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Theorem V.3.2

Theorem V.3.2

Theorem V.3.2. If K is a field and f ∈ K [x ] has degree n ≥ 1, then there
exists a splitting field F of f with dimension [F : K ] ≤ n!.
Proof. We prove this by induction on n = deg(f ). For the base step, if
n = 1 (or if f splits over K ) then F = K is a splitting field and
[F : K ] = [F : F ] = 1 ≤ n!.

If n > 1 and f does not split over K , let g ∈ K [x ] be an irreducible factor
of f of degree greater than one. By Theorem V.1.10 (Kronecker’s
Theorem) there is a simple extension field K (u) of K such that u is a root
of g and [K (u) : K ] = deg(g) > 1. Then by Theorem III.6.6 (the Factor
Theorem) we have f (x) = (x − u)h(x) for some h ∈ K (u)[x ] of degree
n − 1 (we have only used polynomial g in passing; notice deg(g) ≤ n).
Repeating this process (and factoring f ) we can produce (inductively) a
splitting field F of h ∈ K (u)[x ] of degree at most (n − 1)!. By Exercise
V.3.3, F is a splitting field of f over K . By Theorem V.1.2,
[F : K ] = [F : K (u)][K (u) : K ] ≤ (n − 1)!deg(g) ≤ (n − 1)!n = n!. The
result now follows by induction.

() Modern Algebra April 13, 2016 3 / 25



Theorem V.3.2

Theorem V.3.2

Theorem V.3.2. If K is a field and f ∈ K [x ] has degree n ≥ 1, then there
exists a splitting field F of f with dimension [F : K ] ≤ n!.
Proof. We prove this by induction on n = deg(f ). For the base step, if
n = 1 (or if f splits over K ) then F = K is a splitting field and
[F : K ] = [F : F ] = 1 ≤ n!.
If n > 1 and f does not split over K , let g ∈ K [x ] be an irreducible factor
of f of degree greater than one. By Theorem V.1.10 (Kronecker’s
Theorem) there is a simple extension field K (u) of K such that u is a root
of g and [K (u) : K ] = deg(g) > 1.

Then by Theorem III.6.6 (the Factor
Theorem) we have f (x) = (x − u)h(x) for some h ∈ K (u)[x ] of degree
n − 1 (we have only used polynomial g in passing; notice deg(g) ≤ n).
Repeating this process (and factoring f ) we can produce (inductively) a
splitting field F of h ∈ K (u)[x ] of degree at most (n − 1)!. By Exercise
V.3.3, F is a splitting field of f over K . By Theorem V.1.2,
[F : K ] = [F : K (u)][K (u) : K ] ≤ (n − 1)!deg(g) ≤ (n − 1)!n = n!. The
result now follows by induction.

() Modern Algebra April 13, 2016 3 / 25



Theorem V.3.2

Theorem V.3.2

Theorem V.3.2. If K is a field and f ∈ K [x ] has degree n ≥ 1, then there
exists a splitting field F of f with dimension [F : K ] ≤ n!.
Proof. We prove this by induction on n = deg(f ). For the base step, if
n = 1 (or if f splits over K ) then F = K is a splitting field and
[F : K ] = [F : F ] = 1 ≤ n!.
If n > 1 and f does not split over K , let g ∈ K [x ] be an irreducible factor
of f of degree greater than one. By Theorem V.1.10 (Kronecker’s
Theorem) there is a simple extension field K (u) of K such that u is a root
of g and [K (u) : K ] = deg(g) > 1. Then by Theorem III.6.6 (the Factor
Theorem) we have f (x) = (x − u)h(x) for some h ∈ K (u)[x ] of degree
n − 1 (we have only used polynomial g in passing; notice deg(g) ≤ n).
Repeating this process (and factoring f ) we can produce (inductively) a
splitting field F of h ∈ K (u)[x ] of degree at most (n − 1)!.

By Exercise
V.3.3, F is a splitting field of f over K . By Theorem V.1.2,
[F : K ] = [F : K (u)][K (u) : K ] ≤ (n − 1)!deg(g) ≤ (n − 1)!n = n!. The
result now follows by induction.

