Modern Algebra

Chapter V. Fields and Galois Theory V.3. Splitting Fields, Algebraic Closure, and Normality (Partial)—Proofs of Theorems

Table of contents

- Theorem V.3.2
- 2 Theorem V.3.8 for *S* Finite
- 3 Corollary V.3.9
- Theorem V.3.11
- 5 Theorem V.3.14
- 6 Theorem V.3.16

Theorem V.3.2. If K is a field and $f \in K[x]$ has degree $n \ge 1$, then there exists a splitting field F of f with dimension $[F : K] \le n!$.

Proof. We prove this by induction on $n = \deg(f)$. For the base step, if n = 1 (or if f splits over K) then F = K is a splitting field and $[F : K] = [F : F] = 1 \le n!$.

Theorem V.3.2. If *K* is a field and $f \in K[x]$ has degree $n \ge 1$, then there exists a splitting field *F* of *f* with dimension $[F : K] \le n!$. **Proof.** We prove this by induction on $n = \deg(f)$. For the base step, if n = 1 (or if *f* splits over *K*) then F = K is a splitting field and $[F : K] = [F : F] = 1 \le n!$. If n > 1 and *f* does not split over *K*, let $g \in K[x]$ be an irreducible factor of *f* of degree greater than one. By Theorem V.1.10 (Kronecker's Theorem) there is a simple extension field K(u) of *K* such that *u* is a root of *g* and $[K(u) : K] = \deg(g) > 1$.

Theorem V.3.2. If K is a field and $f \in K[x]$ has degree $n \ge 1$, then there exists a splitting field F of f with dimension $[F:K] \leq n!$. **Proof.** We prove this by induction on $n = \deg(f)$. For the base step, if n = 1 (or if f splits over K) then F = K is a splitting field and $[F:K] = [F:F] = 1 \le n!.$ If n > 1 and f does not split over K, let $g \in K[x]$ be an irreducible factor of f of degree greater than one. By Theorem V.1.10 (Kronecker's Theorem) there is a simple extension field K(u) of K such that u is a root of g and $[K(u): K] = \deg(g) > 1$. Then by Theorem III.6.6 (the Factor Theorem) we have f(x) = (x - u)h(x) for some $h \in K(u)[x]$ of degree n-1 (we have only used polynomial g in passing; notice deg(g) $\leq n$). Repeating this process (and factoring f) we can produce (inductively) a splitting field F of $h \in K(u)[x]$ of degree at most (n-1)!.

Theorem V.3.2. If K is a field and $f \in K[x]$ has degree $n \ge 1$, then there exists a splitting field F of f with dimension $[F:K] \leq n!$. **Proof.** We prove this by induction on $n = \deg(f)$. For the base step, if n = 1 (or if f splits over K) then F = K is a splitting field and [F:K] = [F:F] = 1 < n!.If n > 1 and f does not split over K, let $g \in K[x]$ be an irreducible factor of f of degree greater than one. By Theorem V.1.10 (Kronecker's Theorem) there is a simple extension field K(u) of K such that u is a root of g and $[K(u):K] = \deg(g) > 1$. Then by Theorem III.6.6 (the Factor Theorem) we have f(x) = (x - u)h(x) for some $h \in K(u)[x]$ of degree n-1 (we have only used polynomial g in passing; notice deg(g) $\leq n$). Repeating this process (and factoring f) we can produce (inductively) a splitting field F of $h \in K(u)[x]$ of degree at most (n-1)!. By Exercise V.3.3, F is a splitting field of f over K. By Theorem V.1.2, $[F:K] = [F:K(u)][K(u):K] \le (n-1)!\deg(g) \le (n-1)!n = n!$. The result now follows by induction.

Theorem V.3.2. If K is a field and $f \in K[x]$ has degree $n \ge 1$, then there exists a splitting field F of f with dimension $[F:K] \leq n!$. **Proof.** We prove this by induction on $n = \deg(f)$. For the base step, if n = 1 (or if f splits over K) then F = K is a splitting field and [F:K] = [F:F] = 1 < n!.If n > 1 and f does not split over K, let $g \in K[x]$ be an irreducible factor of f of degree greater than one. By Theorem V.1.10 (Kronecker's Theorem) there is a simple extension field K(u) of K such that u is a root of g and $[K(u):K] = \deg(g) > 1$. Then by Theorem III.6.6 (the Factor Theorem) we have f(x) = (x - u)h(x) for some $h \in K(u)[x]$ of degree n-1 (we have only used polynomial g in passing; notice deg(g) $\leq n$). Repeating this process (and factoring f) we can produce (inductively) a splitting field F of $h \in K(u)[x]$ of degree at most (n-1)!. By Exercise V.3.3, F is a splitting field of f over K. By Theorem V.1.2, $[F:K] = [F:K(u)][K(u):K] \le (n-1)!\deg(g) \le (n-1)!n = n!$. The result now follows by induction.

Theorem V.3.8. Let $\sigma : K \to L$ be an isomorphism of fields, $S = \{f_i\}$ a set of polynomials (of positive degree) in K[x], and $S' = \{\sigma f_i\}$ the corresponding set of polynomials in L[x]. If F is a splitting field of S over K and M is a splitting field of S' over L, then σ is extendible to an isomorphism $F \cong M$.

Proof for *S* a **Finite Set.** Suppose that *S* consists of a single polynomial $f \in K[x]$. Let *F* be a splitting field of *f* over *K*. Let n = [F : K]. We give an inductive proof on *n*.

Theorem V.3.8. Let $\sigma : K \to L$ be an isomorphism of fields, $S = \{f_i\}$ a set of polynomials (of positive degree) in K[x], and $S' = \{\sigma f_i\}$ the corresponding set of polynomials in L[x]. If F is a splitting field of S over K and M is a splitting field of S' over L, then σ is extendible to an isomorphism $F \cong M$.

Proof for *S* a **Finite Set.** Suppose that *S* consists of a single polynomial $f \in K[x]$. Let *F* be a splitting field of *f* over *K*. Let n = [F : K]. We give an inductive proof on *n*. For the base case, if n = 1 then F = K and *f* splits over *K*. So $S = \{\sigma f\}$ splits over $\sigma(K) = L$ and, since *M* is the splitting field of *S'*, then L = M. So σ is in fact an isomorphism giving $F \cong M$ and the base case is established. If n > 1 then *f* must have an irreducible factor *g* of degree greater than 1 (or else *F* splits over *K* and $[F : K] = 1 \neq n$).

Theorem V.3.8. Let $\sigma : K \to L$ be an isomorphism of fields, $S = \{f_i\}$ a set of polynomials (of positive degree) in K[x], and $S' = \{\sigma f_i\}$ the corresponding set of polynomials in L[x]. If F is a splitting field of S over K and M is a splitting field of S' over L, then σ is extendible to an isomorphism $F \cong M$.

Proof for *S* a **Finite Set.** Suppose that *S* consists of a single polynomial $f \in K[x]$. Let *F* be a splitting field of *f* over *K*. Let n = [F : K]. We give an inductive proof on *n*. For the base case, if n = 1 then F = K and *f* splits over *K*. So $S = \{\sigma f\}$ splits over $\sigma(K) = L$ and, since *M* is the splitting field of *S'*, then L = M. So σ is in fact an isomorphism giving $F \cong M$ and the base case is established. If n > 1 then *f* must have an irreducible factor *g* of degree greater than 1 (or else *F* splits over *K* and $[F : K] = 1 \neq n$). Let *u* be a root of *g* in *F*. Since *g* is irreducible in K[x] and $\sigma : K \to L$ is an isomorphism, then $\sigma g \in L[x]$ is irreducible.

Theorem V.3.8. Let $\sigma : K \to L$ be an isomorphism of fields, $S = \{f_i\}$ a set of polynomials (of positive degree) in K[x], and $S' = \{\sigma f_i\}$ the corresponding set of polynomials in L[x]. If F is a splitting field of S over K and M is a splitting field of S' over L, then σ is extendible to an isomorphism $F \cong M$.

