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Theorem V.3.2

Theorem V.3.2. If K is a field and f € K[x] has degree n > 1, then there
exists a splitting field F of f with dimension [F : K] < nl.
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Theorem V.3.2

Theorem V.3.2. If K is a field and f € K[x] has degree n > 1, then there
exists a splitting field F of f with dimension [F : K] < nl.

Proof. We prove this by induction on n = deg(f). For the base step, if
n=1 (or if f splits over K) then F = K is a splitting field and
[F:K]=[F:F]=1<nl
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Theorem V.3.2

Theorem V.3.2. If K is a field and f € K[x] has degree n > 1, then there
exists a splitting field F of f with dimension [F : K] < nl.

Proof. We prove this by induction on n = deg(f). For the base step, if
n=1 (or if f splits over K) then F = K is a splitting field and
[F:K]=[F:F]=1<nl

If n>1 and f does not split over K, let g € K[x] be an irreducible factor
of f of degree greater than one. By Theorem V.1.10 (Kronecker's
Theorem) there is a simple extension field K(u) of K such that u is a root
of g and [K(u) : K] = deg(g) > 1.
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Theorem V.3.2

Theorem V.3.2. If K is a field and f € K[x] has degree n > 1, then there
exists a splitting field F of f with dimension [F : K] < nl.

Proof. We prove this by induction on n = deg(f). For the base step, if
n=1 (or if f splits over K) then F = K is a splitting field and
[F:K]=[F:F]=1<nl

If n>1 and f does not split over K, let g € K[x] be an irreducible factor
of f of degree greater than one. By Theorem V.1.10 (Kronecker's
Theorem) there is a simple extension field K(u) of K such that u is a root
of g and [K(u) : K] = deg(g) > 1. Then by Theorem II1.6.6 (the Factor
Theorem) we have f(x) = (x — u)h(x) for some h € K(u)[x] of degree
n— 1 (we have only used polynomial g in passing; notice deg(g) < n).
Repeating this process (and factoring f) we can produce (inductively) a
splitting field F of h € K(u)[x] of degree at most (n — 1)!.
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Theorem V.3.2

Theorem V.3.2. If K is a field and f € K[x] has degree n > 1, then there
exists a splitting field F of f with dimension [F : K] < nl.
Proof. We prove this by induction on n = deg(f). For the base step, if
n=1 (or if f splits over K) then F = K is a splitting field and
[F:K]=[F:F]=1<nl
If n>1 and f does not split over K, let g € K[x] be an irreducible factor
of f of degree greater than one. By Theorem V.1.10 (Kronecker's
Theorem) there is a simple extension field K(u) of K such that u is a root
of g and [K(u) : K] = deg(g) > 1. Then by Theorem II1.6.6 (the Factor
Theorem) we have f(x) = (x — u)h(x) for some h € K(u)[x] of degree
n— 1 (we have only used polynomial g in passing; notice deg(g) < n).
Repeating this process (and factoring f) we can produce (inductively) a
splitting field F of h € K(u)[x] of degree at most (n — 1)!. By Exercise
V.3.3, F is a splitting field of f over K. By Theorem V.1.2,
[F:K]=[F:K(u)][K(u): K] <(n—1)ldeg(g) < (n—1)!n=n!. The
result now follows by induction. O
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Theorem V.3.8

Theorem V.3.8. Let 0 : K — L be an isomorphism of fields, S = {f;} a
set of polynomials (of positive degree) in K[x], and S’ = {of;} the
corresponding set of polynomials in L[x]. If F is a splitting field of S over
K and M is a splitting field of S’ over L, then o is extendible to an
isomorphism F = M.
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Theorem V.3.8

Theorem V.3.8. Let 0 : K — L be an isomorphism of fields, S = {f;} a
set of polynomials (of positive degree) in K[x], and S’ = {of;} the
corresponding set of polynomials in L[x]. If F is a splitting field of S over
K and M is a splitting field of S’ over L, then o is extendible to an
isomorphism F = M.

Proof for S a Finite Set. Suppose that S consists of a single polynomial
f € K[x]. Let F be a splitting field of f over K. Let n = [F : K]. We give
an inductive proof on n.
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Theorem V.3.8

Theorem V.3.8. Let 0 : K — L be an isomorphism of fields, S = {f;} a
set of polynomials (of positive degree) in K[x], and S’ = {of;} the
corresponding set of polynomials in L[x]. If F is a splitting field of S over
K and M is a splitting field of S’ over L, then o is extendible to an
isomorphism F = M.

Proof for S a Finite Set. Suppose that S consists of a single polynomial
f € K[x]. Let F be a splitting field of f over K. Let n = [F : K]. We give
an inductive proof on n. For the base case, if n=1then F = K and f
splits over K. So S = {of} splits over o(K) = L and, since M is the
splitting field of S/, then L = M. So o is in fact an isomorphism giving

F = M and the base case is established. If n > 1 then f must have an

irreducible factor g of degree greater than 1 (or else F splits over K and
[F:K]=14%#n).

Modern Algebra April 13,2016 4 /25



Theorem V.3.8

Theorem V.3.8. Let 0 : K — L be an isomorphism of fields, S = {f;} a
set of polynomials (of positive degree) in K[x], and S’ = {of;} the
corresponding set of polynomials in L[x]. If F is a splitting field of S over
K and M is a splitting field of S’ over L, then o is extendible to an
isomorphism F = M.

