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Corollary V.4.3. The Galois Group of Degree 2 Polynomials

Corollary V.4.3

Corollary V.4.3. The Galois Group of Degree 3 Polynomials.
Let K be a field and f ∈ K [x ] an irreducible polynomial of degree 2 with
Galois group G . If f is separable (as is always the case when
char(K ) 6= 2), then G ∼= Z2; otherwise G = {ι} = 1.

Proof. By Theorem V.4.2(ii), if f is separable of degree 2 then G is
isomorphic to a transitive subgroup of S2

∼= Z2. But the only transitive
subgroup of Z2 is Z2 itself, so G ∼= Z2.

If f is not separable, then in a splitting field F of f we have
f (x) = (x − a)2 ∈ F [x ] and for σ ∈ G −AutKF we must have σ(a) = a by
Theorem V.2.2 and so σ fixes F = K (a). That is, in this case G = {ι}.
Finally, suppose char(K ) 6= 2 and let f ∈ K [x ] be a degree 2 polynomial.
Then f ′ 6= 0; that is, f ′ is not the zero polynomial in K [x ] (since f ′ is a
degree 1 polynomial). Since f is hypothesized to be irreducible, then by
Theorem III.6.10(iii), f has no multiple roots in any extension field
(including a splitting field of f ), so f is separable.
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Proposition V.4.5

Proposition V.4.5

Proposition V.4.5. Let K , f ,F and ∆ be as in Definition V.4.4.

(i) The discriminant ∆2 of f actually lies in K .

(ii) For each σ ∈ AutkF < Sn, σ is an even (respectively, odd)
permutation if and only if σ(∆) = ∆ (respectively,
σ(∆) = −∆).

Proof. (ii) In the proof of Theorem I.6.7, it is shown for
{u1, u2, . . . , un} = {i1, i2, . . . , in} = {1, 2, . . . , n} that for σ ∈ Sn a
transposition, ∆(σ(i1), σ(i2), . . . , σ(in)) = −∆(i1, i2, . . . , in).

Similarly
(replacing the i ’s with u’s) gives for σ a transposition mapping
{u1, u2, . . . , un} to itself that
∆(σ(u1), σ(u2), . . . , σ(un)) = −∆(u1, u2, . . . , un). If σ ∈ AutKF then,
since F is a splitting field of f and the roots of f are (distinct)
{u1, u2, . . . , un}, we have F = K (u1, u2, . . . , un), σ is determined by its
action on {u1, u2, . . . , un}.
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Proposition V.4.5

Proposition V.4.5 (continued)

Proposition V.4.5. Let K , f ,F and ∆ be as in Definition V.4.4.

(i) The discriminant ∆2 of f actually lies in K .
(ii) For each σ ∈ AutkF < Sn, σ is an even (respectively, odd)

permutation if and only if σ(∆) = ∆ (respectively,
σ(∆) = −∆).

Proof (continued). (ii) So if σ is even, then σ is a product of an even
number of transpositions and so ∆(σ(u1), σ(u2), . . . σ(un)) differed from
∆(u1, u2, . . . , un) be a factor of an even power of −1. That is,
∆(σ(u1), σ(u2), . . . σ(un)) = ∆(u1, u2, . . . , un). Similarly, if σ is odd then
∆(σ(u1), σ(u2), . . . σ(un)) = −∆(u1, u2, . . . , un), and (ii) follows.

(i) From part (ii), for every σ ∈ AutKF we have (since σ is a
homomorphism), σ(∆2) = (σ(∆))2 = (±∆)2 = ∆2. Therefore ∆2 is part
of the fixed field of AutKF . Now by Theorem V.3.11 (the (ii)⇒(i) part),
F is Galois over K . So, by the definition of “Galois,” the fixed field of
AutKF is K itself. Therefore, ∆2 ∈ K .
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Proposition V.4.7. The Galois Group of Degree 3 Polynomials

Proposition V.4.7

Corollary V.4.7. The Galois Group of Degree 3 Polynomials.
Let K be a field and f ∈ K [x ] an irreducible, separable polynomial of
degree 3. The Galois group of f is either S3 or A3. If char(K ) 6= 2, it is A3

if and only if the discriminant D = ∆2 of f is the square of some element
of K .