() Modern Algebra April 13, 2016 3 / 25



Theorem V.3.2

Theorem V.3.2

Theorem V.3.2. If K is a field and f ∈ K [x ] has degree n ≥ 1, then there
exists a splitting field F of f with dimension [F : K ] ≤ n!.
Proof. We prove this by induction on n = deg(f ). For the base step, if
n = 1 (or if f splits over K ) then F = K is a splitting field and
[F : K ] = [F : F ] = 1 ≤ n!.
If n > 1 and f does not split over K , let g ∈ K [x ] be an irreducible factor
of f of degree greater than one. By Theorem V.1.10 (Kronecker’s
Theorem) there is a simple extension field K (u) of K such that u is a root
of g and [K (u) : K ] = deg(g) > 1. Then by Theorem III.6.6 (the Factor
Theorem) we have f (x) = (x − u)h(x) for some h ∈ K (u)[x ] of degree
n − 1 (we have only used polynomial g in passing; notice deg(g) ≤ n).
Repeating this process (and factoring f ) we can produce (inductively) a
splitting field F of h ∈ K (u)[x ] of degree at most (n − 1)!. By Exercise
V.3.3, F is a splitting field of f over K . By Theorem V.1.2,
[F : K ] = [F : K (u)][K (u) : K ] ≤ (n − 1)!deg(g) ≤ (n − 1)!n = n!. The
result now follows by induction.

() Modern Algebra April 13, 2016 3 / 25



Theorem V.3.2

Theorem V.3.2

Theorem V.3.2. If K is a field and f ∈ K [x ] has degree n ≥ 1, then there
exists a splitting field F of f with dimension [F : K ] ≤ n!.
Proof. We prove this by induction on n = deg(f ). For the base step, if
n = 1 (or if f splits over K ) then F = K is a splitting field and
[F : K ] = [F : F ] = 1 ≤ n!.
If n > 1 and f does not split over K , let g ∈ K [x ] be an irreducible factor
of f of degree greater than one. By Theorem V.1.10 (Kronecker’s
Theorem) there is a simple extension field K (u) of K such that u is a root
of g and [K (u) : K ] = deg(g) > 1. Then by Theorem III.6.6 (the Factor
Theorem) we have f (x) = (x − u)h(x) for some h ∈ K (u)[x ] of degree
n − 1 (we have only used polynomial g in passing; notice deg(g) ≤ n).
Repeating this process (and factoring f ) we can produce (inductively) a
splitting field F of h ∈ K (u)[x ] of degree at most (n − 1)!. By Exercise
V.3.3, F is a splitting field of f over K . By Theorem V.1.2,
[F : K ] = [F : K (u)][K (u) : K ] ≤ (n − 1)!deg(g) ≤ (n − 1)!n = n!. The
result now follows by induction.

() Modern Algebra April 13, 2016 3 / 25



Theorem V.3.8 for S Finite

Theorem V.3.8

Theorem V.3.8. Let σ : K → L be an isomorphism of fields, S = {fi} a
set of polynomials (of positive degree) in K [x ], and S ′ = {σfi} the
corresponding set of polynomials in L[x ]. If F is a splitting field of S over
K and M is a splitting field of S ′ over L, then σ is extendible to an
isomorphism F ∼= M.

Proof for S a Finite Set. Suppose that S consists of a single polynomial
f ∈ K [x ]. Let F be a splitting field of f over K . Let n = [F : K ]. We give
an inductive proof on n.

For the base case, if n = 1 then F = K and f
splits over K . So S = {σf } splits over σ(K ) = L and, since M is the
splitting field of S ′, then L = M. So σ is in fact an isomorphism giving
F ∼= M and the base case is established. If n > 1 then f must have an
irreducible factor g of degree greater than 1 (or else F splits over K and
[F : K ] = 1 6= n). Let u be a root of g in F . Since g is irreducible in K [x ]
and σ : K → L is an isomorphism, then σg ∈ L[x ] is irreducible.
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Corollary V.3.9

Corollary V.3.9

Corollary V.3.9. Let K be a field and S a set of polynomials (of positive
degree) in K [x ]. Then any two splitting fields of S over K are
K -isomorphic. In particular, any two algebraic closures of K are
K -isomorphic.