Proof for S a Finite Set. Suppose that S consists of a single polynomial
f € K[x]. Let F be a splitting field of f over K. Let n = [F : K]. We give
an inductive proof on n. For the base case, if n=1then F = K and f
splits over K. So S = {of} splits over o(K) = L and, since M is the
splitting field of S/, then L = M. So o is in fact an isomorphism giving

F = M and the base case is established. If n > 1 then f must have an
irreducible factor g of degree greater than 1 (or else F splits over K and
[F: K] =1%# n). Let u be a root of g in F. Since g is irreducible in K[x]
and o : K — L is an isomorphism, then og € L[x] is irreducible.
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Theorem V.3.8

Theorem V.3.8. Let 0 : K — L be an isomorphism of fields, S = {f;} a
set of polynomials (of positive degree) in K[x], and S’ = {of;} the
corresponding set of polynomials in L[x]. If F is a splitting field of S over
K and M is a splitting field of S’ over L, then o is extendible to an
isomorphism F = M.

Proof for S a Finite Set (continued). If v € M is a root of og, then by
Theorem V.1.8(ii) o extends to an isomorphism 7 : K(u) = L(v) with
7(u) = v. By Theorem V.1.6(iii) we have [K(u) : K] = deg(g) > 1, we
must have n = [F : K] = [F : K(u)][K(u) : K] by Theorem V.1.2 and so
[F: K(u)] <n.
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Theorem V.3.8

Theorem V.3.8. Let 0 : K — L be an isomorphism of fields, S = {f;} a
set of polynomials (of positive degree) in K[x], and S’ = {of;} the
corresponding set of polynomials in L[x]. If F is a splitting field of S over
K and M is a splitting field of S’ over L, then o is extendible to an
isomorphism F = M.

Proof for S a Finite Set (continued). If v € M is a root of og, then by
Theorem V.1.8(ii) o extends to an isomorphism 7 : K(u) = L(v) with
7(u) = v. By Theorem V.1.6(iii) we have [K(u) : K] = deg(g) > 1, we
must have n = [F : K] = [F : K(u)][K(u) : K] by Theorem V.1.2 and so
[F : K(u)] < n. By Exercise V.3.2, F is a splitting field of f over (the
intermediate field) K(u) (here, K C K(u) C F) and similarly M is a
splitting field of of over (intermediate field) L(v) (here, L C L(v) C M).
So by the induction hypothesis (since [F : K(u)] < n) we have that 7
extends to an isomorphism F = M. []
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Corollary V.3.9

Corollary V.3.9

Corollary V.3.9. Let K be a field and S a set of polynomials (of positive
degree) in K[x]. Then any two splitting fields of S over K are

K-isomorphic. In particular, any two algebraic closures of K are
K-isomorphic.
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Corollary V.3.9

Corollary V.3.9. Let K be a field and S a set of polynomials (of positive
degree) in K[x]. Then any two splitting fields of S over K are
K-isomorphic. In particular, any two algebraic closures of K are
K-isomorphic.

Proof. With o : K — K as 0 = 1k (the identity on K) in Theorem V.3.8,
we have that if L and M are splitting fields for K (so K C L, K C M) then
o extends to an isomorphism 7 : L — M and the two splitting fields are
isomorphic.
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Corollary V.3.9

Corollary V.3.9. Let K be a field and S a set of polynomials (of positive
degree) in K[x]. Then any two splitting fields of S over K are
K-isomorphic. In particular, any two algebraic closures of K are
K-isomorphic.

Proof. With o : K — K as 0 = 1k (the identity on K) in Theorem V.3.8,
we have that if L and M are splitting fields for K (so K C L, K C M) then
o extends to an isomorphism 7 : L — M and the two splitting fields are
isomorphic.

For the "in particular” claim, we need to consider the set S of all
polynomials in K[x]. By Theorem V.3.4, the splitting field of S is the
algebraic closure of K. Again, Theorem V.3.8 with o = 1k yields the
result. (This is also shown in Theorem V.3.6.) O
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Theorem V.3.11

Theorem V.3.11. If F is an extension field of K, then the following
statements are equivalent.

(i) F is algebraic and Galois over K.

(ii) F is separable over K and F is a splitting field over K of a
set S of polynomials in K[x].

(iii) F is a splitting field over K of a set T of separable
polynomials in K[x].
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Theorem V.3.11

Theorem V.3.11. If F is an extension field of K, then the following
statements are equivalent.
(i) F is algebraic and Galois over K.
(ii) F is separable over K and F is a splitting field over K of a
set S of polynomials in K[x].
(iii) F is a splitting field over K of a set T of separable
polynomials in K[x].

Proof. (i) = (ii) and (iii) If v € F has irreducible polynomial f, then as
in the proof of Lemma V.2.13 (up to the “Consequently, all the roots of f
are distinct and lie in E” part) f splits in F[x] into a product of distinct
linear factors. Hence (by definition) u is separable over K.
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Theorem V.3.11

Theorem V.3.11. If F is an extension field of K, then the following
statements are equivalent.
(i) F is algebraic and Galois over K.
(ii) F is separable over K and F is a splitting field over K of a
set S of polynomials in K[x].
(iii) F is a splitting field over K of a set T of separable
polynomials in K[x].

Proof. (i) = (ii) and (iii) If v € F has irreducible polynomial f, then as
in the proof of Lemma V.2.13 (up to the “Consequently, all the roots of f
are distinct and lie in E” part) f splits in F[x] into a product of distinct
linear factors. Hence (by definition) u is separable over K. Let {v; | i € I}
be a basis of F over K and for each i € I let f; € K[x] be the irreducible
polynomial of v;. As just argued, each f; is separable and splits in F[x]
(and also, each v; is separable over K, by definition). Therefore F is a
splitting field over K of S = {f; | i € I} and (ii) and (iii) follow.
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Theorem V.3.11 (continued 1)

Theorem V.3.11. If F is an extension field of K, then the following
statements are equivalent.