Proof for *S* **a Finite Set.** Suppose that *S* consists of a single polynomial $f \in K[x]$. Let *F* be a splitting field of *f* over *K*. Let n = [F : K]. We give an inductive proof on *n*. For the base case, if n = 1 then F = K and *f* splits over *K*. So $S = \{\sigma f\}$ splits over $\sigma(K) = L$ and, since *M* is the splitting field of *S'*, then L = M. So σ is in fact an isomorphism giving $F \cong M$ and the base case is established. If n > 1 then *f* must have an irreducible factor *g* of degree greater than 1 (or else *F* splits over *K* and $[F : K] = 1 \neq n$). Let *u* be a root of *g* in *F*. Since *g* is irreducible in K[x] and $\sigma : K \to L$ is an isomorphism, then $\sigma g \in L[x]$ is irreducible.

Theorem V.3.8. Let $\sigma : K \to L$ be an isomorphism of fields, $S = \{f_i\}$ a set of polynomials (of positive degree) in K[x], and $S' = \{\sigma f_i\}$ the corresponding set of polynomials in L[x]. If F is a splitting field of S over K and M is a splitting field of S' over L, then σ is extendible to an isomorphism $F \cong M$.

Proof for *S* a **Finite Set (continued).** If $v \in M$ is a root of σg , then by Theorem V.1.8(ii) σ extends to an isomorphism $\tau : K(u) \cong L(v)$ with $\tau(u) = v$. By Theorem V.1.6(iii) we have $[K(u) : K] = \deg(g) > 1$, we must have n = [F : K] = [F : K(u)][K(u) : K] by Theorem V.1.2 and so [F : K(u)] < n. By Exercise V.3.2, *F* is a splitting field of *f* over (the intermediate field) K(u) (here, $K \subset K(u) \subset F$) and similarly *M* is a splitting field of σf over (intermediate field) L(v) (here, $L \subset L(v) \subset M$). So by the induction hypothesis (since [F : K(u)] < n) we have that τ extends to an isomorphism $F \cong M$.

Theorem V.3.8. Let $\sigma : K \to L$ be an isomorphism of fields, $S = \{f_i\}$ a set of polynomials (of positive degree) in K[x], and $S' = \{\sigma f_i\}$ the corresponding set of polynomials in L[x]. If F is a splitting field of S over K and M is a splitting field of S' over L, then σ is extendible to an isomorphism $F \cong M$.

Proof for *S* a **Finite Set (continued).** If $v \in M$ is a root of σg , then by Theorem V.1.8(ii) σ extends to an isomorphism $\tau : K(u) \cong L(v)$ with $\tau(u) = v$. By Theorem V.1.6(iii) we have $[K(u) : K] = \deg(g) > 1$, we must have n = [F : K] = [F : K(u)][K(u) : K] by Theorem V.1.2 and so [F : K(u)] < n. By Exercise V.3.2, *F* is a splitting field of *f* over (the intermediate field) K(u) (here, $K \subset K(u) \subset F$) and similarly *M* is a splitting field of σf over (intermediate field) L(v) (here, $L \subset L(v) \subset M$). So by the induction hypothesis (since [F : K(u)] < n) we have that τ extends to an isomorphism $F \cong M$.

Corollary V.3.9

Corollary V.3.9. Let K be a field and S a set of polynomials (of positive degree) in K[x]. Then any two splitting fields of S over K are K-isomorphic. In particular, any two algebraic closures of K are K-isomorphic.

Proof. With $\sigma: K \to K$ as $\sigma = 1_K$ (the identity on K) in Theorem V.3.8, we have that if L and M are splitting fields for K (so $K \subset L, K \subset M$) then σ extends to an isomorphism $\tau: L \to M$ and the two splitting fields are isomorphic.

Corollary V.3.9

Corollary V.3.9. Let K be a field and S a set of polynomials (of positive degree) in K[x]. Then any two splitting fields of S over K are K-isomorphic. In particular, any two algebraic closures of K are K-isomorphic.

Proof. With $\sigma : K \to K$ as $\sigma = 1_K$ (the identity on K) in Theorem V.3.8, we have that if L and M are splitting fields for K (so $K \subset L, K \subset M$) then σ extends to an isomorphism $\tau : L \to M$ and the two splitting fields are isomorphic.

For the "in particular" claim, we need to consider the set S of all polynomials in K[x]. By Theorem V.3.4, the splitting field of S is the algebraic closure of K. Again, Theorem V.3.8 with $\sigma = 1_K$ yields the result. (This is also shown in Theorem V.3.6.)

Corollary V.3.9. Let K be a field and S a set of polynomials (of positive degree) in K[x]. Then any two splitting fields of S over K are K-isomorphic. In particular, any two algebraic closures of K are K-isomorphic.

Proof. With $\sigma : K \to K$ as $\sigma = 1_K$ (the identity on K) in Theorem V.3.8, we have that if L and M are splitting fields for K (so $K \subset L, K \subset M$) then σ extends to an isomorphism $\tau : L \to M$ and the two splitting fields are isomorphic.

For the "in particular" claim, we need to consider the set S of all polynomials in K[x]. By Theorem V.3.4, the splitting field of S is the algebraic closure of K. Again, Theorem V.3.8 with $\sigma = 1_K$ yields the result. (This is also shown in Theorem V.3.6.)

Theorem V.3.11. If F is an extension field of K, then the following statements are equivalent.

- (i) F is algebraic and Galois over K.
- (ii) F is separable over K and F is a splitting field over K of a set S of polynomials in K[x].
- (iii) F is a splitting field over K of a set T of separable polynomials in K[x].

Proof. (i) \Rightarrow (ii) and (iii) If $u \in F$ has irreducible polynomial f, then as in the proof of Lemma V.2.13 (up to the "Consequently, all the roots of f are distinct and lie in E" part) f splits in F[x] into a product of distinct linear factors. Hence (by definition) u is separable over K.

Theorem V.3.11. If F is an extension field of K, then the following statements are equivalent.

- (i) F is algebraic and Galois over K.
- (ii) F is separable over K and F is a splitting field over K of a set S of polynomials in K[x].
- (iii) F is a splitting field over K of a set T of separable polynomials in K[x].

Proof. (i) \Rightarrow (ii) and (iii) If $u \in F$ has irreducible polynomial f, then as in the proof of Lemma V.2.13 (up to the "Consequently, all the roots of fare distinct and lie in E" part) f splits in F[x] into a product of distinct linear factors. Hence (by definition) u is separable over K. Let $\{v_i \mid i \in I\}$ be a basis of F over K and for each $i \in I$ let $f_i \in K[x]$ be the irreducible polynomial of v_i . As just argued, each f_i is separable and splits in F[x](and also, each v_i is separable over K, by definition). Therefore F is a splitting field over K of $S = \{f_i \mid i \in I\}$ and (ii) and (iii) follow.

Theorem V.3.11. If F is an extension field of K, then the following statements are equivalent.

- (i) F is algebraic and Galois over K.
- (ii) F is separable over K and F is a splitting field over K of a set S of polynomials in K[x].
- (iii) F is a splitting field over K of a set T of separable polynomials in K[x].

Proof. (i) \Rightarrow (ii) and (iii) If $u \in F$ has irreducible polynomial f, then as in the proof of Lemma V.2.13 (up to the "Consequently, all the roots of fare distinct and lie in E" part) f splits in F[x] into a product of distinct linear factors. Hence (by definition) u is separable over K. Let $\{v_i \mid i \in I\}$ be a basis of F over K and for each $i \in I$ let $f_i \in K[x]$ be the irreducible polynomial of v_i . As just argued, each f_i is separable and splits in F[x](and also, each v_i is separable over K, by definition). Therefore F is a splitting field over K of $S = \{f_i \mid i \in I\}$ and (ii) and (iii) follow.

