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Chapter V. Fields and Galois Theory
V.3. Splitting Fields, Algebraic Closure, and Normality (Partial)—Proofs
of Theorems
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Theorem V.3.8 for S Finite

Theorem V.3.8

Theorem V.3.8. Let 0 : K — L be an isomorphism of fields, S = {f;} a
set of polynomials (of positive degree) in K[x], and S’ = {of;} the
corresponding set of polynomials in L[x]. If F is a splitting field of S over
K and M is a splitting field of S’ over L, then o is extendible to an
isomorphism F = M.

Proof for S a Finite Set. Suppose that S consists of a single polynomial
f € K[x]. Let F be a splitting field of f over K. Let n = [F : K]. We give
an inductive proof on n. For the base case, if n=1then F = K and f
splits over K. So S = {of} splits over o(K) = L and, since M is the
splitting field of S’, then L = M. So o is in fact an isomorphism giving

F = M and the base case is established. If n > 1 then f must have an
irreducible factor g of degree greater than 1 (or else F splits over K and
[F: K]=1%# n). Let u be a root of g in F. Since g is irreducible in K[x]
and o : K — L is an isomorphism, then og € L[x] is irreducible.
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Theorem V.3.2

Theorem V.3.2

Theorem V.3.2. If K is a field and f € K|[x] has degree n > 1, then there
exists a splitting field F of f with dimension [F : K] < nl.

Proof. We prove this by induction on n = deg(f). For the base step, if
n=1 (or if f splits over K) then F = K is a splitting field and
[F:K]=[F:F]=1<nl.

If n>1 and f does not split over K, let g € K[x] be an irreducible factor
of f of degree greater than one. By Theorem V.1.10 (Kronecker's
Theorem) there is a simple extension field K(u) of K such that u is a root
of g and [K(u) : K] = deg(g) > 1. Then by Theorem I11.6.6 (the Factor
Theorem) we have f(x) = (x — u)h(x) for some h € K(u)[x] of degree

n —1 (we have only used polynomial g in passing; notice deg(g) < n).
Repeating this process (and factoring f) we can produce (inductively) a
splitting field F of h € K(u)[x] of degree at most (n — 1)!. By Exercise
V.3.3, F is a splitting field of f over K. By Theorem V.1.2,

[F:K]=[F: K(u)][K(u): K] <(n—1)ldeg(g) < (n—1)ln=n!l. The
result now follows by induction. [
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Theorem V.3.8 for S Finite

Theorem V.3.8

Theorem V.3.8. Let 0 : K — L be an isomorphism of fields, S = {f;} a
set of polynomials (of positive degree) in K[x], and S’ = {of;} the
corresponding set of polynomials in L[x]. If F is a splitting field of S over
K and M is a splitting field of S’ over L, then o is extendible to an
isomorphism F = M.

Proof for S a Finite Set (continued). If v € M is a root of og, then by
Theorem V.1.8(ii) o extends to an isomorphism 7 : K(u) = L(v) with
7(u) = v. By Theorem V.1.6(iii) we have [K(u) : K] = deg(g) > 1, we
must have n = [F : K] = [F : K(u)][K(u) : K] by Theorem V.1.2 and so
[F : K(u)] < n. By Exercise V.3.2, F is a splitting field of f over (the
intermediate field) K(u) (here, K C K(u) C F) and similarly M is a
splitting field of of over (intermediate field) L(v) (here, L C L(v) C M).
So by the induction hypothesis (since [F : K(u)] < n) we have that 7
extends to an isomorphism F = M. O
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Corollary V.3.9

Corollary V.3.9

Corollary V.3.9. Let K be a field and S a set of polynomials (of positive
degree) in K[x]. Then any two splitting fields of S over K are
K-isomorphic. In particular, any two algebraic closures of K are
K-isomorphic.

Proof. With 0 : K — K as 0 = 1k (the identity on K) in Theorem V.3.8,
we have that if L and M are splitting fields for K (so K C L, K C M) then
o extends to an isomorphism 7 : L — M and the two splitting fields are
isomorphic.

For the “in particular” claim, we need to consider the set S of all
polynomials in K[x]. By Theorem V.3.4, the splitting field of S is the
algebraic closure of K. Again, Theorem V.3.8 with ¢ = 1k yields the
result. (This is also shown in Theorem V.3.6.) O

0
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Theorem V.3.11

Theorem V.3.11 (continued 1)

Theorem V.3.11. If F is an extension field of K, then the following
statements are equivalent.