Proof. With σ : K → K as σ = 1K (the identity on K ) in Theorem V.3.8,
we have that if L and M are splitting fields for K (so K ⊂ L, K ⊂ M) then
σ extends to an isomorphism τ : L → M and the two splitting fields are
isomorphic.

For the “in particular” claim, we need to consider the set S of all
polynomials in K [x ]. By Theorem V.3.4, the splitting field of S is the
algebraic closure of K . Again, Theorem V.3.8 with σ = 1K yields the
result. (This is also shown in Theorem V.3.6.)
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Theorem V.3.11

Theorem V.3.11

Theorem V.3.11. If F is an extension field of K , then the following
statements are equivalent.

(i) F is algebraic and Galois over K .

(ii) F is separable over K and F is a splitting field over K of a
set S of polynomials in K [x ].

(iii) F is a splitting field over K of a set T of separable
polynomials in K [x ].

Proof. (i) ⇒ (ii) and (iii) If u ∈ F has irreducible polynomial f , then as
in the proof of Lemma V.2.13 (up to the “Consequently, all the roots of f
are distinct and lie in E” part) f splits in F [x ] into a product of distinct
linear factors. Hence (by definition) u is separable over K .

Let {vi | i ∈ I}
be a basis of F over K and for each i ∈ I let fi ∈ K [x ] be the irreducible
polynomial of vi . As just argued, each fi is separable and splits in F [x ]
(and also, each vi is separable over K , by definition). Therefore F is a
splitting field over K of S = {fi | i ∈ I} and (ii) and (iii) follow.
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Theorem V.3.11

Theorem V.3.11 (continued 1)

Theorem V.3.11. If F is an extension field of K , then the following
statements are equivalent.

(ii) F is separable over K and F is a splitting field over K of a
set S of polynomials in K [x ].

(iii) F is a splitting field over K of a set T of separable
polynomials in K [x ].

Proof. (ii) ⇒ (iii) [Here we need to “move” the hypothesis of separable
extension to the conclusion of separable polynomials.] Let f ∈ S where F
is a splitting field over K of set S of polynomials. Let g ∈ K [x ] be a
monic irreducible factor of f .

Since by hypothesis f splits over K , then (by
definition of “splits”) f is a product of linear factors in K , and so g is the
irreducible polynomial in K [x ] of some u ∈ F . Since by hypothesis F is
separable over K , then u is separable over K (definition of separable
extension) and so g is separable over K (definition of separable element
u ∈ F ).
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Theorem V.3.11

Theorem V.3.11 (continued 2)

Theorem V.3.11. If F is an extension field of K , then the following
statements are equivalent.

(ii) F is separable over K and F is a splitting field over K of a
set S of polynomials in K [x ].

(iii) F is a splitting field over K of a set T of separable
polynomials in K [x ].

Proof (continued). (ii) ⇒ (iii) So define set T to be the set of all monic
irreducible factors in K [x ] of polynomials in set S . We have just argued
that set T consists of separable polynomials in K [x ].

By Exercise V.3.4
(“If F is a splitting field over K of [set S of polynomials in K [x ]] then F is
also a splitting field over K of the set T of all irreducible factors of
polynomials in S .”) F is a splitting field of set T .
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Theorem V.3.11

Theorem V.3.11 (continued 3)
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statements are equivalent.

(i) F is algebraic and Galois over K .

(iii) F is a splitting field over K of a set T of separable
polynomials in K [x ].