(i) F is separable over K and F is a splitting field over K of a
set S of polynomials in K[x].

(iii) F is a splitting field over K of a set T of separable
polynomials in K[x].
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Theorem V.3.11 (continued 1)

Theorem V.3.11. If F is an extension field of K, then the following
statements are equivalent.

(i) F is separable over K and F is a splitting field over K of a
set S of polynomials in K[x].

(iii) F is a splitting field over K of a set T of separable
polynomials in K[x].

Proof. (ii) = (iii) [Here we need to "move” the hypothesis of separable
extension to the conclusion of separable polynomials.] Let f € S where F
is a splitting field over K of set S of polynomials. Let g € K[x] be a
monic irreducible factor of f.
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Theorem V.3.11 (continued 1)

Theorem V.3.11. If F is an extension field of K, then the following
statements are equivalent.

(i) F is separable over K and F is a splitting field over K of a
set S of polynomials in K[x].

(iii) F is a splitting field over K of a set T of separable
polynomials in K[x].

Proof. (ii) = (iii) [Here we need to "move” the hypothesis of separable
extension to the conclusion of separable polynomials.] Let f € S where F
is a splitting field over K of set S of polynomials. Let g € K[x] be a
monic irreducible factor of f. Since by hypothesis f splits over K, then (by
definition of “splits") f is a product of linear factors in K, and so g is the
irreducible polynomial in K[x] of some u € F.
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Theorem V.3.11 (continued 1)

Theorem V.3.11. If F is an extension field of K, then the following
statements are equivalent.

(i) F is separable over K and F is a splitting field over K of a
set S of polynomials in K[x].

(iii) F is a splitting field over K of a set T of separable
polynomials in K[x].

Proof. (ii) = (iii) [Here we need to "move” the hypothesis of separable
extension to the conclusion of separable polynomials.] Let f € S where F
is a splitting field over K of set S of polynomials. Let g € K[x] be a
monic irreducible factor of f. Since by hypothesis f splits over K, then (by
definition of “splits") f is a product of linear factors in K, and so g is the
irreducible polynomial in K[x] of some u € F. Since by hypothesis F is
separable over K, then u is separable over K (definition of separable
extension) and so g is separable over K (definition of separable element
ueF).
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Theorem V.3.11 (continued 2)

Theorem V.3.11. If F is an extension field of K, then the following
statements are equivalent.

(i) F is separable over K and F is a splitting field over K of a
set S of polynomials in K{[x].

(iii) F is a splitting field over K of a set T of separable
polynomials in K[x].
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Theorem V.3.11 (continued 2)

Theorem V.3.11. If F is an extension field of K, then the following
statements are equivalent.

(i) F is separable over K and F is a splitting field over K of a
set S of polynomials in K{[x].

(iii) F is a splitting field over K of a set T of separable
polynomials in K[x].

Proof (continued). (ii) = (iii) So define set T to be the set of all monic
irreducible factors in K[x] of polynomials in set S. We have just argued
that set T consists of separable polynomials in K[x].
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Theorem V.3.11 (continued 2)

Theorem V.3.11. If F is an extension field of K, then the following
statements are equivalent.

(i) F is separable over K and F is a splitting field over K of a
set S of polynomials in K{[x].

(iii) F is a splitting field over K of a set T of separable
polynomials in K[x].

Proof (continued). (ii) = (iii) So define set T to be the set of all monic
irreducible factors in K[x] of polynomials in set S. We have just argued
that set T consists of separable polynomials in K[x]. By Exercise V.3.4
(“If F is a splitting field over K of [set S of polynomials in K[x]] then F is
also a splitting field over K of the set T of all irreducible factors of
polynomials in S.”) F is a splitting field of set T.
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Theorem V.3.11 (continued 3)

Theorem V.3.11. If F is an extension field of K, then the following
statements are equivalent.

(i) F is algebraic and Galois over K.

(iii) F is a splitting field over K of a set T of separable
polynomials in K[x].
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Theorem V.3.11 (continued 3)

Theorem V.3.11. If F is an extension field of K, then the following
statements are equivalent.
(i) F is algebraic and Galois over K.

(iii) F is a splitting field over K of a set T of separable
polynomials in K[x].

Proof. (iii) = (i) F is algebraic over K since any splitting field over K is
(by definition of splitting field, Definition V.3.1) an algebraic extension of
K. Let X be the set of all roots of polynomials in K. Then by the
definition of splitting field, F = K(X).
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Theorem V.3.11 (continued 3)

Theorem V.3.11. If F is an extension field of K, then the following
statements are equivalent.
(i) F is algebraic and Galois over K.
(iii) F is a splitting field over K of a set T of separable
polynomials in K[x].

Proof. (iii) = (i) F is algebraic over K since any splitting field over K is
(by definition of splitting field, Definition V.3.1) an algebraic extension of
K. Let X be the set of all roots of polynomials in K. Then by the
definition of splitting field, F = K(X). Let u € F\ K’. By Theorem
V.1.3(vii) there is finite set {vi, vo,..., vy} C X (so each v; is a root of
some f; € T) such that u € K(vi, va,...,vp).
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Theorem V.3.11 (continued 3)

Theorem V.3.11. If F is an extension field of K, then the following
statements are equivalent.

(i) F is algebraic and Galois over K.