(ii) F is separable over K and F is a splitting field over K of a
set S of polynomials in K[x].

(iii) F is a splitting field over K of a set T of separable
polynomials in K[x].

Proof. (ii) = (iii) [Here we need to “move” the hypothesis of separable
extension to the conclusion of separable polynomials.] Let f € S where F
is a splitting field over K of set S of polynomials. Let g € K[x] be a
monic irreducible factor of f. Since by hypothesis f splits over K, then (by
definition of “splits”) f is a product of linear factors in K, and so g is the
irreducible polynomial in K[x] of some u € F. Since by hypothesis F is
separable over K, then u is separable over K (definition of separable
extension) and so g is separable over K (definition of separable element
ueF).
0 ]
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Theorem V.3.11

Theorem V.3.11. If F is an extension field of K, then the following
statements are equivalent.

(i) F is algebraic and Galois over K.
(ii) F is separable over K and F is a splitting field over K of a
set S of polynomials in K[x].
(iii) F is a splitting field over K of a set T of separable
polynomials in K[x].

Proof. (i) = (ii) and (iii) If v € F has irreducible polynomial f, then as
in the proof of Lemma V.2.13 (up to the “Consequently, all the roots of f
are distinct and lie in E" part) f splits in F[x] into a product of distinct
linear factors. Hence (by definition) u is separable over K. Let {v; | i € I}
be a basis of F over K and for each i € / let f; € K[x] be the irreducible
polynomial of v;. As just argued, each f; is separable and splits in F[x]
(and also, each v; is separable over K, by definition). Therefore F is a
splitting field over K of S = {f; | i € I} and (ii) and (iii) follow.
0 |
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Theorem V.3.11

Theorem V.3.11 (continued 2)

Theorem V.3.11. If F is an extension field of K, then the following
statements are equivalent.

(ii) F is separable over K and F is a splitting field over K of a
set S of polynomials in K[x].

(iii) F is a splitting field over K of a set T of separable
polynomials in K[x].

Proof (continued). (ii) = (iii) So define set T to be the set of all monic
irreducible factors in K|[x| of polynomials in set S. We have just argued
that set T consists of separable polynomials in K[x]|. By Exercise V.3.4
(“If F is a splitting field over K of [set S of polynomials in K[x]] then F is
also a splitting field over K of the set T of all irreducible factors of
polynomials in S.”) F is a splitting field of set T.
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Theorem V.3.11 (continued 3) Theorem V.3.11 (continued 4)

Theorem V.3.11. If F is an extension field of K, then the following

Proof (continued). (iii) = (i) Si h fi € T splitsin F b
statements are equivalent. roof (continued). (iii) = (i) Since each f; splits in F by

hypothesis, E is a splitting field over K of the finite set of polynomials

(i) F is algebraic and Galois over K. {f, fa, ..., fa} (or equivalently, of the single polynomial f = fif,--- f,).
(iii) F is a splitting field over K of a set T of separable “Assume for now” that the theorem (i.e., (iii)=>(i)) holds in the finite
polynomials in K[x]. dimensional case ([F : K] is finite). Under this assumption, then E is

Galois over K; that is, the fixed field of AutkE is E itself (Definition
V.2.4). Since u € E\ K (we are replacing field F with finite extension field
E in the current discussion), then for some 7 € Autk E we have 7(u) # u.
By Exercise V.3.2 (“If F is a splitting field of S over K and E is an
intermediate field, then F is a splitting field of S over E.") F is a splitting

Proof. (iii) = (i) F is algebraic over K since any splitting field over K is
(by definition of splitting field, Definition V.3.1) an algebraic extension of
K. Let X be the set of all roots of polynomials in K. Then by the
definition of splitting field, F = K(X). Let u € F\ K’. By Theorem

V.1.3(vii) there is finite set {vq,va,...,v,} C X (so each v; is a root of field of T over E. So by Theorem V.3.8 with 7 : £ — E (7 is an

some f; € T) minr that u € K(vy, vz, ..., vn). Now noJm_qu the automorphism of E and hence an isomorphism of E with itself) we have
fi, f2, ..., fp which have vi, va, ... Vn as roots (respectively). Let that 7 can be extended to isomorphism o : F — F (and so o is an

ui, Uy, ..., u, be the set of all roots (in F) of f1,f, ..., f,. Thus automorphism of F) where o € AutgF and o = 7 on E. So

ue K(vi,va,...,vp) C K(ui,up,...,u) = E. By Theorem V.1.12, F is a o(u) = 7(u) # u.
finite dimensional extension of K; that is, [E : K] is finite.

