$ (and S consists of separable polynomials in K[x]), so by F (since $K \subset E \subset F$). As explained above, F is a splitting field of **Proof.** (iii) If E is separable over K, then each f_i above is separable over

[F:K] is finite. The converse follows from Theorem V.1.2. since X is the set of all roots of polynomials in S, then by Theorem V.1.12 hence S is finite. Since F is a splitting field of S over K, then F = K(X)**(iv)** If [E:K] is finite, then so is X (since X is a basis for E over K) and F is algebraic over K and finite dimensional since X is finite. That is,

April 13, 2016

Theorem V.3.16 (continued 3)

Theorem V.3.16 (continued 2)

exists an extension field F of E such that: **Theorem V.3.16.** If E is an algebraic extension field of K, then there

 (ii) No proper subfield of F containing E is normal over K .

The field F is uniquely determined up to an E-isomorphism

and hence $F = F_0$ and subfield F_0 of F is not proper. is normal over K (so that each f_i splits in F_0 by definition) then $F \subset F_0$ contains the root u_i of $f_i \in S$ for every i (since E contains each u_i). If F_0 **Proof.** (ii) If F_0 is a subfield of F that contains E, then F_0 necessarily

a splitting field F_2 of S over K with $E \subset F_2$. F_2 is normal over K (by definition of normal) each polynomial in S splits in F_1 . So F_1 must contain each u_i (since E contains each u_i and we have $K \subset E \subset F_1$), then (by the with properties (i) and (ii). Since F_1 is normal over K by (i) and contains **Uniqueness.** Let F_1 be another extension field of E (in addition to F) Theorem V.3.14, the (ii) \Rightarrow (i) part), whence $F_2 = F_1$ by (ii).

> exists an extension field F of E such that: **Theorem V.3.16.** If E is an algebraic extension field of K, then there

- (i) F is normal over K;
- (ii) No proper subfield of F containing E is normal over K;
- (iii) If E is separable over K, then F is Galois over K;
- $\mathsf{(iv)}\ [F:K]$ is finite if and only if [E:K] is finite.

The field F is uniquely determined up to an E-isomorphism

E-isomorphism $F \cong F_1$. over E. By Theorem V.3.8, the identity on E extends to an fields of S over K and hence (by Exercise V.3.2) are splitting fields of S**Proof (continued).** (Uniqueness) Therefore both F and F_1 are splitting

Modern Algebra April 13, 2016 24 / 25 Modern Algebra

April 13, 2016 25 / 25