Proof. By Theorem V.4.2 (really, the note following Corollary V.4.3), the
Galois group is either S3 or A3. By Corollary V.4.6, G consists of even
permutations (and so is A3) if and only if ∆ ∈ K .

If ∆ ∈ K then D is the
square of some element of K . Next, if D = d2 = ∆2 where d ∈ K , then
(in F ) ∆2 − d2 = 0 or (∆− d)(∆ + d) = 0 and so either d = ∆ or
d = −∆, implying ∆ ∈ K .
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Proposition V.4.8

Proposition V.4.8

Proposition V.4.8. Let K be a field with char(K ) 6= 2, 3. If
f (x) = x3 + bx3 + cx + d ∈ K [x ] has three distinct roots in some splitting
field, then the polynomial g(x) = f (x − b/3) ∈ K [x ] has the form
x3 + px + q and the discriminant of f is −4p3 − 27q2.

Proof. Let F be a splitting field of f over K . If u ∈ F is a root of f then
u + b/3 is a root of g(x) = f (x − b/3) (and conversely). Let v1, v2, v3 be
the roots of g .

Then the roots of f are v1 − b/3, v2 − b/3, v3 − b/3. So
the discriminant of g is the square of

∆ = (v1 − v2)(v1 − v3)(v2 − v3)

= ((v1−b/3)−(v2−b/3))((v1−b/3)−(v3−b/3))((v2−b/3)−(v3−b/3)),

which when squared is also the discriminant of f . So f and g have the
same discriminant.
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Proposition V.4.8

Proposition V.4.8 (continued 1)

Proof (continued). Now

g(x) = f (x − b/3) = (x − b/3)3 + b(b − b/3)2 + c(x − b/3) + d

= x3 − 3x2b/3 + 3x(b/3)− (b/3)3 + bx2 − 2bx(b/3)

+b(b/3)2 + cx − bc/3 + d

= x3 + (−b + b)x2 + (b2/3− 2b2/3 + c)x

+(−b3/27 + b3/9− bc/3 + d)

= x3 + (−b2/3 + c)x + (2b3/27− bc/3 + d)

= x3 + px + q

where p = −b2/3 + c ∈ K and q = 2b3/27− bc/3 + d ∈ K . Since we
assumed that the roots of g are v1, v2, v3 then

g(x) = x3 − px + q = (x − v1)(x − v2)(x − v3)

= x3 + (−v1 − v2 − v3)x
2 + (v1v2 + v1v3 + v2v3)x + (−v1v2v3).
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Proposition V.4.8

Proposition V.4.8 (continued 2)

Proof (continued). Hungerford declares the establishing of the fact that
D = ∆2 = −4p3 − 27q2 where p = −b2/3 + c ∈ K and
q = 2b3/27− bc/3 + d ∈ K (as above), “a gruesome computation.”
Instead of hacking through the gruesome computation, we follow the proof
in Dummit and Foote’s Abstract Algebra, Third Edition, Wiley and Sons
(2004), pages 609 and 612.

First, in the notation of the appendix to Section V.2 (see page 252), with
g(x) = (x − v1)(x − v2)(x − v3), we have g1 = v1 + v2 + v3,
g2 = v1v2 + v1v3 + v2v3, and g3 = v1v2v3. We then have

g2
1 − 2g2 = (v1 + v2 + v3)

2 − 2(v1v2 + v1v3 + v2v3)

= (v2
1 + 2v1v2 + 2v1v3 + v2

2 + 2v2v3 + v2
3 )

−2(v1v2 + v1v3 + v2v3)

= v2
1 + v2

2 + v2
3
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in Dummit and Foote’s Abstract Algebra, Third Edition, Wiley and Sons
(2004), pages 609 and 612.