Theorem V.3.11

Theorem V.3.11

Theorem V.3.11 (continued 5) Theorem V.3.11 (continued 6)

Proof (continued). (iii) = (i) Since v was an arbitrary element of F \ K
at the very beginning of this proof, and there exists 0 € Autk F such that

o(u) # u, then the fixed field of Autk F must be K. That is (by Proof (continued). (i) = (i) So if we show that [F : K] = [Autk F|
definition), F is Galois over K. So the theorem holds in general if it holds then we will have that [Ko : K] =1 and so Ko = K, which implies the
when [F : K] is finite. fixed field of AutkF is Ko = K; that is, F is a Galois extension of K.

We now prove that the theorem holds for [F : K] is finite, hence
completing the proof. With [F : K] finite, there exists a finite number of
polynomials g1, g2,...,8+ € T such that F is a splitting field of
{g1,8,...,8t} over K. Furthermore Autx F must be a finite group by
Lemma V.2.8. If Ky is the fixed field of AutkF, then F is a Galois
extension of Ky by Artin's Theorem (Theorem V.2.15). By the
Fundamental Theorem (Theorem V.2.5(i)) [F : Ko] = |Autk, F|. Since Ko
is the fixed field of Autkx F then we have Autk,F = AutkF (this is a
remark on page 245). So [F : Ko| = |AutkF|. Now we have K C Ko C F,
and so by Theorem V.1.2 we have [F : K] = [F : Ko][Ko : K].

We proceed by induction on n = [F : K], with the case n = 1 being trivial
(since this implies that F = K and AutkF consists only of the identity on
F). If n > 1, then one of th egj, say g1, has degree s > 1 (otherwise all
the roots of the g; lie in K an dF = K). Let u € F be a root of gy; then
[K(u) : K] = deg(g1) = s by Theorem V.1.6(iii) (we need g irreducible
here to apply Theorem V.1.6) and the number of distinct roots of gy is s
since gy is separable in F by hypothesis.



Theorem V.3.11 (continued 7)

Proof (continued). (iii) = (i) By the second paragraph of the proof of
Lemma V.2.8 (with L = k, M = K(u) and f = g1) we have that there is
an injective map from the set of all left cosets of H = Aut(,)F (this is
set Sin Lemma V.2.8; and M' = H = Autk,)F in Autk F (in Lemma
V.2.8, with L' = Aut, F) to the set of all roots of g1 in F (set T in Lemma
V.2.8), given by oH — o(u) (in Lemma V.2.8, the mapping is
7M' — 7(u) so the 7 € L’ = Aut; F of Lemma V.2.8 equals the
o € AutgF = K’ here). Therefore since the mapping is injective (one to
one) then the number of left cosets of H = Autk(,)F in AutkF is less
than or equal to the number of roots of gy; that is, [AutkF : H] <'s. Now
if v € F is any other root of g1 (which exists since deg(g1) = s > 1), there
is an isomorphism 7 : K(u) = K(v) with 7(u) — v and 7|k = 1k by
Corollary V.1.9. Since F is a splitting field of {g1,,...,8:} over K(u)
and over K(v) (by Exercise V.3.2 since K(u) and K(v) are intermediate
fields between K and splitting field F), then 7 extends to an
automorphism o € Autk F with o(u) = v by Theorem V.3.8.
0 |
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Theorem V.3.11

Theorem V.3.11 (continued 9)

Proof (continued). (iii) = (i) Therefore

[F:K] = [F:K()][K(v): K] by Theorem V.2.1
= |H|s since [K(u) : K] = s and H = Auty(,)F
= |H|[AutkF : H] since [AutkF : H] =s
= |AutkF|

with the last equality holding because [Autk F : H] is the number of cosets
of H in AutkF, so [AutkF : H] = |Autk F|/|H|. We have now established
what is required (namely, [F : K] = |AutkF|) for the previous paragraph
to imply that F is Galois over K whenever [F : K] is finite. In turn, this
result can be used in the paragraph before that to show that F is Galois
over K for [F : K] not finite. O

0 ]
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Theorem V.3.11 (continued 8)