(iii) F is a splitting field over K of a set T of separable
polynomials in K[x].

Proof. (iii) = (i) F is algebraic over K since any splitting field over K is
(by definition of splitting field, Definition V.3.1) an algebraic extension of
K. Let X be the set of all roots of polynomials in K. Then by the
definition of splitting field, F = K(X). Let u € F\ K’. By Theorem
V.1.3(vii) there is finite set {vi, vo,..., vy} C X (so each v; is a root of
some f; € T) such that u € K(v1,vs,...,v,). Now consider the

fi,f2, ...,y which have vi, vy, ..., v, as roots (respectively). Let

ui, Uy, ..., u, be the set of all roots (in F) of A1, f,...,f,. Thus

ue€ K(vi,va,...,vp) C K(u1,un,...,u) = E. By Theorem V.1.12, F is a
finite dimensional extension of K; that is, [E : K] is finite.
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Theorem V.3.11 (continued 4)

Proof (continued). (iii) = (i) Since each f; € T splits in F by
hypothesis, E is a splitting field over K of the finite set of polynomials
{f, fa, ..., [y} (or equivalently, of the single polynomial f = fif---f,).
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Theorem V.3.11 (continued 4)

Proof (continued). (iii) = (i) Since each f; € T splits in F by
hypothesis, E is a splitting field over K of the finite set of polynomials
{f, fa, ..., [y} (or equivalently, of the single polynomial f = fif---f,).
“Assume for now" that the theorem (i.e., (iii)=>(i)) holds in the finite
dimensional case ([F : K] is finite). Under this assumption, then E is
Galois over K; that is, the fixed field of AutkE is E itself (Definition
V.2.4). Since u € E\ K (we are replacing field F with finite extension field
E in the current discussion), then for some 7 € Autkx E we have 7(u) # u.
By Exercise V.3.2 (“If F is a splitting field of S over K and E is an
intermediate field, then F is a splitting field of S over E.”) F is a splitting
field of T over E.
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Theorem V.3.11 (continued 4)

Proof (continued). (iii) = (i) Since each f; € T splits in F by
hypothesis, E is a splitting field over K of the finite set of polynomials
{f, fa, ..., [y} (or equivalently, of the single polynomial f = fif---f,).
“Assume for now" that the theorem (i.e., (iii)=>(i)) holds in the finite
dimensional case ([F : K] is finite). Under this assumption, then E is
Galois over K; that is, the fixed field of AutkE is E itself (Definition
V.2.4). Since u € E\ K (we are replacing field F with finite extension field
E in the current discussion), then for some 7 € Autkx E we have 7(u) # u.
By Exercise V.3.2 (“If F is a splitting field of S over K and E is an
intermediate field, then F is a splitting field of S over E.”) F is a splitting
field of T over E. So by Theorem V.3.8 with 7: E — E (7 is an
automorphism of E and hence an isomorphism of E with itself) we have
that 7 can be extended to isomorphism o : F — F (and so o is an
automorphism of F) where o € AutxF and o =7 on E. So

o(u) =71(u) # u.
Modern Algebra April 13,2016 11 /25



Theorem V.3.11 (continued 5)

Proof (continued). (iii) = (i) Since u was an arbitrary element of F\ K
at the very beginning of this proof, and there exists o € Autk F such that
o(u) # u, then the fixed field of AutkxF must be K.
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Theorem V.3.11 (continued 5)

Proof (continued). (iii) = (i) Since u was an arbitrary element of F\ K
at the very beginning of this proof, and there exists o € Autk F such that
o(u) # u, then the fixed field of AutkxF must be K. That is (by

definition), F is Galois over K. So the theorem holds in general if it holds

when [F : K] is finite.
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Theorem V.3.11 (continued 5)

Proof (continued). (iii) = (i) Since u was an arbitrary element of F\ K
at the very beginning of this proof, and there exists o € Autk F such that
o(u) # u, then the fixed field of AutkxF must be K. That is (by
definition), F is Galois over K. So the theorem holds in general if it holds
when [F : K] is finite.

We now prove that the theorem holds for [F : K] is finite, hence
completing the proof. With [F : K] finite, there exists a finite number of
polynomials g1, 82, ...,8+ € T such that F is a splitting field of
{g1,82,...,8t} over K. Furthermore AutyxF must be a finite group by
Lemma V.2.8.
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Theorem V.3.11 (continued 5)

Proof (continued). (iii) = (i) Since u was an arbitrary element of F\ K
at the very beginning of this proof, and there exists o € Autk F such that
o(u) # u, then the fixed field of AutkxF must be K. That is (by
definition), F is Galois over K. So the theorem holds in general if it holds
when [F : K] is finite.

We now prove that the theorem holds for [F : K] is finite, hence
completing the proof. With [F : K] finite, there exists a finite number of
polynomials g1, 82, ...,8+ € T such that F is a splitting field of
{g1,82,...,8t} over K. Furthermore AutyxF must be a finite group by
Lemma V.2.8. If Ky is the fixed field of Autk F, then F is a Galois
extension of Ky by Artin's Theorem (Theorem V.2.15). By the
Fundamental Theorem (Theorem V.2.5(i)) [F : Ko] = |Autk, F|. Since Ky
is the fixed field of AutkF then we have Autk,F = AutkF (this is a
remark on page 245).
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Theorem V.3.11 (continued 5)

Proof (continued). (iii) = (i) Since u was an arbitrary element of F\ K
at the very beginning of this proof, and there exists o € Autk F such that
o(u) # u, then the fixed field of AutkxF must be K. That is (by
definition), F is Galois over K. So the theorem holds in general if it holds
when [F : K] is finite.