First, in the notation of the appendix to Section V.2 (see page 252), with
g(x) = (x − v1)(x − v2)(x − v3), we have g1 = v1 + v2 + v3,
g2 = v1v2 + v1v3 + v2v3, and g3 = v1v2v3.

We then have

g2
1 − 2g2 = (v1 + v2 + v3)

2 − 2(v1v2 + v1v3 + v2v3)

= (v2
1 + 2v1v2 + 2v1v3 + v2

2 + 2v2v3 + v2
3 )

−2(v1v2 + v1v3 + v2v3)

= v2
1 + v2

2 + v2
3
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Proposition V.4.8

Proposition V.4.8 (continued 3)

Proof (continued). and

g2
2 − 2g1g2 = (v1v2 + v1v2 + v2v3)

2 − 2(v1 + v2 + v3)(v1v2v3)

= (v2
1 v2

2 + 2v2
1 v2v3 + 2v1v

2
2 v3 + v2

1 v2
3 + 2v1v2v

2
3 + v2

2 v2
3 )

−2v2
1 v2v3 − 2v1v

2
2 v3 − 2v1v2v

2
3

= v2
1 v2

2 + v2
2 v2

3 + v2
2 v2

3 .

So we have

v2
1 + v2

2 + v2
3 = g2

1 − 2g2 (1)

v2
1 v2

2 + v2
1 v2

3 + v2
2 v2

3 = g2
2 − 2g1g3. (2)

By the Product Rule (Lemma V.6.9(iii)) we have

g ′(x) = (x − v1)(x − v2) + (x − v1)(x − v3) + (x − v2)(x − v3).
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Proposition V.4.8

Proposition V.4.8 (continued 4)

Proof (continued). Then

g ′(v1) = (v1 − v2)(v1 − v3)

g ′(v2) = (v2 − v1)(v2 − v3) = −(v1 − v2)(v2 − v3)

g ′(v3) = (v3 − v1)(v3 − v1) + (v1 − v3)(v2 − v3).

By the definition of “discriminant,” the discriminant of g is

D = (v1 − v2)
2(v1 − v3)

2(v2 − v3)
2

= g ′(v1)(−g ′(v2))g
′(v3)

= −g ′(v1)g
′(v2)g

′(v3)v

= −g ′(v1)g
′(v2)g

′(v3). (3)

Since g(x) = x3 + px + q, then g ′(x) = 3x2 + p, then

g ′(vi ) = 3v2
i + p for i = 1, 2, 3. (4)
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Proposition V.4.8

Proposition V.4.8 (continued 4)
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Proposition V.4.8

Proposition V.4.8 (continued 5)

Proof (continued). We then have

−D = g ′(v1)g
′(v2)g

′(v3) from (3)

= (3v2
1 + p)(3v2 + p)(3v3 + p) from (4)

= 27v2
1 v2

2 v2
3 + 9p(v2

1 v2
2 + v2

1 v2
3 + v2

2 v2
3 ) + 3p2(v2

1 + v2
2 + v2

3 ) + p2

= 27g3
3 + 9p(g2

2 − 2g1g2) + 3p2(g2
1 − 2g2) + p3 by (1) and (2). (5)

Next, we have

g(x) = (x − v1)(x − v2)(x − v3)

= x3 + px + q

= x3 − g1x
2 + g2x − g3 by Section V.2.Appendix (see page 252).

So g1 = 0, g2 = p, and g3 = −q. Substituting these values into (5) we
have. . .

() Modern Algebra January 12, 2016 12 / 28



Proposition V.4.8

Proposition V.4.8 (continued 5)

Proof (continued). We then have

−D = g ′(v1)g
′(v2)g

′(v3) from (3)

= (3v2
1 + p)(3v2 + p)(3v3 + p) from (4)

= 27v2
1 v2

2 v2
3 + 9p(v2

1 v2
2 + v2

1 v2
3 + v2

2 v2
3 ) + 3p2(v2

1 + v2
2 + v2

3 ) + p2

= 27g3
3 + 9p(g2

2 − 2g1g2) + 3p2(g2
1 − 2g2) + p3 by (1) and (2). (5)

Next, we have

g(x) = (x − v1)(x − v2)(x − v3)

= x3 + px + q

= x3 − g1x
2 + g2x − g3 by Section V.2.Appendix (see page 252).