Proof. (iii) ⇒ (i) F is algebraic over K since any splitting field over K is
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Theorem V.3.11

Theorem V.3.11 (continued 4)

Proof (continued). (iii) ⇒ (i) Since each fi ∈ T splits in F by
hypothesis, E is a splitting field over K of the finite set of polynomials
{f1, f2, . . . , fn} (or equivalently, of the single polynomial f = f1f2 · · · fn).
“Assume for now” that the theorem (i.e., (iii)⇒(i)) holds in the finite
dimensional case ([F : K ] is finite). Under this assumption, then E is
Galois over K ; that is, the fixed field of AutKE is E itself (Definition
V.2.4). Since u ∈ E \K (we are replacing field F with finite extension field
E in the current discussion), then for some τ ∈ AutKE we have τ(u) 6= u.
By Exercise V.3.2 (“If F is a splitting field of S over K and E is an
intermediate field, then F is a splitting field of S over E .”) F is a splitting
field of T over E .

So by Theorem V.3.8 with τ : E → E (τ is an
automorphism of E and hence an isomorphism of E with itself) we have
that τ can be extended to isomorphism σ : F → F (and so σ is an
automorphism of F ) where σ ∈ AutKF and σ = τ on E . So
σ(u) = τ(u) 6= u.
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Theorem V.3.11

Theorem V.3.11 (continued 5)

Proof (continued). (iii) ⇒ (i) Since u was an arbitrary element of F \K
at the very beginning of this proof, and there exists σ ∈ AutKF such that
σ(u) 6= u, then the fixed field of AutKF must be K . That is (by
definition), F is Galois over K . So the theorem holds in general if it holds
when [F : K ] is finite.

We now prove that the theorem holds for [F : K ] is finite, hence
completing the proof. With [F : K ] finite, there exists a finite number of
polynomials g1, g2, . . . , gt ∈ T such that F is a splitting field of
{g1, g2, . . . , gt} over K . Furthermore AutKF must be a finite group by
Lemma V.2.8. If K0 is the fixed field of AutKF , then F is a Galois
extension of K0 by Artin’s Theorem (Theorem V.2.15). By the
Fundamental Theorem (Theorem V.2.5(i)) [F : K0] = |AutK0F |. Since K0

is the fixed field of AutKF then we have AutK0F = AutKF (this is a
remark on page 245). So [F : K0] = |AutKF |. Now we have K ⊂ K0 ⊂ F ,
and so by Theorem V.1.2 we have [F : K ] = [F : K0][K0 : K ].

() Modern Algebra April 13, 2016 12 / 25



Theorem V.3.11

Theorem V.3.11 (continued 5)

Proof (continued). (iii) ⇒ (i) Since u was an arbitrary element of F \K
at the very beginning of this proof, and there exists σ ∈ AutKF such that
σ(u) 6= u, then the fixed field of AutKF must be K . That is (by
definition), F is Galois over K . So the theorem holds in general if it holds
when [F : K ] is finite.
We now prove that the theorem holds for [F : K ] is finite, hence
completing the proof. With [F : K ] finite, there exists a finite number of
polynomials g1, g2, . . . , gt ∈ T such that F is a splitting field of
{g1, g2, . . . , gt} over K . Furthermore AutKF must be a finite group by
Lemma V.2.8.

If K0 is the fixed field of AutKF , then F is a Galois
extension of K0 by Artin’s Theorem (Theorem V.2.15). By the
Fundamental Theorem (Theorem V.2.5(i)) [F : K0] = |AutK0F |. Since K0

is the fixed field of AutKF then we have AutK0F = AutKF (this is a
remark on page 245). So [F : K0] = |AutKF |. Now we have K ⊂ K0 ⊂ F ,
and so by Theorem V.1.2 we have [F : K ] = [F : K0][K0 : K ].

() Modern Algebra April 13, 2016 12 / 25



Theorem V.3.11

Theorem V.3.11 (continued 5)

Proof (continued). (iii) ⇒ (i) Since u was an arbitrary element of F \K
at the very beginning of this proof, and there exists σ ∈ AutKF such that
σ(u) 6= u, then the fixed field of AutKF must be K . That is (by
definition), F is Galois over K . So the theorem holds in general if it holds
when [F : K ] is finite.
We now prove that the theorem holds for [F : K ] is finite, hence
completing the proof. With [F : K ] finite, there exists a finite number of
polynomials g1, g2, . . . , gt ∈ T such that F is a splitting field of
{g1, g2, . . . , gt} over K . Furthermore AutKF must be a finite group by
Lemma V.2.8. If K0 is the fixed field of AutKF , then F is a Galois
extension of K0 by Artin’s Theorem (Theorem V.2.15). By the
Fundamental Theorem (Theorem V.2.5(i)) [F : K0] = |AutK0F |. Since K0

is the fixed field of AutKF then we have AutK0F = AutKF (this is a
remark on page 245).