Proof (continued). (iii) = (i) Now the mapping of cosets takes o H to
o(u) = v and so every root of gj is the image of some coset of H in
Autk F; that is, the mapping is onto and so [AutkF : H] = s.
Furthermore, F is a splitting field over K(u) of the set of all irreducible
factors h; (in K(u)[x]) of the polynomials g; (by Exercise V.3.4). Each h;
is clearly separable since it divides some g; (the g; are separable by the
hypotheses of (iii)). Now by Theorem V.1.2,
n=[F:K]=[F:K()]K(u): K]=[F:K(u)]s, or

[F : K(u)] = n/s < n and so by the induction hypothesis we have that F
is Galois over K(u) and so the fixed field of Autk(,)F is K(u) and by the
Fundamental Theorem (Theorem V.2.5(i)) [F : K(u)] = [Autk(,)F| = |H|.
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Theorem V.3.14

Theorem V.3.14

Theorem V.3.14. If F is an algebraic extension field of K, then the
following statements are equivalent.

(i) F is normal over K.

(ii) F is a splitting field over K of some set of polynomials in
K{x].

(iii) If K is algebraically closed, contains K, and contains F, then
for any K-monomorphism of fields o : F — K (that is, o is a
one to one homomorphism and o fixes K elementwise), then
Im(o) = F so that o is actually a K-automorphism of F

(that is, o € Autk(F)).

Proof. (i)=(ii) F is a splitting field over K of {f; € K[x] | i € I} where f;
is the irreducible polynomial in K[x] for some u; € F, where {u; | i € I} is
a basis of F over K (every vector space has a basis, so the set of u;’s exists
and since F is normal over K we have the splitting requirement; also, since
the u; form a basis we know that this covers every element in F).

April 13, 2016
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Theorem V.3.14 (continued 1)

Theorem V.3.14. If F is an algebraic extension field of K, then the
following statements are equivalent.

(ii) F is a splitting field over K of some set of polynomials in
K{x].

(iii) If K is algebraically closed, contains K, and contains F, then
for any K-monomorphism of fields o : F — K (thatis, o is a
one to one homomorphism and o fixes K elementwise), then
Im(co) = F so that o is actually a K-automorphism of F

(that is, o € Autk(F)).

Proof. (ii)=-(iii) Let F be a splitting field of {f; | i € I} over K and
o : F — K a K-monomorphism of fields. If u € F is a root of f; then so is
o(u) (as shown in the two-line proof of Theorem V.2.2). By hypothesis f;

splits in F, say fi = c(x — u1)(x — w2) -+ - (x — un) (Where uj € F, c € K).

Modern Algebra
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Theorem V.3.14 (continued 3)

Theorem V.3.14. If F is an algebraic extension field of K, then the
following statements are equivalent.

(i) F is normal over K.

(iii) If K is algebraically closed, contains K, and contains F, then
for any K-monomorphism of fields o : F — K (that is, o is a
one to one homomorphism and o fixes K elementwise), then
Im(c) = F so that o is actually a K-automorphism of F

(that is, o € Autk(F)).

Proof. (iii)=(i) Let K be an algebraic closure of F. Then K is algebraic
over K by Theorem V.1.13 (since K C F C K). Therefore K contains K
and is algebraically closed and contains F. Let F € K[x] be irreducible
with a root u € F. By construction, K contains all roots of f. To show
that F is normal over K we must show that f splitsin F. If v € K is any
root of f then there is a K-isomorphism of fields o : K(u) = K(v) with
o(u) = v by Corollary V.1.19.

0 ]
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Theorem V.3.14 (continued 2)

Theorem V.3.14. If F is an algebraic extension field of K, then the
following statements are equivalent.
(i) F is a splitting field over K of some set of polynomials in
K{x].

(iii) If K is algebraically closed, contains K, and contains F, then
for any K-monomorphism of fields o : F — K (that is, o is a
one to one homomorphism and o fixes K elementwise), then
Im(0) = F so that o is actually a K-automorphism of F
(that is, o € Autk(F)).
Proof (continued). (ii)=-(iii) Since K[x] is a unique factorization
domain by Corollary 111.6.4 and o(u;) is a root of f; for all i, then by the
Factor Theorem (Theorem I11.6.6), x — o(u;) must be a factor of f; and so
o(uj) must be one of uy, up, ..., up, for every i. Since o is one to one, it
must simply permute the u;. But F is generated over K by all the roots of
all the f;. It follows from Theorem V.1.3(vi) that o(F) = F and hence

o € AutkF (so o is a "K-automorphism of F").
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Theorem V.3.14

Theorem V.3.14 (continued 4)

Theorem V.3.14. If F is an algebraic extension field of K, then the
following statements are equivalent.