Theorem V.3.11. If F is an extension field of K, then the following statements are equivalent.

- (ii) F is separable over K and F is a splitting field over K of a set S of polynomials in K[x].
- (iii) F is a splitting field over K of a set T of separable polynomials in K[x].

Proof. (ii) \Rightarrow (iii) [Here we need to "move" the hypothesis of separable extension to the conclusion of separable polynomials.] Let $f \in S$ where F is a splitting field over K of set S of polynomials. Let $g \in K[x]$ be a monic irreducible factor of f.

Theorem V.3.11. If F is an extension field of K, then the following statements are equivalent.

- (ii) F is separable over K and F is a splitting field over K of a set S of polynomials in K[x].
- (iii) F is a splitting field over K of a set T of separable polynomials in K[x].

Proof. (ii) \Rightarrow (iii) [Here we need to "move" the hypothesis of separable extension to the conclusion of separable polynomials.] Let $f \in S$ where F is a splitting field over K of set S of polynomials. Let $g \in K[x]$ be a monic irreducible factor of f. Since by hypothesis f splits over K, then (by definition of "splits") f is a product of linear factors in K, and so g is the irreducible polynomial in K[x] of some $u \in F$.

Theorem V.3.11. If F is an extension field of K, then the following statements are equivalent.

- (ii) F is separable over K and F is a splitting field over K of a set S of polynomials in K[x].
- (iii) F is a splitting field over K of a set T of separable polynomials in K[x].

Proof. (ii) \Rightarrow (iii) [Here we need to "move" the hypothesis of separable extension to the conclusion of separable polynomials.] Let $f \in S$ where F is a splitting field over K of set S of polynomials. Let $g \in K[x]$ be a monic irreducible factor of f. Since by hypothesis f splits over K, then (by definition of "splits") f is a product of linear factors in K, and so g is the irreducible polynomial in K[x] of some $u \in F$. Since by hypothesis F is separable over K, then u is separable over K (definition of separable extension) and so g is separable over K (definition of separable element $u \in F$).

Theorem V.3.11. If F is an extension field of K, then the following statements are equivalent.

- (ii) F is separable over K and F is a splitting field over K of a set S of polynomials in K[x].
- (iii) F is a splitting field over K of a set T of separable polynomials in K[x].

Proof. (ii) \Rightarrow (iii) [Here we need to "move" the hypothesis of separable extension to the conclusion of separable polynomials.] Let $f \in S$ where F is a splitting field over K of set S of polynomials. Let $g \in K[x]$ be a monic irreducible factor of f. Since by hypothesis f splits over K, then (by definition of "splits") f is a product of linear factors in K, and so g is the irreducible polynomial in K[x] of some $u \in F$. Since by hypothesis F is separable over K, then u is separable over K (definition of separable extension) and so g is separable over K (definition of separable element $u \in F$).

Theorem V.3.11. If F is an extension field of K, then the following statements are equivalent.

- (ii) F is separable over K and F is a splitting field over K of a set S of polynomials in K[x].
- (iii) F is a splitting field over K of a set T of separable polynomials in K[x].

Proof (continued). (ii) \Rightarrow (iii) So define set T to be the set of all monic irreducible factors in K[x] of polynomials in set S. We have just argued that set T consists of separable polynomials in K[x].

Theorem V.3.11. If F is an extension field of K, then the following statements are equivalent.

- (ii) F is separable over K and F is a splitting field over K of a set S of polynomials in K[x].
- (iii) F is a splitting field over K of a set T of separable polynomials in K[x].

Proof (continued). (ii) \Rightarrow (iii) So define set *T* to be the set of all monic irreducible factors in *K*[*x*] of polynomials in set *S*. We have just argued that set *T* consists of separable polynomials in *K*[*x*]. By Exercise V.3.4 ("If *F* is a splitting field over *K* of [set *S* of polynomials in *K*[*x*]] then *F* is also a splitting field over *K* of the set *T* of all irreducible factors of polynomials in *S*.") *F* is a splitting field of set *T*.

Theorem V.3.11. If F is an extension field of K, then the following statements are equivalent.

- (ii) F is separable over K and F is a splitting field over K of a set S of polynomials in K[x].
- (iii) F is a splitting field over K of a set T of separable polynomials in K[x].

Proof (continued). (ii) \Rightarrow (iii) So define set *T* to be the set of all monic irreducible factors in *K*[*x*] of polynomials in set *S*. We have just argued that set *T* consists of separable polynomials in *K*[*x*]. By Exercise V.3.4 ("If *F* is a splitting field over *K* of [set *S* of polynomials in *K*[*x*]] then *F* is also a splitting field over *K* of the set *T* of all irreducible factors of polynomials in *S*.") *F* is a splitting field of set *T*.

Theorem V.3.11. If F is an extension field of K, then the following statements are equivalent.

(i) F is algebraic and Galois over K.

(iii) F is a splitting field over K of a set T of separable polynomials in K[x].

Proof. (iii) \Rightarrow (i) *F* is algebraic over *K* since any splitting field over *K* is (by definition of splitting field, Definition V.3.1) an algebraic extension of *K*. Let *X* be the set of all roots of polynomials in *K*. Then by the definition of splitting field, F = K(X).

Theorem V.3.11. If F is an extension field of K, then the following statements are equivalent.

(i) F is algebraic and Galois over K.

(iii) F is a splitting field over K of a set T of separable polynomials in K[x].

Proof. (iii) \Rightarrow (i) *F* is algebraic over *K* since any splitting field over *K* is (by definition of splitting field, Definition V.3.1) an algebraic extension of *K*. Let *X* be the set of all roots of polynomials in *K*. Then by the definition of splitting field, F = K(X). Let $u \in F \setminus K'$. By Theorem V.1.3(vii) there is finite set $\{v_1, v_2, \ldots, v_n\} \subset X$ (so each v_i is a root of some $f_j \in T$) such that $u \in K(v_1, v_2, \ldots, v_n)$.

Theorem V.3.11. If F is an extension field of K, then the following statements are equivalent.

(i) F is algebraic and Galois over K.

(iii) F is a splitting field over K of a set T of separable polynomials in K[x].

Proof. (iii) \Rightarrow (i) *F* is algebraic over *K* since any splitting field over *K* is (by definition of splitting field, Definition V.3.1) an algebraic extension of *K*. Let *X* be the set of all roots of polynomials in *K*. Then by the definition of splitting field, F = K(X). Let $u \in F \setminus K'$. By Theorem V.1.3(vii) there is finite set $\{v_1, v_2, \ldots, v_n\} \subset X$ (so each v_i is a root of some $f_j \in T$) such that $u \in K(v_1, v_2, \ldots, v_n)$. Now consider the f_1, f_2, \ldots, f_n which have v_1, v_2, \ldots, v_n as roots (respectively). Let u_1, u_2, \ldots, u_r be the set of all roots (in *F*) of f_1, f_2, \ldots, f_n . Thus $u \in K(v_1, v_2, \ldots, v_n) \subset K(u_1, u_2, \ldots, u_r) = E$. By Theorem V.1.12, *F* is a finite dimensional extension of *K*; that is, [E : K] is finite.

Theorem V.3.11. If F is an extension field of K, then the following statements are equivalent.

(i) F is algebraic and Galois over K.

(iii) F is a splitting field over K of a set T of separable polynomials in K[x].