So [F : K0] = |AutKF |. Now we have K ⊂ K0 ⊂ F ,
and so by Theorem V.1.2 we have [F : K ] = [F : K0][K0 : K ].

() Modern Algebra April 13, 2016 12 / 25



Theorem V.3.11

Theorem V.3.11 (continued 5)

Proof (continued). (iii) ⇒ (i) Since u was an arbitrary element of F \K
at the very beginning of this proof, and there exists σ ∈ AutKF such that
σ(u) 6= u, then the fixed field of AutKF must be K . That is (by
definition), F is Galois over K . So the theorem holds in general if it holds
when [F : K ] is finite.
We now prove that the theorem holds for [F : K ] is finite, hence
completing the proof. With [F : K ] finite, there exists a finite number of
polynomials g1, g2, . . . , gt ∈ T such that F is a splitting field of
{g1, g2, . . . , gt} over K . Furthermore AutKF must be a finite group by
Lemma V.2.8. If K0 is the fixed field of AutKF , then F is a Galois
extension of K0 by Artin’s Theorem (Theorem V.2.15). By the
Fundamental Theorem (Theorem V.2.5(i)) [F : K0] = |AutK0F |. Since K0

is the fixed field of AutKF then we have AutK0F = AutKF (this is a
remark on page 245). So [F : K0] = |AutKF |. Now we have K ⊂ K0 ⊂ F ,
and so by Theorem V.1.2 we have [F : K ] = [F : K0][K0 : K ].

() Modern Algebra April 13, 2016 12 / 25



Theorem V.3.11

Theorem V.3.11 (continued 5)

Proof (continued). (iii) ⇒ (i) Since u was an arbitrary element of F \K
at the very beginning of this proof, and there exists σ ∈ AutKF such that
σ(u) 6= u, then the fixed field of AutKF must be K . That is (by
definition), F is Galois over K . So the theorem holds in general if it holds
when [F : K ] is finite.
We now prove that the theorem holds for [F : K ] is finite, hence
completing the proof. With [F : K ] finite, there exists a finite number of
polynomials g1, g2, . . . , gt ∈ T such that F is a splitting field of
{g1, g2, . . . , gt} over K . Furthermore AutKF must be a finite group by
Lemma V.2.8. If K0 is the fixed field of AutKF , then F is a Galois
extension of K0 by Artin’s Theorem (Theorem V.2.15). By the
Fundamental Theorem (Theorem V.2.5(i)) [F : K0] = |AutK0F |. Since K0

is the fixed field of AutKF then we have AutK0F = AutKF (this is a
remark on page 245). So [F : K0] = |AutKF |. Now we have K ⊂ K0 ⊂ F ,
and so by Theorem V.1.2 we have [F : K ] = [F : K0][K0 : K ].

() Modern Algebra April 13, 2016 12 / 25



Theorem V.3.11

Theorem V.3.11 (continued 6)

Proof (continued). (iii) ⇒ (i) So if we show that [F : K ] = |AutKF |
then we will have that [K0 : K ] = 1 and so K0 = K , which implies the
fixed field of AutKF is K0 = K ; that is, F is a Galois extension of K .

We proceed by induction on n = [F : K ], with the case n = 1 being trivial
(since this implies that F = K and AutKF consists only of the identity on
F ). If n > 1, then one of th egi , say g1, has degree s > 1 (otherwise all
the roots of the gi lie in K an dF = K ).