We now prove that the theorem holds for [F : K] is finite, hence
completing the proof. With [F : K] finite, there exists a finite number of
polynomials g1, 82, ...,8+ € T such that F is a splitting field of
{g1,82,...,8t} over K. Furthermore AutyxF must be a finite group by
Lemma V.2.8. If Ky is the fixed field of Autk F, then F is a Galois
extension of Ky by Artin's Theorem (Theorem V.2.15). By the
Fundamental Theorem (Theorem V.2.5(i)) [F : Ko] = |Autk, F|. Since Ky
is the fixed field of AutkF then we have Autk,F = AutkF (this is a
remark on page 245). So [F : Kp] = |Autk F|. Now we have K C Ky C F,
and so by Theorem V.1.2 we have [F : K] = [F : Ko][Ko : K].
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Theorem V.3.11 (continued 6)

Proof (continued). (iii) = (i) So if we show that [F : K| = |AutkF]|
then we will have that [Kp : K] =1 and so Ky = K, which implies the
fixed field of AutkF is Ko = K; that is, F is a Galois extension of K.
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Theorem V.3.11 (continued 6)

Proof (continued). (iii) = (i) So if we show that [F : K| = |AutkF]|
then we will have that [Kp : K] =1 and so Ky = K, which implies the
fixed field of AutkF is Ko = K; that is, F is a Galois extension of K.

We proceed by induction on n = [F : K], with the case n = 1 being trivial
(since this implies that F = K and AutkF consists only of the identity on
F). If n > 1, then one of th egj, say g1, has degree s > 1 (otherwise all
the roots of the gj lie in K an dF = K).
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Theorem V.3.11 (continued 6)

Proof (continued). (iii) = (i) So if we show that [F : K| = |AutkF]|
then we will have that [Kp : K] =1 and so Ky = K, which implies the
fixed field of AutkF is Ko = K; that is, F is a Galois extension of K.

We proceed by induction on n = [F : K], with the case n = 1 being trivial
(since this implies that F = K and AutkF consists only of the identity on
F). If n > 1, then one of th egj, say g1, has degree s > 1 (otherwise all
the roots of the gj lie in K an dF = K). Let u € F be a root of gi; then
[K(u) : K] = deg(g1) = s by Theorem V.1.6(iii) (we need gy irreducible
here to apply Theorem V.1.6) and the number of distinct roots of gy is s
since g is separable in F by hypothesis.
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Theorem V.3.11 (continued 7)

Proof (continued). (iii) = (i) By the second paragraph of the proof of
Lemma V.2.8 (with L = k, M = K(u) and f = g1) we have that there is
an injective map from the set of all left cosets of H = Autk,)F (this is
set Sin Lemma V.2.8; and M' = H = Auty(y)F in AutgF (in Lemma
V.2.8, with L’ = Aut F) to the set of all roots of gy in F (set T in Lemma
V.2.8), given by oH +— o(u) (in Lemma V.2.8, the mapping is

TM' — 7(u) so the 7 € L’ = Aut; F of Lemma V.2.8 equals the

o € Autk F = K’ here).
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Theorem V.3.11 (continued 7)

Proof (continued). (iii) = (i) By the second paragraph of the proof of
Lemma V.2.8 (with L = k, M = K(u) and f = g1) we have that there is
an injective map from the set of all left cosets of H = Autk,)F (this is
set Sin Lemma V.2.8; and M' = H = Auty(y)F in AutgF (in Lemma
V.2.8, with L’ = Aut F) to the set of all roots of gy in F (set T in Lemma
V.2.8), given by oH +— o(u) (in Lemma V.2.8, the mapping is

TM' — 7(u) so the 7 € L’ = Aut; F of Lemma V.2.8 equals the

o € Autk F = K’ here). Therefore since the mapping is injective (one to
one) then the number of left cosets of H = Auty(,)F in AutkF is less
than or equal to the number of roots of gy; that is, [Autk F : H] <'s. Now
if v € F is any other root of g1 (which exists since deg(g1) = s > 1), there
is an isomorphism 7 : K(u) & K(v) with 7(u) — v and 7|x = 1k by
Corollary V.1.9.
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Theorem V.3.11 (continued 7)

Proof (continued). (iii) = (i) By the second paragraph of the proof of
Lemma V.2.8 (with L = k, M = K(u) and f = g1) we have that there is
an injective map from the set of all left cosets of H = Autk,)F (this is
set Sin Lemma V.2.8; and M' = H = Auty(y)F in AutgF (in Lemma
V.2.8, with L’ = Aut F) to the set of all roots of gy in F (set T in Lemma
V.2.8), given by oH +— o(u) (in Lemma V.2.8, the mapping is

TM' — 7(u) so the 7 € L’ = Aut; F of Lemma V.2.8 equals the

o € Autk F = K’ here). Therefore since the mapping is injective (one to
one) then the number of left cosets of H = Auty(,)F in AutkF is less
than or equal to the number of roots of gy; that is, [Autk F : H] <'s. Now
if v € F is any other root of g1 (which exists since deg(g1) = s > 1), there
is an isomorphism 7 : K(u) & K(v) with 7(u) — v and 7|x = 1k by
Corollary V.1.9. Since F is a splitting field of {g1,g2,..., 8t} over K(u)
and over K(v) (by Exercise V.3.2 since K(u) and K(v) are intermediate
fields between K and splitting field F), then 7 extends to an
automorphism o € Autk F with o(u) = v by Theorem V.3.8.
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Theorem V.3.11 (continued 8)