Proof. (iii) \Rightarrow (i) *F* is algebraic over *K* since any splitting field over *K* is (by definition of splitting field, Definition V.3.1) an algebraic extension of *K*. Let *X* be the set of all roots of polynomials in *K*. Then by the definition of splitting field, F = K(X). Let $u \in F \setminus K'$. By Theorem V.1.3(vii) there is finite set $\{v_1, v_2, \ldots, v_n\} \subset X$ (so each v_i is a root of some $f_j \in T$) such that $u \in K(v_1, v_2, \ldots, v_n)$. Now consider the f_1, f_2, \ldots, f_n which have v_1, v_2, \ldots, v_n as roots (respectively). Let u_1, u_2, \ldots, u_r be the set of all roots (in *F*) of f_1, f_2, \ldots, f_n . Thus $u \in K(v_1, v_2, \ldots, v_n) \subset K(u_1, u_2, \ldots, u_r) = E$. By Theorem V.1.12, *F* is a finite dimensional extension of *K*; that is, [E : K] is finite.

Proof (continued). (iii) \Rightarrow (i) Since each $f_i \in T$ splits in F by hypothesis, E is a splitting field over K of the finite set of polynomials $\{f_1, f_2, \ldots, f_n\}$ (or equivalently, of the single polynomial $f = f_1 f_2 \cdots f_n$). "Assume for now" that the theorem (i.e., (iii) \Rightarrow (i)) holds in the finite dimensional case ([F : K] is finite). Under this assumption, then E is Galois over K; that is, the fixed field of Aut_KE is E itself (Definition V.2.4). Since $u \in E \setminus K$ (we are replacing field F with finite extension field *E* in the current discussion), then for some $\tau \in Aut_K E$ we have $\tau(u) \neq u$. By Exercise V.3.2 ("If F is a splitting field of S over K and E is an intermediate field, then F is a splitting field of S over E.") F is a splitting field of T over E.

Proof (continued). (iii) \Rightarrow (i) Since each $f_i \in T$ splits in F by hypothesis, E is a splitting field over K of the finite set of polynomials $\{f_1, f_2, \ldots, f_n\}$ (or equivalently, of the single polynomial $f = f_1 f_2 \cdots f_n$). "Assume for now" that the theorem (i.e., (iii) \Rightarrow (i)) holds in the finite dimensional case ([F : K] is finite). Under this assumption, then E is Galois over K; that is, the fixed field of $Aut_K E$ is E itself (Definition V.2.4). Since $u \in E \setminus K$ (we are replacing field F with finite extension field *E* in the current discussion), then for some $\tau \in Aut_{\mathcal{K}}E$ we have $\tau(u) \neq u$. By Exercise V.3.2 ("If F is a splitting field of S over K and E is an intermediate field, then F is a splitting field of S over E.") F is a splitting field of T over E. So by Theorem V.3.8 with $\tau : E \to E$ (τ is an automorphism of E and hence an isomorphism of E with itself) we have that τ can be extended to isomorphism $\sigma: F \to F$ (and so σ is an automorphism of F) where $\sigma \in Aut_K F$ and $\sigma = \tau$ on E. So

Proof (continued). (iii) \Rightarrow (i) Since each $f_i \in T$ splits in F by hypothesis, E is a splitting field over K of the finite set of polynomials $\{f_1, f_2, \ldots, f_n\}$ (or equivalently, of the single polynomial $f = f_1 f_2 \cdots f_n$). "Assume for now" that the theorem (i.e., (iii) \Rightarrow (i)) holds in the finite dimensional case ([F : K] is finite). Under this assumption, then E is Galois over K; that is, the fixed field of $Aut_K E$ is E itself (Definition V.2.4). Since $u \in E \setminus K$ (we are replacing field F with finite extension field *E* in the current discussion), then for some $\tau \in Aut_{\mathcal{K}}E$ we have $\tau(u) \neq u$. By Exercise V.3.2 ("If F is a splitting field of S over K and E is an intermediate field, then F is a splitting field of S over E.") F is a splitting field of T over E. So by Theorem V.3.8 with $\tau: E \to E$ (τ is an automorphism of E and hence an isomorphism of E with itself) we have that τ can be extended to isomorphism $\sigma: {\it F} \rightarrow {\it F}$ (and so σ is an automorphism of F) where $\sigma \in Aut_K F$ and $\sigma = \tau$ on E. So $\sigma(u) = \tau(u) \neq u.$

Proof (continued). (iii) \Rightarrow (i) Since *u* was an arbitrary element of $F \setminus K$ at the very beginning of this proof, and there exists $\sigma \in \operatorname{Aut}_K F$ such that $\sigma(u) \neq u$, then the fixed field of $\operatorname{Aut}_K F$ must be *K*. That is (by definition), *F* is Galois over *K*. So the theorem holds in general *if* it holds when [F : K] is finite.

Proof (continued). (iii) \Rightarrow (i) Since *u* was an arbitrary element of $F \setminus K$ at the very beginning of this proof, and there exists $\sigma \in \operatorname{Aut}_K F$ such that $\sigma(u) \neq u$, then the fixed field of $\operatorname{Aut}_K F$ must be *K*. That is (by definition), *F* is Galois over *K*. So the theorem holds in general *if* it holds when [F : K] is finite.

We now prove that the theorem holds for [F : K] is finite, hence completing the proof. With [F : K] finite, there exists a finite number of polynomials $g_1, g_2, \ldots, g_t \in T$ such that F is a splitting field of $\{g_1, g_2, \ldots, g_t\}$ over K. Furthermore $\operatorname{Aut}_K F$ must be a finite group by Lemma V.2.8.

Proof (continued). (iii) \Rightarrow (i) Since *u* was an arbitrary element of $F \setminus K$ at the very beginning of this proof, and there exists $\sigma \in \operatorname{Aut}_{K} F$ such that $\sigma(u) \neq u$, then the fixed field of $\operatorname{Aut}_{K} F$ must be *K*. That is (by definition), *F* is Galois over *K*. So the theorem holds in general *if* it holds when [F : K] is finite. We now prove that the theorem holds for [F : K] is finite, hence

We now prove that the theorem holds for [F:K] is finite, hence completing the proof. With [F:K] finite, there exists a finite number of polynomials $g_1, g_2, \ldots, g_t \in T$ such that F is a splitting field of $\{g_1, g_2, \ldots, g_t\}$ over K. Furthermore Aut_KF must be a finite group by Lemma V.2.8. If K_0 is the fixed field of Aut_KF, then F is a Galois extension of K_0 by Artin's Theorem (Theorem V.2.15). By the Fundamental Theorem (Theorem V.2.5(i)) $[F:K_0] = |Aut_{K_0}F|$. Since K_0 is the fixed field of Aut_KF then we have Aut_{K_0} $F = Aut_K F$ (this is a remark on page 245).

Proof (continued). (iii) \Rightarrow (i) Since *u* was an arbitrary element of $F \setminus K$ at the very beginning of this proof, and there exists $\sigma \in \operatorname{Aut}_{K} F$ such that $\sigma(u) \neq u$, then the fixed field of $\operatorname{Aut}_{K} F$ must be *K*. That is (by definition), *F* is Galois over *K*. So the theorem holds in general *if* it holds when [F : K] is finite.

We now prove that the theorem holds for [F : K] is finite, hence completing the proof. With [F : K] finite, there exists a finite number of polynomials $g_1, g_2, \ldots, g_t \in T$ such that F is a splitting field of $\{g_1, g_2, \ldots, g_t\}$ over K. Furthermore Aut_KF must be a finite group by Lemma V.2.8. If K_0 is the fixed field of Aut_KF, then F is a Galois extension of K_0 by Artin's Theorem (Theorem V.2.15). By the Fundamental Theorem (Theorem V.2.5(i)) $[F : K_0] = |\operatorname{Aut}_{K_0} F|$. Since K_0 is the fixed field of Aut_KF then we have Aut_{K_0} $F = \operatorname{Aut}_K F$ (this is a remark on page 245). So $[F : K_0] = |\operatorname{Aut}_K F|$. Now we have $K \subset K_0 \subset F$, and so by Theorem V.1.2 we have $[F : K] = [F : K_0][K_0 : K]$.