Let u ∈ F be a root of g1; then
[K (u) : K ] = deg(g1) = s by Theorem V.1.6(iii) (we need g1 irreducible
here to apply Theorem V.1.6) and the number of distinct roots of g1 is s
since g1 is separable in F by hypothesis.
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Theorem V.3.11

Theorem V.3.11 (continued 7)

Proof (continued). (iii) ⇒ (i) By the second paragraph of the proof of
Lemma V.2.8 (with L = k, M = K (u) and f = g1) we have that there is
an injective map from the set of all left cosets of H = AutK(u)F (this is
set S in Lemma V.2.8; and M ′ = H = AutK(u)F in AutKF (in Lemma
V.2.8, with L′ = AutLF ) to the set of all roots of g1 in F (set T in Lemma
V.2.8), given by σH 7→ σ(u) (in Lemma V.2.8, the mapping is
τM ′ 7→ τ(u) so the τ ∈ L′ = AutLF of Lemma V.2.8 equals the
σ ∈ AutKF = K ′ here). Therefore since the mapping is injective (one to
one) then the number of left cosets of H = AutK(u)F in AutKF is less
than or equal to the number of roots of g1; that is, [AutKF : H] ≤ s. Now
if v ∈ F is any other root of g1 (which exists since deg(g1) = s > 1), there
is an isomorphism τ : K (u) ∼= K (v) with τ(u)− v and τ |K = 1K by
Corollary V.1.9.

Since F is a splitting field of {g1, g2, . . . , gt} over K (u)
and over K (v) (by Exercise V.3.2 since K (u) and K (v) are intermediate
fields between K and splitting field F ), then τ extends to an
automorphism σ ∈ AutKF with σ(u) = v by Theorem V.3.8.
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Theorem V.3.11

Theorem V.3.11 (continued 8)

Proof (continued). (iii) ⇒ (i) Now the mapping of cosets takes σH to
σ(u) = v and so every root of g1 is the image of some coset of H in
AutKF ; that is, the mapping is onto and so [AutKF : H] = s.
Furthermore, F is a splitting field over K (u) of the set of all irreducible
factors hj (in K (u)[x ]) of the polynomials gi (by Exercise V.3.4). Each hj

is clearly separable since it divides some gi (the gi are separable by the
hypotheses of (iii)). Now by Theorem V.1.2,
n = [F : K ] = [F : K (u)][K (u) : K ] = [F : K (u)]s, or
[F : K (u)] = n/s < n and so by the induction hypothesis we have that F
is Galois over K (u) and so the fixed field of AutK(u)F is K (u) and by the
Fundamental Theorem (Theorem V.2.5(i)) [F : K (u)] = |AutK(u)F | = |H|.
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Theorem V.3.11

Theorem V.3.11 (continued 9)

Proof (continued). (iii) ⇒ (i) Therefore

[F : K ] = [F : K (u)][K (u) : K ] by Theorem V.2.1

= |H|s since [K (u) : K ] = s and H = AutK(u)F

= |H|[AutKF : H] since [AutKF : H] = s

= |AutKF |

with the last equality holding because [AutKF : H] is the number of cosets
of H in AutKF , so [AutKF : H] = |AutKF |/|H|. We have now established
what is required (namely, [F : K ] = |AutKF |) for the previous paragraph
to imply that F is Galois over K whenever [F : K ] is finite. In turn, this
result can be used in the paragraph before that to show that F is Galois
over K for [F : K ] not finite.
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Theorem V.3.14

Theorem V.3.14

Theorem V.3.14. If F is an algebraic extension field of K , then the
following statements are equivalent.

(i) F is normal over K .

(ii) F is a splitting field over K of some set of polynomials in
K [x ].

(iii) If K is algebraically closed, contains K , and contains F , then
for any K -monomorphism of fields σ : F → K (that is, σ is a
one to one homomorphism and σ fixes K elementwise), then
Im(σ) = F so that σ is actually a K -automorphism of F
(that is, σ ∈ AutK (F )).

Proof. (i)⇒(ii) F is a splitting field over K of {fi ∈ K [x ] | i ∈ I} where fi
is the irreducible polynomial in K [x ] for some ui ∈ F , where {ui | i ∈ I} is
a basis of F over K (every vector space has a basis, so the set of ui ’s exists
and since F is normal over K we have the splitting requirement; also, since
the ui form a basis we know that this covers every element in F ).
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Theorem V.3.14

Theorem V.3.14 (continued 1)

Theorem V.3.14. If F is an algebraic extension field of K , then the
following statements are equivalent.