Proof (continued). (iii) = (i) Now the mapping of cosets takes oH to
o(u) = v and so every root of gj is the image of some coset of H in
Autk F; that is, the mapping is onto and so [AutkF : H] = s.
Furthermore, F is a splitting field over K(u) of the set of all irreducible
factors h; (in K(u)[x]) of the polynomials g; (by Exercise V.3.4).
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Theorem V.3.11 (continued 8)

Proof (continued). (iii) = (i) Now the mapping of cosets takes oH to
o(u) = v and so every root of gj is the image of some coset of H in
Autk F; that is, the mapping is onto and so [AutkF : H] = s.
Furthermore, F is a splitting field over K(u) of the set of all irreducible
factors h; (in K(u)[x]) of the polynomials g; (by Exercise V.3.4). Each h;
is clearly separable since it divides some g; (the g; are separable by the
hypotheses of (iii)). Now by Theorem V.1.2,
n=[F:K]=[F:K()[K(u): K]=[F:K(u)]s, or

[F : K(u)] = n/s < n and so by the induction hypothesis we have that F
is Galois over K(u) and so the fixed field of Aut(,)F is K(u) and by the
Fundamental Theorem (Theorem V.2.5(i)) [F : K(u)] = |Autk(,)F| = [H].
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Theorem V.3.11 (continued 9)

Proof (continued). (iii) = (i) Therefore
[F: K] = [F:K(u)][K(u): K] by Theorem V.2.1
= |HJs since [K(u) : K] = s and H = Auty(,)F
= |H|[AutkF : H] since [AutkF : H =s
= |AutKF|

with the last equality holding because [Autk F : H] is the number of cosets
of H in AutkF, so [AutkF : H] = |AutkF|/|H]|.
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Theorem V.3.11 (continued 9)

Proof (continued). (iii) = (i) Therefore

[F: K] = [F:K(u)][K(u): K] by Theorem V.2.1
= |HJs since [K(u) : K] = s and H = Auty(,)F
= |H|[AutkF : H] since [AutkF : H =s
= |AutkF]|

with the last equality holding because [Autk F : H] is the number of cosets
of H in AutkF, so [AutkF : H] = |Autk F|/|H|. We have now established
what is required (namely, [F : K] = |AutkF|) for the previous paragraph
to imply that F is Galois over K whenever [F : K] is finite. In turn, this
result can be used in the paragraph before that to show that F is Galois
over K for [F : K] not finite. O
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Theorem V.3.14

Theorem V.3.14. If F is an algebraic extension field of K, then the
following statements are equivalent.
(i) F is normal over K.
(i) F is a splitting field over K of some set of polynomials in
K{x].
(iii) If K is algebraically closed, contains K, and contains F, then
for any K-monomorphism of fields o : F — K (that is, o is a
one to one homomorphism and o fixes K elementwise), then
Im(c) = F so that o is actually a K-automorphism of F
(that is, o € Autk(F)).
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Theorem V.3.14

Theorem V.3.14. If F is an algebraic extension field of K, then the
following statements are equivalent.
(i) F is normal over K.
(i) F is a splitting field over K of some set of polynomials in
K{x].
(iii) If K is algebraically closed, contains K, and contains F, then
for any K-monomorphism of fields o : F — K (that is, o is a
one to one homomorphism and o fixes K elementwise), then
Im(c) = F so that o is actually a K-automorphism of F
(that is, o € Autk(F)).

Proof. (i)=(ii) F is a splitting field over K of {fi € K[x] | i € I} where f;
is the irreducible polynomial in K[x] for some u; € F, where {u; | i € I} is
a basis of F over K (every vector space has a basis, so the set of u;'s exists
and since F is normal over K we have the splitting requirement; also, since
the u; form a basis we know that this covers every element in F).
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Theorem V.3.14 (continued 1)

Theorem V.3.14. If F is an algebraic extension field of K, then the
following statements are equivalent.
(i) F is a splitting field over K of some set of polynomials in
K[x].
(iii) If K is algebraically closed, contains K, and contains F, then
for any K-monomorphism of fields o : F — K (that is, o is a
one to one homomorphism and o fixes K elementwise), then
Im(c) = F so that o is actually a K-automorphism of F
(that is, o € Autk(F)).

Proof. (ii)=-(iii) Let F be a splitting field of {f; | i € I} over K and

o : F — K a K-monomorphism of fields. If u € F is a root of f; then so is
o(u) (as shown in the two-line proof of Theorem V.2.2). By hypothesis f;
splits in F, say fj = c(x — u1)(x — t2) - - - (x — up) (where u; € F, c € K).
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Theorem V.3.14 (continued 2)

Theorem V.3.14. If F is an algebraic extension field of K, then the
following statements are equivalent.
(i) F is a splitting field over K of some set of polynomials in
K|x].
(iii) If K is algebraically closed, contains K, and contains F, then
for any K-monomorphism of fields o : F — K (that is, o is a
one to one homomorphism and o fixes K elementwise), then
Im(c) = F so that o is actually a K-automorphism of F
(that is, o € Autk(F)).
Proof (continued). (ii)=(iii) Since K[x] is a unique factorization
domain by Corollary I11.6.4 and o(u;) is a root of f; for all i, then by the
Factor Theorem (Theorem I11.6.6), x — o(u;) must be a factor of f; and so
o(u;) must be one of uy, uy, ..., u, for every i.
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Theorem V.3.14 (continued 2)