Proof (continued). (iii) \Rightarrow (i) Since *u* was an arbitrary element of $F \setminus K$ at the very beginning of this proof, and there exists $\sigma \in \operatorname{Aut}_{K} F$ such that $\sigma(u) \neq u$, then the fixed field of $\operatorname{Aut}_{K} F$ must be *K*. That is (by definition), *F* is Galois over *K*. So the theorem holds in general *if* it holds when [F : K] is finite.

We now prove that the theorem holds for [F : K] is finite, hence completing the proof. With [F : K] finite, there exists a finite number of polynomials $g_1, g_2, \ldots, g_t \in T$ such that F is a splitting field of $\{g_1, g_2, \ldots, g_t\}$ over K. Furthermore Aut_KF must be a finite group by Lemma V.2.8. If K_0 is the fixed field of Aut_KF, then F is a Galois extension of K_0 by Artin's Theorem (Theorem V.2.15). By the Fundamental Theorem (Theorem V.2.5(i)) $[F : K_0] = |\operatorname{Aut}_{K_0} F|$. Since K_0 is the fixed field of Aut_KF then we have Aut_{K_0} $F = \operatorname{Aut}_K F$ (this is a remark on page 245). So $[F : K_0] = |\operatorname{Aut}_K F|$. Now we have $K \subset K_0 \subset F$, and so by Theorem V.1.2 we have $[F : K] = [F : K_0][K_0 : K]$.

Proof (continued). (iii) \Rightarrow (i) So if we show that $[F : K] = |\operatorname{Aut}_{K}F|$ then we will have that $[K_0 : K] = 1$ and so $K_0 = K$, which implies the fixed field of $\operatorname{Aut}_{K}F$ is $K_0 = K$; that is, F is a Galois extension of K.

We proceed by induction on n = [F : K], with the case n = 1 being trivial (since this implies that F = K and $Aut_K F$ consists only of the identity on F). If n > 1, then one of th eg_i , say g_1 , has degree s > 1 (otherwise all the roots of the g_i lie in K an dF = K).

Proof (continued). (iii) \Rightarrow (i) So if we show that $[F : K] = |\operatorname{Aut}_K F|$ then we will have that $[K_0 : K] = 1$ and so $K_0 = K$, which implies the fixed field of $\operatorname{Aut}_K F$ is $K_0 = K$; that is, F is a Galois extension of K.

We proceed by induction on n = [F : K], with the case n = 1 being trivial (since this implies that F = K and $\operatorname{Aut}_K F$ consists only of the identity on F). If n > 1, then one of th e_{g_i} , say g_1 , has degree s > 1 (otherwise all the roots of the g_i lie in K and F = K). Let $u \in F$ be a root of g_1 ; then $[K(u) : K] = \deg(g_1) = s$ by Theorem V.1.6(iii) (we need g_1 irreducible here to apply Theorem V.1.6) and the number of distinct roots of g_1 is s since g_1 is separable in F by hypothesis.

Proof (continued). (iii) \Rightarrow (i) So if we show that $[F : K] = |\operatorname{Aut}_K F|$ then we will have that $[K_0 : K] = 1$ and so $K_0 = K$, which implies the fixed field of $\operatorname{Aut}_K F$ is $K_0 = K$; that is, F is a Galois extension of K.

We proceed by induction on n = [F : K], with the case n = 1 being trivial (since this implies that F = K and $\operatorname{Aut}_K F$ consists only of the identity on F). If n > 1, then one of th eg_i , say g_1 , has degree s > 1 (otherwise all the roots of the g_i lie in K and F = K). Let $u \in F$ be a root of g_1 ; then $[K(u) : K] = \deg(g_1) = s$ by Theorem V.1.6(iii) (we need g_1 irreducible here to apply Theorem V.1.6) and the number of distinct roots of g_1 is s since g_1 is separable in F by hypothesis.

Proof (continued). (iii) \Rightarrow (i) By the second paragraph of the proof of Lemma V.2.8 (with L = k, M = K(u) and $f = g_1$) we have that there is an injective map from the set of all left cosets of $H = \operatorname{Aut}_{K(u)} F$ (this is set S in Lemma V.2.8; and $M' = H = \operatorname{Aut}_{K(\mu)}F$ in $\operatorname{Aut}_{K}F$ (in Lemma V.2.8, with $L' = \operatorname{Aut}_L F$ to the set of all roots of g_1 in F (set T in Lemma V.2.8), given by $\sigma H \mapsto \sigma(u)$ (in Lemma V.2.8, the mapping is $\tau M' \mapsto \tau(u)$ so the $\tau \in L' = \operatorname{Aut}_L F$ of Lemma V.2.8 equals the $\sigma \in Aut_{K}F = K'$ here). Therefore since the mapping is injective (one to one) then the number of left cosets of $H = \operatorname{Aut}_{K(u)} F$ in $\operatorname{Aut}_{K} F$ is less than or equal to the number of roots of g_1 ; that is, $[Aut_K F : H] \leq s$. Now if $v \in F$ is any other root of g_1 (which exists since deg $(g_1) = s > 1$), there is an isomorphism $\tau: K(u) \cong K(v)$ with $\tau(u) - v$ and $\tau|_{K} = 1_{K}$ by Corollary V.1.9.

Proof (continued). (iii) \Rightarrow (i) By the second paragraph of the proof of Lemma V.2.8 (with L = k, M = K(u) and $f = g_1$) we have that there is an injective map from the set of all left cosets of $H = \operatorname{Aut}_{K(u)} F$ (this is set S in Lemma V.2.8; and $M' = H = \operatorname{Aut}_{K(\mu)} F$ in $\operatorname{Aut}_{K} F$ (in Lemma V.2.8, with $L' = \operatorname{Aut}_L F$ to the set of all roots of g_1 in F (set T in Lemma V.2.8), given by $\sigma H \mapsto \sigma(u)$ (in Lemma V.2.8, the mapping is $\tau M' \mapsto \tau(u)$ so the $\tau \in L' = \operatorname{Aut}_L F$ of Lemma V.2.8 equals the $\sigma \in Aut_{\kappa}F = K'$ here). Therefore since the mapping is injective (one to one) then the number of left cosets of $H = \operatorname{Aut}_{K(u)} F$ in $\operatorname{Aut}_{K} F$ is less than or equal to the number of roots of g_1 ; that is, $[Aut_K F : H] \leq s$. Now if $v \in F$ is any other root of g_1 (which exists since deg $(g_1) = s > 1$), there is an isomorphism $\tau : K(u) \cong K(v)$ with $\tau(u) - v$ and $\tau|_{K} = 1_{K}$ by **Corollary V.1.9.** Since F is a splitting field of $\{g_1, g_2, \ldots, g_t\}$ over K(u)and over K(v) (by Exercise V.3.2 since K(u) and K(v) are intermediate fields between K and splitting field F), then τ extends to an automorphism $\sigma \in \operatorname{Aut}_{\kappa} F$ with $\sigma(u) = v$ by Theorem V.3.8.

Proof (continued). (iii) \Rightarrow (i) By the second paragraph of the proof of Lemma V.2.8 (with L = k, M = K(u) and $f = g_1$) we have that there is an injective map from the set of all left cosets of $H = \operatorname{Aut}_{K(u)} F$ (this is set S in Lemma V.2.8; and $M' = H = \operatorname{Aut}_{K(\mu)}F$ in $\operatorname{Aut}_{K}F$ (in Lemma V.2.8, with $L' = \operatorname{Aut}_L F$ to the set of all roots of g_1 in F (set T in Lemma V.2.8), given by $\sigma H \mapsto \sigma(u)$ (in Lemma V.2.8, the mapping is $\tau M' \mapsto \tau(u)$ so the $\tau \in L' = \operatorname{Aut}_L F$ of Lemma V.2.8 equals the $\sigma \in Aut_{\mathcal{K}} \mathcal{F} = \mathcal{K}'$ here). Therefore since the mapping is injective (one to one) then the number of left cosets of $H = \operatorname{Aut}_{K(u)} F$ in $\operatorname{Aut}_{K} F$ is less than or equal to the number of roots of g_1 ; that is, $[Aut_K F : H] \leq s$. Now if $v \in F$ is any other root of g_1 (which exists since deg $(g_1) = s > 1$), there is an isomorphism $\tau: K(u) \cong K(v)$ with $\tau(u) - v$ and $\tau|_{K} = 1_{K}$ by Corollary V.1.9. Since F is a splitting field of $\{g_1, g_2, \ldots, g_t\}$ over K(u)and over K(v) (by Exercise V.3.2 since K(u) and K(v) are intermediate fields between K and splitting field F), then τ extends to an automorphism $\sigma \in \operatorname{Aut}_{\kappa} F$ with $\sigma(u) = v$ by Theorem V.3.8.