(ii) F is a splitting field over K of some set of polynomials in
K [x ].

(iii) If K is algebraically closed, contains K , and contains F , then
for any K -monomorphism of fields σ : F → K (that is, σ is a
one to one homomorphism and σ fixes K elementwise), then
Im(σ) = F so that σ is actually a K -automorphism of F
(that is, σ ∈ AutK (F )).

Proof. (ii)⇒(iii) Let F be a splitting field of {fi | i ∈ I} over K and
σ : F → K a K -monomorphism of fields. If u ∈ F is a root of fj then so is
σ(u) (as shown in the two-line proof of Theorem V.2.2). By hypothesis fj
splits in F , say fj = c(x − u1)(x − u2) · · · (x − un) (where ui ∈ F , c ∈ K ).
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Theorem V.3.14

Theorem V.3.14 (continued 2)

Theorem V.3.14. If F is an algebraic extension field of K , then the
following statements are equivalent.

(ii) F is a splitting field over K of some set of polynomials in
K [x ].

(iii) If K is algebraically closed, contains K , and contains F , then
for any K -monomorphism of fields σ : F → K (that is, σ is a
one to one homomorphism and σ fixes K elementwise), then
Im(σ) = F so that σ is actually a K -automorphism of F
(that is, σ ∈ AutK (F )).

Proof (continued). (ii)⇒(iii) Since K [x ] is a unique factorization
domain by Corollary III.6.4 and σ(ui ) is a root of fj for all i , then by the
Factor Theorem (Theorem III.6.6), x − σ(ui ) must be a factor of fj and so
σ(ui ) must be one of u1, u2, . . . , un for every i . Since σ is one to one, it
must simply permute the ui . But F is generated over K by all the roots of
all the fi . It follows from Theorem V.1.3(vi) that σ(F ) = F and hence
σ ∈ AutKF (so σ is a “K -automorphism of F”).
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Theorem V.3.14

Theorem V.3.14 (continued 3)

Theorem V.3.14. If F is an algebraic extension field of K , then the
following statements are equivalent.

(i) F is normal over K .

(iii) If K is algebraically closed, contains K , and contains F , then
for any K -monomorphism of fields σ : F → K (that is, σ is a
one to one homomorphism and σ fixes K elementwise), then
Im(σ) = F so that σ is actually a K -automorphism of F
(that is, σ ∈ AutK (F )).

Proof. (iii)⇒(i) Let K be an algebraic closure of F . Then K is algebraic
over K by Theorem V.1.13 (since K ⊂ F ⊂ K ). Therefore K contains K
and is algebraically closed and contains F . Let F ∈ K [x ] be irreducible
with a root u ∈ F . By construction, K contains all roots of f .

To show
that F is normal over K we must show that f splits in F . If v ∈ K is any
root of f then there is a K -isomorphism of fields σ : K (u) ∼= K (v) with
σ(u) = v by Corollary V.1.19.
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Theorem V.3.14 (continued 3)
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Theorem V.3.14 (continued 3)
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Theorem V.3.14

Theorem V.3.14 (continued 4)

Theorem V.3.14. If F is an algebraic extension field of K , then the
following statements are equivalent.

(i) F is normal over K .

(iii) If K is algebraically closed, contains K , and contains F , then
for any K -monomorphism of fields σ : F → K (that is, σ is a
one to one homomorphism and σ fixes K elementwise), then
Im(σ) = F so that σ is actually a K -automorphism of F
(that is, σ ∈ AutK (F )).