So g1 = 0, g2 = p, and g3 = −q. Substituting these values into (5) we
have. . .

() Modern Algebra January 12, 2016 12 / 28



Proposition V.4.8

Proposition V.4.8 (continued 5)
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Proposition V.4.8

Proposition V.4.8 (continued 6)

Proposition V.4.8. Let K be a field with char(K ) 6= 2, 3. If
f (x) = x3 + bx3 + cx + d ∈ K [x ] has three distinct roots in some splitting
field, then the polynomial g(x) = f (x − b/3) ∈ K [x ] has the form
x3 + px + q and the discriminant of f is −4p3 − 27q2.

Proof (continued). . . .

−D = 27(−q)2 + 9p(p2 − 2(0)(−q)) + 3p2((0)2 − 2(p)) + p3

= 27q2 + 9p3 − 6p3 + p3 = 27q2 + 4p3,

and so D = −4p3 − 27q2.
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Lemma V.4.9

Lemma V.4.9

Lemma V.4.9. Let K , f ,F , ui ,V , and G = AutKF < S4 be as just
described. If α = u1u2 + u3u4, β = u1u3 + u2u4, γ = u1u4 + u2u3 ∈ F ,
then under the Galois correspondence of the Fundamental Theorem
(Theorem V.2.5) the subfield K (α, β, γ) corresponds to the normal
subgroup V ∩ G . Hence K (α, β, γ) is Galois over K and
AutKK (α, β, γ) ∼= G/(G ∩ V ).

Proof. “Clearly” every element in G ∩ V fixes α, β, γ and hence
K (α, β, γ). To show the correspondence of the Fundamental Theorem, we
need to show that the subgroup of G = AutKF which fixes K (α, β, γ) is
G ∩ V .

So we need to show for each σ ∈ G \ V , σ does not fix one of
α, β, γ. Since S4 consists of 4! = 24 elements, we need to check 20
permutations.
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Lemma V.4.9

Lemma V.4.9 (continued 1)

Proof (continued). Consider the transposition σ = (1, 2). We have
σ(β) = σ(u1u3 + u2u4) = u2u3 + u1u4. ASSUME σ(β) = β. Then
u1u3 + u2u4 = u2u3 + u1u4 or u1u3 − u1u4 = u2u3 − u2u4 or
u1(u3 − u4) = u2(u3 − u4). So either u1 = u2 or u3 = u4, both
CONTRADICTIONS. So the assumption is incorrect and we have
σ(β) 6= β.

A similar contradiction results for the other 3 transpositions
(1, 4), (2, 3), and (3, 4). For the remaining transpositions, (1, 3) and
(2, 4), a similar argument shows that α = u1u2 + u3u4 is not fixed by these
transpositions. So none of the 6 transpositions in S4 are in G \ V .

Consider the 3-cycle σ = (1, 2, 3). We have
σ(α) = σ(u1u2 + u3u4) = u2u3 + u1u4. ASSUME σ(α) = α. Then
u1u2 + u3u4 = u2u3 + u1u4 or u1u2 − u1u4 = u2u3 − u3u4 or
u1(u2 − u4) = u3(u2 − u4). So either u1 = u3 or u2 = u4, both
CONTRADICTIONS.
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Lemma V.4.9

Lemma V.4.9 (continued 2)

Proof (continued). So the assumption is incorrect and we have
σ(α) 6= α. A similar contradiction results for the other 7 3-cycles (1, 3, 2),
(1, 2, 4), (1, 4, 2), (1, 3, 4), (1, 4, 3), (2, 3, 4), and (2, 4, 3). So none of the
8 3-cycles in S4 are in G \ V .