Theorem V.3.14. If F is an algebraic extension field of K, then the
following statements are equivalent.
(i) F is a splitting field over K of some set of polynomials in
K|x].
(iii) If K is algebraically closed, contains K, and contains F, then
for any K-monomorphism of fields o : F — K (that is, o is a
one to one homomorphism and o fixes K elementwise), then
Im(c) = F so that o is actually a K-automorphism of F
(that is, o € Autk(F)).
Proof (continued). (ii)=(iii) Since K[x] is a unique factorization
domain by Corollary I11.6.4 and o(u;) is a root of f; for all i, then by the
Factor Theorem (Theorem I11.6.6), x — o(u;) must be a factor of f; and so
o(uj) must be one of uy, uy, ..., u, for every i. Since o is one to one, it
must simply permute the u;. But F is generated over K by all the roots of
all the f;. It follows from Theorem V.1.3(vi) that o(F) = F and hence
o € AutkF (so o is a "K-automorphism of F").
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Theorem V.3.14 (continued 3)

Theorem V.3.14. If F is an algebraic extension field of K, then the
following statements are equivalent.
(i) F is normal over K.
(ii) If K is algebraically closed, contains K, and contains F, then
for any K-monomorphism of fields o : F — K (that is, o is a
one to one homomorphism and o fixes K elementwise), then
Im(o) = F so that o is actually a K-automorphism of F
(that is, o € Autyk(F)).

Proof. (iii)=(i) Let K be an algebraic closure of F. Thenf is algebraic
over K by Theorem V.1.13 (since K C F C K). Therefore K contains K
and is algebraically closed and contains F.
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Theorem V.3.14 (continued 3)

Theorem V.3.14. If F is an algebraic extension field of K, then the
following statements are equivalent.
(i) F is normal over K.
(ii) If K is algebraically closed, contains K, and contains F, then
for any K-monomorphism of fields o : F — K (that is, o is a
one to one homomorphism and o fixes K elementwise), then
Im(o) = F so that o is actually a K-automorphism of F
(that is, o € Autyk(F)).

Proof. (iii)=(i) Let K be an algebraic closure of F. Then K is algebraic
over K by Theorem V.1.13 (since K C F C K). Therefore K contains K
and is algebraically closed and contains F. Let F € K[x] be irreducible
with a root u € F. By construction, K contains all roots of f.
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Theorem V.3.14 (continued 3)

Theorem V.3.14. If F is an algebraic extension field of K, then the
following statements are equivalent.
(i) F is normal over K.
(ii) If K is algebraically closed, contains K, and contains F, then
for any K-monomorphism of fields o : F — K (that is, o is a
one to one homomorphism and o fixes K elementwise), then
Im(o) = F so that o is actually a K-automorphism of F
(that is, o € Autyk(F)).

Proof. (iii)=(i) Let K be an algebraic closure of F. Then K is algebraic
over K by Theorem V.1.13 (since K C F C K). Therefore K contains K
and is algebraically closed and contains F. Let F € K[x] be irreducible
with a root u € F. By construction, K contains all roots of f. To show
that F is normal over K we must show that f splits in F. If v € K is any
root of f then there is a K-isomorphism of fields o : K(u) = K(v) with
o(u) = v by Corollary V.1.19.
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Theorem V.3.14 (continued 4)

Theorem V.3.14. If F is an algebraic extension field of K, then the
following statements are equivalent.

(i) F is normal over K.

(iii) If K is algebraically closed, contains K, and contains F, then
for any K-monomorphism of fields o : F — K (that is, o is a
one to one homomorphism and o fixes K elementwise), then
Im(c) = F so that o is actually a K-automorphism of F
(thatis, o € Autk(F)).

Proof (continued). (iii)=-(i) By Theorems V.3.4 and V.3.8 and Exercise
V.3.2, o extends to a K-automorphism of K. Now o|r is a monomorphism
(one to one, since o is hypothesized to be a monomorphism) mapping

F — K and, since by hypothesis Im(c) = F, we have o(F) = F.
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Theorem V.3.14 (continued 4)

Theorem V.3.14. If F is an algebraic extension field of K, then the
following statements are equivalent.

(i) F is normal over K.

(iii) If K is algebraically closed, contains K, and contains F, then
for any K-monomorphism of fields o : F — K (that is, o is a
one to one homomorphism and o fixes K elementwise), then
Im(c) = F so that o is actually a K-automorphism of F
(thatis, o € Autk(F)).

Proof (continued). (iii)=-(i) By Theorems V.3.4 and V.3.8 and Exercise
V.3.2, o extends to a K-automorphism of K. Now o|r is a monomorphism
(one to one, since o is hypothesized to be a monomorphism) mapping

F — K and, since by hypothesis Im(c) = F, we have o(F) = F.
Therefore v = o(u) € F which implies that all roots of f are in F; that is,
f splits in F. So F is normal over K. O
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Theorem V.3.16

Theorem V.3.16. If E is an algebraic extension field of K, then there
exists an extension field F of E such that:

(i) F is normal over K;
(i)
(iii) If E is separable over K, then F is Galois over K;
(iv) [F : K] is finite if and only if [E : K] is finite.
The field F is uniquely determined up to an E-isomorphism.

No proper subfield of F containing E is normal over K;
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Theorem V.3.16

Theorem V.3.16. If E is an algebraic extension field of K, then there
exists an extension field F of E such that:

(i) F is normal over K;
(i)
(iii) If E is separable over K, then F is Galois over K;
(iv) [F : K] is finite if and only if [E : K] is finite.

The field F is uniquely determined up to an E-isomorphism.