(i) F is normal over K.

(iii) If K is algebraically closed, contains K, and contains F, then
for any K-monomorphism of fields o : F — K (that is, o is a
one to one homomorphism and o fixes K elementwise), then
Im(c) = F so that o is actually a K-automorphism of F
(that is, o € Autk(F)).

Proof (continued). (iii)=-(i) By Theorems V.3.4 and V.3.8 and Exercise
V.3.2, o extends to a K-automorphism of K. Now ¢|f is a monomorphism
(one to one, since o is hypothesized to be a monomorphism) mapping

F — K and, since by hypothesis Im(c) = F, we have o(F) = F.
Therefore v = o(u) € F which implies that all roots of f are in F; that is,
f splits in F. So F is normal over K. H
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Theorem V.3.16

Theorem V.3.16. If E is an algebraic extension field of K, then there
exists an extension field F of E such that:

(i) F is normal over K;
(i
(iii) If E is separable over K, then F is Galois over K;
(iv) [F : K] is finite if and only if [E : K] is finite.

The field F is uniquely determined up to an E-isomorphism.

No proper subfield of F containing E is normal over K;
i
v

Proof. (i) Let X = {uj | i € I} be a basis of E over K and let f; € K[x] be
the irreducible polynomial of u;. If F is a splitting field of S = {f; | i € I}
over E, then F is also a splitting field of S over K by Exercise V.3.3.
Whence F is normal over K by Theorem V.3.14 (the (ii)=-(i) part).

0
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Theorem V.3.16 (continued 2)

Theorem V.3.16. If E is an algebraic extension field of K, then there
exists an extension field F of E such that:

(ii) No proper subfield of F containing E is normal over K.

The field F is uniquely determined up to an E-isomorphism.

Proof. (ii) If Fo is a subfield of F that contains E, then Fy necessarily
contains the root u; of f; € S for every i (since E contains each u;). If Fy
is normal over K (so that each f; splits in Fg by definition) then F C Fy
and hence F = Fp and subfield Fy of F is not proper.

Uniqueness. Let f; be another extension field of E (in addition to F)
with properties (i) and (ii). Since F1 is normal over K by (i) and contains
each u; (since E contains each u; and we have K C E C Fy), then (by the
definition of normal) each polynomial in S splits in F;. So F; must contain
a splitting field F, of S over K with E C F. F, is normal over K (by
Theorem V.3.14, the (ii)=(i) part), whence F> = F; by (ii).
0 ]
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Theorem V.3.16

Theorem V.3.16 (continued 1)

Theorem V.3.16. If E is an algebraic extension field of K, then there
exists an extension field F of E such that:

(iii) If E is separable over K, then F is Galois over K;
(iv) [F : K] is finite if and only if [E : K] is finite.

The field F is uniquely determined up to an E-isomorphism.

Proof. (iii) If E is separable over K, then each f; above is separable over
F (since K C E C F). As explained above, F is a splitting field of
S={fi|iel} (and S consists of separable polynomials in K[x]), so by
Theorem V.3.11 (the (iii)=(i) part), F is Galois over K.

(iv) If [E : K] is finite, then so is X (since X is a basis for E over K) and
hence S is finite. Since F is a splitting field of S over K, then F = K(X)
since X is the set of all roots of polynomials in S, then by Theorem V.1.12
F is algebraic over K and finite dimensional since X is finite. That is,

[F : K] is finite. The converse follows from Theorem V.1.2.
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Theorem V.3.16

Theorem V.3.16 (continued 3)

Theorem V.3.16. If E is an algebraic extension field of K, then there
exists an extension field F of E such that:

(i) F is normal over K;
(i)
(iii) If E is separable over K, then F is Galois over K;
(iv) [F : K] is finite if and only if [E : K] is finite.

The field F is uniquely determined up to an E-isomorphism.

No proper subfield of F containing E is normal over K;

i
Y,

Proof (continued). (Uniqueness) Therefore both F and F; are splitting
fields of S over K and hence (by Exercise V.3.2) are splitting fields of S
over E. By Theorem V.3.8, the identity on E extends to an
E-isomorphism F =2 F;. [
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