Proof (continued). (iii) \Rightarrow (i) Now the mapping of cosets takes σH to $\sigma(u) = v$ and so every root of g_1 is the image of some coset of H in Aut_KF; that is, the mapping is onto and so $[Aut_KF : H] = s$. Furthermore, F is a splitting field over K(u) of the set of all irreducible factors h_i (in K(u)[x]) of the polynomials g_i (by Exercise V.3.4). Each h_i is clearly separable since it divides some g_i (the g_i are separable by the hypotheses of (iii)). Now by Theorem V.1.2, n = [F : K] = [F : K(u)][K(u) : K] = [F : K(u)]s, or [F: K(u)] = n/s < n and so by the induction hypothesis we have that F is Galois over K(u) and so the fixed field of $Aut_{K(u)}F$ is K(u) and by the Fundamental Theorem (Theorem V.2.5(i)) $[F : K(u)] = |\operatorname{Aut}_{K(u)}F| = |H|$.

Proof (continued). (iii) \Rightarrow (i) Now the mapping of cosets takes σH to $\sigma(u) = v$ and so every root of g_1 is the image of some coset of H in Aut_KF; that is, the mapping is onto and so $[Aut_KF : H] = s$. Furthermore, F is a splitting field over K(u) of the set of all irreducible factors h_i (in K(u)[x]) of the polynomials g_i (by Exercise V.3.4). Each h_i is clearly separable since it divides some g_i (the g_i are separable by the hypotheses of (iii)). Now by Theorem V.1.2, n = [F : K] = [F : K(u)][K(u) : K] = [F : K(u)]s, or [F: K(u)] = n/s < n and so by the induction hypothesis we have that F is Galois over K(u) and so the fixed field of $Aut_{K(u)}F$ is K(u) and by the Fundamental Theorem (Theorem V.2.5(i)) $[F : K(u)] = |\operatorname{Aut}_{K(u)}F| = |H|.$

Proof (continued). (iii) \Rightarrow (i) Therefore

$$[F:K] = [F:K(u)][K(u):K] \text{ by Theorem V.2.1}$$

= $|H|s \text{ since } [K(u):K] = s \text{ and } H = \operatorname{Aut}_{K(u)}F$
= $|H|[\operatorname{Aut}_{K}F:H] \text{ since } [\operatorname{Aut}_{K}F:H] = s$
= $|\operatorname{Aut}_{K}F|$

with the last equality holding because $[\operatorname{Aut}_{K} F : H]$ is the number of cosets of H in $\operatorname{Aut}_{K} F$, so $[\operatorname{Aut}_{K} F : H] = |\operatorname{Aut}_{K} F|/|H|$. We have now established what is required (namely, $[F : K] = |\operatorname{Aut}_{K} F|$) for the previous paragraph to imply that F is Galois over K whenever [F : K] is finite. In turn, this result can be used in the paragraph before that to show that F is Galois over K for [F : K] not finite.

Proof (continued). (iii) \Rightarrow (i) Therefore

$$[F:K] = [F:K(u)][K(u):K] \text{ by Theorem V.2.1}$$

= $|H|s \text{ since } [K(u):K] = s \text{ and } H = \operatorname{Aut}_{K(u)}F$
= $|H|[\operatorname{Aut}_{K}F:H] \text{ since } [\operatorname{Aut}_{K}F:H] = s$
= $|\operatorname{Aut}_{K}F|$

with the last equality holding because $[\operatorname{Aut}_{K} F : H]$ is the number of cosets of H in $\operatorname{Aut}_{K} F$, so $[\operatorname{Aut}_{K} F : H] = |\operatorname{Aut}_{K} F|/|H|$. We have now established what is required (namely, $[F : K] = |\operatorname{Aut}_{K} F|$) for the previous paragraph to imply that F is Galois over K whenever [F : K] is finite. In turn, this result can be used in the paragraph before that to show that F is Galois over K for [F : K] not finite.

Theorem V.3.14. If F is an algebraic extension field of K, then the following statements are equivalent.

- (i) F is normal over K.
- (ii) F is a splitting field over K of some set of polynomials in K[x].
- (iii) If \overline{K} is algebraically closed, contains K, and contains F, then for any K-monomorphism of fields $\sigma : F \to \overline{K}$ (that is, σ is a one to one homomorphism and σ fixes K elementwise), then $\operatorname{Im}(\sigma) = F$ so that σ is actually a K-automorphism of F(that is, $\sigma \in \operatorname{Aut}_{K}(F)$).

Proof. (i) \Rightarrow (ii) F is a splitting field over K of $\{f_i \in K[x] \mid i \in I\}$ where f_i is the irreducible polynomial in K[x] for some $u_i \in F$, where $\{u_i \mid i \in I\}$ is a basis of F over K (every vector space has a basis, so the set of u_i 's exists and since F is normal over K we have the splitting requirement; also, since the u_i form a basis we know that this covers every element in F).

Theorem V.3.14. If F is an algebraic extension field of K, then the following statements are equivalent.

- (i) F is normal over K.
- (ii) F is a splitting field over K of some set of polynomials in K[x].
- (iii) If \overline{K} is algebraically closed, contains K, and contains F, then for any K-monomorphism of fields $\sigma : F \to \overline{K}$ (that is, σ is a one to one homomorphism and σ fixes K elementwise), then $\operatorname{Im}(\sigma) = F$ so that σ is actually a K-automorphism of F(that is, $\sigma \in \operatorname{Aut}_{K}(F)$).

Proof. (i) \Rightarrow (ii) F is a splitting field over K of $\{f_i \in K[x] \mid i \in I\}$ where f_i is the irreducible polynomial in K[x] for some $u_i \in F$, where $\{u_i \mid i \in I\}$ is a basis of F over K (every vector space has a basis, so the set of u_i 's exists and since F is normal over K we have the splitting requirement; also, since the u_i form a basis we know that this covers every element in F).

Theorem V.3.14. If F is an algebraic extension field of K, then the following statements are equivalent.

- (ii) F is a splitting field over K of some set of polynomials in K[x].
- (iii) If \overline{K} is algebraically closed, contains K, and contains F, then for any K-monomorphism of fields $\sigma: F \to \overline{K}$ (that is, σ is a one to one homomorphism and σ fixes K elementwise), then $Im(\sigma) = F$ so that σ is actually a K-automorphism of F (that is, $\sigma \in Aut_{\kappa}(F)$).

Proof. (ii) \Rightarrow (iii) Let F be a splitting field of $\{f_i \mid i \in I\}$ over K and $\sigma: F \to \overline{K}$ a K-monomorphism of fields. If $u \in F$ is a root of f_i then so is $\sigma(u)$ (as shown in the two-line proof of Theorem V.2.2). By hypothesis f_i splits in F, say $f_i = c(x - u_1)(x - u_2) \cdots (x - u_n)$ (where $u_i \in F$, $c \in K$).

Theorem V.3.14. If F is an algebraic extension field of K, then the following statements are equivalent.