No proper subfield of F containing E is normal over K;

Proof. (i) Let X = {u; | i € I} be a basis of E over K and let f; € K[x] be
the irreducible polynomial of u;. If F is a splitting field of S = {f; | i € I}
over E, then F is also a splitting field of S over K by Exercise V.3.3.
Whence F is normal over K by Theorem V.3.14 (the (ii)=(i) part).
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Theorem V.3.16 (continued 1)

Theorem V.3.16. If E is an algebraic extension field of K, then there
exists an extension field F of E such that:

(i) If E is separable over K, then F is Galois over K;
(iv) [F : K] is finite if and only if [E : K] is finite.

The field F is uniquely determined up to an E-isomorphism.
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Theorem V.3.16 (continued 1)

Theorem V.3.16. If E is an algebraic extension field of K, then there
exists an extension field F of E such that:

(i) If E is separable over K, then F is Galois over K;
(iv) [F : K] is finite if and only if [E : K] is finite.

The field F is uniquely determined up to an E-isomorphism.

Proof. (iii) If E is separable over K, then each f; above is separable over
F (since K C E C F). As explained above, F is a splitting field of
S={fi|i€l} (and S consists of separable polynomials in K[x]), so by
Theorem V.3.11 (the (iii)=(i) part), F is Galois over K.

Modern Algebra April 13,2016 23 /25



Theorem V.3.16 (continued 1)

Theorem V.3.16. If E is an algebraic extension field of K, then there
exists an extension field F of E such that:

(i) If E is separable over K, then F is Galois over K;
(iv) [F : K] is finite if and only if [E : K] is finite.

The field F is uniquely determined up to an E-isomorphism.

Proof. (iii) If E is separable over K, then each f; above is separable over
F (since K C E C F). As explained above, F is a splitting field of
S={fi|i€l} (and S consists of separable polynomials in K[x]), so by
Theorem V.3.11 (the (iii)=(i) part), F is Galois over K.

(iv) If [E : K] is finite, then so is X (since X is a basis for E over K) and
hence S is finite. Since F is a splitting field of S over K, then F = K(X)
since X is the set of all roots of polynomials in S, then by Theorem V.1.12
F is algebraic over K and finite dimensional since X is finite. That is,

[F : K] is finite. The converse follows from Theorem V.1.2.
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Theorem V.3.16 (continued 2)

Theorem V.3.16. If E is an algebraic extension field of K, then there
exists an extension field F of E such that:

(ii) No proper subfield of F containing E is normal over K.

The field F is uniquely determined up to an E-isomorphism.
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Theorem V.3.16 (continued 2)

Theorem V.3.16. If E is an algebraic extension field of K, then there
exists an extension field F of E such that:

(ii) No proper subfield of F containing E is normal over K.

The field F is uniquely determined up to an E-isomorphism.

Proof. (ii) If Fy is a subfield of F that contains E, then Fy necessarily
contains the root u; of f; € S for every i (since E contains each u;). If Fy
is normal over K (so that each f; splits in Fy by definition) then F C Fy
and hence F = Fy and subfield Fy of F is not proper.
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Theorem V.3.16 (continued 2)

Theorem V.3.16. If E is an algebraic extension field of K, then there
exists an extension field F of E such that:

(ii) No proper subfield of F containing E is normal over K.

The field F is uniquely determined up to an E-isomorphism.

Proof. (ii) If Fy is a subfield of F that contains E, then Fy necessarily
contains the root u; of f; € S for every i (since E contains each u;). If Fy
is normal over K (so that each f; splits in Fy by definition) then F C Fy
and hence F = Fy and subfield Fy of F is not proper.

Uniqueness. Let f; be another extension field of E (in addition to F)
with properties (i) and (ii). Since F1 is normal over K by (i) and contains
each u; (since E contains each uj and we have K C E C Fy), then (by the
definition of normal) each polynomial in S splits in F;.
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Theorem V.3.16 (continued 2)

Theorem V.3.16. If E is an algebraic extension field of K, then there
exists an extension field F of E such that:

(ii) No proper subfield of F containing E is normal over K.

The field F is uniquely determined up to an E-isomorphism.

Proof. (ii) If Fy is a subfield of F that contains E, then Fy necessarily
contains the root u; of f; € S for every i (since E contains each u;). If Fy
is normal over K (so that each f; splits in Fy by definition) then F C Fy
and hence F = Fy and subfield Fy of F is not proper.

Uniqueness. Let f; be another extension field of E (in addition to F)
with properties (i) and (ii). Since F1 is normal over K by (i) and contains
each u; (since E contains each uj and we have K C E C Fy), then (by the
definition of normal) each polynomial in S splits in F1. So F; must contain
a splitting field F, of S over K with E C F,. F; is normal over K (by
Theorem V.3.14, the (ii)=(i) part), whence F, = F; by (ii).

Modern Algebra April 13,2016 24 / 25



Theorem V.3.16

Theorem V.3.16 (continued 3)

Theorem V.3.16. If E is an algebraic extension field of K, then there
exists an extension field F of E such that:

(i) F is normal over K;
(ii) No proper subfield of F containing E is normal over K;
(iii) If E is separable over K, then F is Galois over K;
(iv) [F : K] is finite if and only if [E : K] is finite.
The field F is uniquely determined up to an E-isomorphism.

Proof (continued). (Uniqueness) Therefore both F and F; are splitting
fields of S over K and hence (by Exercise V.3.2) are splitting fields of S
over E. By Theorem V.3.8, the identity on E extends to an
E-isomorphism F = F;. []
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