Proof (continued). (iii)⇒(i) By Theorems V.3.4 and V.3.8 and Exercise
V.3.2, σ extends to a K -automorphism of K . Now σ|F is a monomorphism
(one to one, since σ is hypothesized to be a monomorphism) mapping
F → K and, since by hypothesis Im(σ) = F , we have σ(F ) = F .
Therefore v = σ(u) ∈ F which implies that all roots of f are in F ; that is,
f splits in F . So F is normal over K .
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Theorem V.3.14 (continued 4)
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Theorem V.3.16

Theorem V.3.16

Theorem V.3.16. If E is an algebraic extension field of K , then there
exists an extension field F of E such that:

(i) F is normal over K ;

(ii) No proper subfield of F containing E is normal over K ;

(iii) If E is separable over K , then F is Galois over K ;

(iv) [F : K ] is finite if and only if [E : K ] is finite.

The field F is uniquely determined up to an E -isomorphism.

Proof. (i) Let X = {ui | i ∈ I} be a basis of E over K and let fi ∈ K [x ] be
the irreducible polynomial of ui . If F is a splitting field of S = {fi | i ∈ I}
over E , then F is also a splitting field of S over K by Exercise V.3.3.
Whence F is normal over K by Theorem V.3.14 (the (ii)⇒(i) part).
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Theorem V.3.16. If E is an algebraic extension field of K , then there
exists an extension field F of E such that:
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Theorem V.3.16

Theorem V.3.16 (continued 1)

Theorem V.3.16. If E is an algebraic extension field of K , then there
exists an extension field F of E such that:

(iii) If E is separable over K , then F is Galois over K ;

(iv) [F : K ] is finite if and only if [E : K ] is finite.

The field F is uniquely determined up to an E -isomorphism.

Proof. (iii) If E is separable over K , then each fi above is separable over
F (since K ⊂ E ⊂ F ). As explained above, F is a splitting field of
S = {fi | i ∈ I} (and S consists of separable polynomials in K [x ]), so by
Theorem V.3.11 (the (iii)⇒(i) part), F is Galois over K .

(iv) If [E : K ] is finite, then so is X (since X is a basis for E over K ) and
hence S is finite. Since F is a splitting field of S over K , then F = K (X )
since X is the set of all roots of polynomials in S , then by Theorem V.1.12
F is algebraic over K and finite dimensional since X is finite. That is,
[F : K ] is finite. The converse follows from Theorem V.1.2.
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Theorem V.3.16

Theorem V.3.16 (continued 2)

Theorem V.3.16. If E is an algebraic extension field of K , then there
exists an extension field F of E such that:

(ii) No proper subfield of F containing E is normal over K .

The field F is uniquely determined up to an E -isomorphism.

Proof. (ii) If F0 is a subfield of F that contains E , then F0 necessarily
contains the root ui of fi ∈ S for every i (since E contains each ui ). If F0

is normal over K (so that each fi splits in F0 by definition) then F ⊂ F0

and hence F = F0 and subfield F0 of F is not proper.

Uniqueness. Let F1 be another extension field of E (in addition to F )
with properties (i) and (ii). Since F1 is normal over K by (i) and contains
each ui (since E contains each ui and we have K ⊂ E ⊂ F1), then (by the
definition of normal) each polynomial in S splits in F1. So F1 must contain
a splitting field F2 of S over K with E ⊂ F2. F2 is normal over K (by
Theorem V.3.14, the (ii)⇒(i) part), whence F2 = F1 by (ii).
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Theorem V.3.16

Theorem V.3.16 (continued 3)

Theorem V.3.16. If E is an algebraic extension field of K , then there
exists an extension field F of E such that:

(i) F is normal over K ;

(ii) No proper subfield of F containing E is normal over K ;

(iii) If E is separable over K , then F is Galois over K ;

(iv) [F : K ] is finite if and only if [E : K ] is finite.

The field F is uniquely determined up to an E -isomorphism.

Proof (continued). (Uniqueness) Therefore both F and F1 are splitting
fields of S over K and hence (by Exercise V.3.2) are splitting fields of S
over E . By Theorem V.3.8, the identity on E extends to an
E -isomorphism F ∼= F1.

() Modern Algebra April 13, 2016 25 / 25


	Theorem V.3.2
	Theorem V.3.8 for S Finite
	Corollary V.3.9
	Theorem V.3.11
	Theorem V.3.14
	Theorem V.3.16