- (ii) F is a splitting field over K of some set of polynomials in K[x].
- (iii) If \overline{K} is algebraically closed, contains K, and contains F, then for any K-monomorphism of fields $\sigma : F \to \overline{K}$ (that is, σ is a one to one homomorphism and σ fixes K elementwise), then $\operatorname{Im}(\sigma) = F$ so that σ is actually a K-automorphism of F(that is, $\sigma \in \operatorname{Aut}_{K}(F)$).

Proof (continued). (ii) \Rightarrow (iii) Since $\overline{K}[x]$ is a unique factorization domain by Corollary III.6.4 and $\sigma(u_i)$ is a root of f_j for all *i*, then by the Factor Theorem (Theorem III.6.6), $x - \sigma(u_i)$ must be a factor of f_j and so $\sigma(u_i)$ must be one of u_1, u_2, \ldots, u_n for every *i*. Since σ is one to one, it must simply permute the u_i . But *F* is generated over *K* by all the roots of all the f_i . It follows from Theorem V.1.3(vi) that $\sigma(F) = F$ and hence $\sigma \in \operatorname{Aut}_K F$ (so σ is a "*K*-automorphism of *F*").

Theorem V.3.14. If F is an algebraic extension field of K, then the following statements are equivalent.

- (ii) F is a splitting field over K of some set of polynomials in K[x].
- (iii) If \overline{K} is algebraically closed, contains K, and contains F, then for any K-monomorphism of fields $\sigma : F \to \overline{K}$ (that is, σ is a one to one homomorphism and σ fixes K elementwise), then $\operatorname{Im}(\sigma) = F$ so that σ is actually a K-automorphism of F(that is, $\sigma \in \operatorname{Aut}_{K}(F)$).

Proof (continued). (ii) \Rightarrow (iii) Since $\overline{K}[x]$ is a unique factorization domain by Corollary III.6.4 and $\sigma(u_i)$ is a root of f_j for all i, then by the Factor Theorem (Theorem III.6.6), $x - \sigma(u_i)$ must be a factor of f_j and so $\sigma(u_i)$ must be one of u_1, u_2, \ldots, u_n for every i. Since σ is one to one, it must simply permute the u_i . But F is generated over K by all the roots of all the f_i . It follows from Theorem V.1.3(vi) that $\sigma(F) = F$ and hence $\sigma \in \operatorname{Aut}_K F$ (so σ is a "K-automorphism of F").

Theorem V.3.14. If F is an algebraic extension field of K, then the following statements are equivalent.

(i) F is normal over K.

(iii) If \overline{K} is algebraically closed, contains K, and contains F, then for any K-monomorphism of fields $\sigma : F \to \overline{K}$ (that is, σ is a one to one homomorphism and σ fixes K elementwise), then $\operatorname{Im}(\sigma) = F$ so that σ is actually a K-automorphism of F(that is, $\sigma \in \operatorname{Aut}_{K}(F)$).

Proof. (iii) \Rightarrow (i) Let \overline{K} be an algebraic closure of F. Then \overline{K} is algebraic over K by Theorem V.1.13 (since $K \subset F \subset \overline{K}$). Therefore \overline{K} contains K and is algebraically closed and contains F. Let $F \in K[x]$ be irreducible with a root $u \in F$. By construction, \overline{K} contains all roots of f.

Theorem V.3.14. If F is an algebraic extension field of K, then the following statements are equivalent.

(i) F is normal over K.

(iii) If \overline{K} is algebraically closed, contains K, and contains F, then for any K-monomorphism of fields $\sigma : F \to \overline{K}$ (that is, σ is a one to one homomorphism and σ fixes K elementwise), then $\operatorname{Im}(\sigma) = F$ so that σ is actually a K-automorphism of F(that is, $\sigma \in \operatorname{Aut}_K(F)$).

Proof. (iii) \Rightarrow (i) Let \overline{K} be an algebraic closure of F. Then \overline{K} is algebraic over K by Theorem V.1.13 (since $K \subset F \subset \overline{K}$). Therefore \overline{K} contains K and is algebraically closed and contains F. Let $F \in K[x]$ be irreducible with a root $u \in F$. By construction, \overline{K} contains all roots of f. To show that F is normal over K we must show that f splits in F. If $v \in \overline{K}$ is any root of f then there is a K-isomorphism of fields $\sigma : K(u) \cong K(v)$ with $\sigma(u) = v$ by Corollary V.1.19.

Theorem V.3.14. If F is an algebraic extension field of K, then the following statements are equivalent.

(i) F is normal over K.

(iii) If \overline{K} is algebraically closed, contains K, and contains F, then for any K-monomorphism of fields $\sigma : F \to \overline{K}$ (that is, σ is a one to one homomorphism and σ fixes K elementwise), then $\operatorname{Im}(\sigma) = F$ so that σ is actually a K-automorphism of F(that is, $\sigma \in \operatorname{Aut}_{K}(F)$).

Proof. (iii) \Rightarrow (i) Let \overline{K} be an algebraic closure of F. Then \overline{K} is algebraic over K by Theorem V.1.13 (since $K \subset F \subset \overline{K}$). Therefore \overline{K} contains K and is algebraically closed and contains F. Let $F \in K[x]$ be irreducible with a root $u \in F$. By construction, \overline{K} contains all roots of f. To show that F is normal over K we must show that f splits in F. If $v \in \overline{K}$ is any root of f then there is a K-isomorphism of fields $\sigma : K(u) \cong K(v)$ with $\sigma(u) = v$ by Corollary V.1.19.

Theorem V.3.14. If F is an algebraic extension field of K, then the following statements are equivalent.

(i) F is normal over K.

(iii) If \overline{K} is algebraically closed, contains K, and contains F, then for any K-monomorphism of fields $\sigma : F \to \overline{K}$ (that is, σ is a one to one homomorphism and σ fixes K elementwise), then $\operatorname{Im}(\sigma) = F$ so that σ is actually a K-automorphism of F(that is, $\sigma \in \operatorname{Aut}_{K}(F)$).

Proof (continued). (iii) \Rightarrow (i) By Theorems V.3.4 and V.3.8 and Exercise V.3.2, σ extends to a *K*-automorphism of \overline{K} . Now $\sigma|_F$ is a monomorphism (one to one, since σ is hypothesized to be a monomorphism) mapping $F \rightarrow \overline{K}$ and, since by hypothesis Im $(\sigma) = F$, we have $\sigma(F) = F$. Therefore $v = \sigma(u) \in F$ which implies that all roots of f are in F; that is, f splits in F. So F is normal over K.

Theorem V.3.14. If F is an algebraic extension field of K, then the following statements are equivalent.

(i) F is normal over K.

(iii) If \overline{K} is algebraically closed, contains K, and contains F, then for any K-monomorphism of fields $\sigma : F \to \overline{K}$ (that is, σ is a one to one homomorphism and σ fixes K elementwise), then $\operatorname{Im}(\sigma) = F$ so that σ is actually a K-automorphism of F(that is, $\sigma \in \operatorname{Aut}_{K}(F)$).

Proof (continued). (iii) \Rightarrow (i) By Theorems V.3.4 and V.3.8 and Exercise V.3.2, σ extends to a *K*-automorphism of \overline{K} . Now $\sigma|_F$ is a monomorphism (one to one, since σ is hypothesized to be a monomorphism) mapping $F \rightarrow \overline{K}$ and, since by hypothesis $\text{Im}(\sigma) = F$, we have $\sigma(F) = F$. Therefore $v = \sigma(u) \in F$ which implies that all roots of *f* are in *F*; that is, *f* splits in *F*. So *F* is normal over *K*.

Theorem V.3.16. If E is an algebraic extension field of K, then there exists an extension field F of E such that:

(i) F is normal over K;

(ii) No proper subfield of F containing E is normal over K;

(iii) If E is separable over K, then F is Galois over K;

(iv) [F : K] is finite if and only if [E : K] is finite.

The field F is uniquely determined up to an E-isomorphism.

Proof. (i) Let $X = \{u_i \mid i \in I\}$ be a basis of E over K and let $f_i \in K[x]$ be the irreducible polynomial of u_i . If F is a splitting field of $S = \{f_i \mid i \in I\}$ over E, then F is also a splitting field of S over K by Exercise V.3.3. Whence F is normal over K by Theorem V.3.14 (the (ii) \Rightarrow (i) part).

Theorem V.3.16. If E is an algebraic extension field of K, then there exists an extension field F of E such that:

(i) F is normal over K;

(ii) No proper subfield of F containing E is normal over K;

(iii) If E is separable over K, then F is Galois over K;

(iv) [F : K] is finite if and only if [E : K] is finite.

The field F is uniquely determined up to an E-isomorphism.

Proof. (i) Let $X = \{u_i \mid i \in I\}$ be a basis of E over K and let $f_i \in K[x]$ be the irreducible polynomial of u_i . If F is a splitting field of $S = \{f_i \mid i \in I\}$ over E, then F is also a splitting field of S over K by Exercise V.3.3. Whence F is normal over K by Theorem V.3.14 (the (ii) \Rightarrow (i) part).

Theorem V.3.16. If E is an algebraic extension field of K, then there exists an extension field F of E such that:

(iii) If E is separable over K, then F is Galois over K;

(iv) [F : K] is finite if and only if [E : K] is finite.

The field F is uniquely determined up to an E-isomorphism.

Proof. (iii) If *E* is separable over *K*, then each f_i above is separable over *F* (since $K \subset E \subset F$). As explained above, *F* is a splitting field of $S = \{f_i \mid i \in I\}$ (and *S* consists of separable polynomials in K[x]), so by Theorem V.3.11 (the (iii) \Rightarrow (i) part), *F* is Galois over *K*.

Theorem V.3.16. If E is an algebraic extension field of K, then there exists an extension field F of E such that:

(iii) If E is separable over K, then F is Galois over K;

(iv) [F : K] is finite if and only if [E : K] is finite.

The field F is uniquely determined up to an E-isomorphism.

Proof. (iii) If *E* is separable over *K*, then each f_i above is separable over *F* (since $K \subset E \subset F$). As explained above, *F* is a splitting field of $S = \{f_i \mid i \in I\}$ (and *S* consists of separable polynomials in K[x]), so by Theorem V.3.11 (the (iii) \Rightarrow (i) part), *F* is Galois over *K*. (iv) If [E : K] is finite, then so is *X* (since *X* is a basis for *E* over *K*) and hence *S* is finite. Since *F* is a splitting field of *S* over *K*, then F = K(X) since *X* is the set of all roots of polynomials in *S*, then by Theorem V.1.12 *F* is algebraic over *K* and finite dimensional since *X* is finite. That is, [F : K] is finite. The converse follows from Theorem V.1.2.

Theorem V.3.16. If E is an algebraic extension field of K, then there exists an extension field F of E such that:

(iii) If E is separable over K, then F is Galois over K;

(iv) [F : K] is finite if and only if [E : K] is finite.

The field F is uniquely determined up to an E-isomorphism.

Proof. (iii) If *E* is separable over *K*, then each f_i above is separable over *F* (since $K \subset E \subset F$). As explained above, *F* is a splitting field of $S = \{f_i \mid i \in I\}$ (and *S* consists of separable polynomials in K[x]), so by Theorem V.3.11 (the (iii) \Rightarrow (i) part), *F* is Galois over *K*. (iv) If [E : K] is finite, then so is *X* (since *X* is a basis for *E* over *K*) and hence *S* is finite. Since *F* is a splitting field of *S* over *K*, then F = K(X) since *X* is the set of all roots of polynomials in *S*, then by Theorem V.1.12 *F* is algebraic over *K* and finite dimensional since *X* is finite. That is, [F : K] is finite. The converse follows from Theorem V.1.2.

Theorem V.3.16. If E is an algebraic extension field of K, then there exists an extension field F of E such that:

(ii) No proper subfield of F containing E is normal over K. The field F is uniquely determined up to an E-isomorphism.

Proof. (ii) If F_0 is a subfield of F that contains E, then F_0 necessarily contains the root u_i of $f_i \in S$ for every i (since E contains each u_i). If F_0 is normal over K (so that each f_i splits in F_0 by definition) then $F \subset F_0$ and hence $F = F_0$ and subfield F_0 of F is not proper.

Theorem V.3.16. If E is an algebraic extension field of K, then there exists an extension field F of E such that:

(ii) No proper subfield of F containing E is normal over K. The field F is uniquely determined up to an E-isomorphism.

Proof. (ii) If F_0 is a subfield of F that contains E, then F_0 necessarily contains the root u_i of $f_i \in S$ for every i (since E contains each u_i). If F_0 is normal over K (so that each f_i splits in F_0 by definition) then $F \subset F_0$ and hence $F = F_0$ and subfield F_0 of F is not proper.

Uniqueness. Let F_1 be another extension field of E (in addition to F) with properties (i) and (ii). Since F_1 is normal over K by (i) and contains each u_i (since E contains each u_i and we have $K \subset E \subset F_1$), then (by the definition of normal) each polynomial in S splits in F_1 .

Theorem V.3.16. If E is an algebraic extension field of K, then there exists an extension field F of E such that:

(ii) No proper subfield of F containing E is normal over K. The field F is uniquely determined up to an E-isomorphism.

Proof. (ii) If F_0 is a subfield of F that contains E, then F_0 necessarily contains the root u_i of $f_i \in S$ for every i (since E contains each u_i). If F_0 is normal over K (so that each f_i splits in F_0 by definition) then $F \subset F_0$ and hence $F = F_0$ and subfield F_0 of F is not proper.

Uniqueness. Let F_1 be another extension field of E (in addition to F) with properties (i) and (ii). Since F_1 is normal over K by (i) and contains each u_i (since E contains each u_i and we have $K \subset E \subset F_1$), then (by the definition of normal) each polynomial in S splits in F_1 . So F_1 must contain a splitting field F_2 of S over K with $E \subset F_2$. F_2 is normal over K (by Theorem V.3.14, the (ii) \Rightarrow (i) part), whence $F_2 = F_1$ by (ii).

Theorem V.3.16. If E is an algebraic extension field of K, then there exists an extension field F of E such that:

(ii) No proper subfield of F containing E is normal over K. The field F is uniquely determined up to an E-isomorphism.

Proof. (ii) If F_0 is a subfield of F that contains E, then F_0 necessarily contains the root u_i of $f_i \in S$ for every i (since E contains each u_i). If F_0 is normal over K (so that each f_i splits in F_0 by definition) then $F \subset F_0$ and hence $F = F_0$ and subfield F_0 of F is not proper.

Uniqueness. Let F_1 be another extension field of E (in addition to F) with properties (i) and (ii). Since F_1 is normal over K by (i) and contains each u_i (since E contains each u_i and we have $K \subset E \subset F_1$), then (by the definition of normal) each polynomial in S splits in F_1 . So F_1 must contain a splitting field F_2 of S over K with $E \subset F_2$. F_2 is normal over K (by Theorem V.3.14, the (ii) \Rightarrow (i) part), whence $F_2 = F_1$ by (ii).

Theorem V.3.16. If E is an algebraic extension field of K, then there exists an extension field F of E such that:

- (i) F is normal over K;
- (ii) No proper subfield of F containing E is normal over K;
- (iii) If E is separable over K, then F is Galois over K;
- (iv) [F : K] is finite if and only if [E : K] is finite.

The field F is uniquely determined up to an E-isomorphism.

Proof (continued). (Uniqueness) Therefore both F and F_1 are splitting fields of S over K and hence (by Exercise V.3.2) are splitting fields of S over E. By Theorem V.3.8, the identity on E extends to an E-isomorphism $F \cong F_1$.