Consider the 4-cycle (1, 2, 3, 4). We have
σ(α) = σ(u1u2 + u3u4) = u2u3 + u4u1. ASSUME σ(α) = α. Then
u1u2 + u3u4 = u2u3 + u4u1 or u1u2 − u4u1 = u2u3 − u3u4 or
u1(u2 − u4) = u3(u2 − u4). So either u1 = u3 or u2 = u4, both
CONTRADICTIONS. So the assumption is incorrect and we have
σ(α) 6= α. A similar contradiction results for the other 5 4-cycles
(1, 2, 4, 3), (1, 3, 2, 4), (1, 3, 4, 2), (1, 4, 2, 3), and (1, 4, 3, 2). So none of
the 6 4-cycles in S4 are in G \ V .
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Lemma V.4.9

Lemma V.4.9 (continued 2)

Proof (continued). So the assumption is incorrect and we have
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(1, 2, 4, 3), (1, 3, 2, 4), (1, 3, 4, 2), (1, 4, 2, 3), and (1, 4, 3, 2). So none of
the 6 4-cycles in S4 are in G \ V .
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Lemma V.4.9

Lemma V.4.9 (continued 3)

Lemma V.4.9. Let K , f ,F , ui ,V , and G = AutKF < S4 be as just
described. If α = u1u2 + u3u4, β = u1u3 + u2u4, γ = u1u4 + u2u3 ∈ F ,
then under the Galois correspondence of the Fundamental Theorem
(Theorem V.2.5) the subfield K (α, β, γ) corresponds to the normal
subgroup V ∩ G . Hence K (α, β, γ) is Galois over K and
AutKK (α, β, γ) ∼= G/(G ∩ V ).

Proof (continued). So the fixed field of G \ V is (G \ V )′ = K (α, β, γ)
and K (α, β, γ) and K (α, β, γ) corresponds to G \ V in the correspondence
of the Fundamental Theorem. Since G \ V is normal in S4 (and hence in
G < S4), then by part (ii) of the Fundamental Theorem (Theorem V.2.5),
K (α, β, γ) is Galois over K and AutKK (α, β, γ) ∼= G/(G ∩ V ) (in the
notation of the Fundamental Theorem, we have E = K (α, β, γ) and
E ′ = G ∩ V ).
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Lemma V.4.10

Lemma V.4.10

Lemma V.4.10. If K is a field and f = x4 + bx3 + cx2 + dx + e ∈ K [x ],
then the resolvant cubic of f is the polynomial
x3 − cx2 + (bd − 4e)x − b2e + 4ce − d2 ∈ K [x ].

Proof. Let f have roots u1, u2, u3, u4 in some splitting field F (we know F
exists by Corollary V.3.7). Since
f = (x − u1)(x − u2)(x − u3)(x − u4) ∈ F [x ] then
b = −u1 − u2 − u3 − u4, c = u1u2 + u1u3 + u1u4 + u2u3 + u2u4 + u3u4,
d = −u1u2u3 − u1u2u4 − u1u3u4 − u2u3u4, and e = u1u2u3u4.

Next, the resolvant cubic is
(x−α)(x−β)(x−γ) = x3 +(−α−β−γ)x2 +(αβ +αγ +βγ)x +(−αβγ),
and so from the values of α, β, γ in terms of u1, u2, u3, u4 (in Lemma
V.4.9) we have that the resolvant cubic is. . .
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Lemma V.4.10

Lemma V.4.10 (continued 1)

Proof (continued).

x3 + [−(u1u2 + u3u4)− (u1u3 + u2u4)− (u1u4 + u2u3)]x
2

+[(u1u2 + u3u4)(u1u3 + u2u4) + (u1u2 + u3u4)(u1u4 + u2u3)

+(u1u3 + u2u4)(u1u4 + u2u3)]x

+[−(u1u2 + u3u4)(u1u3 + u2u4)(u1u4 + u2u3)]. (∗)

Notice that the coefficient of x2 in (∗) is −c , as claimed. We now confirm
the other coefficient of (∗) are as required in some lengthy calculations.

Consider

bd − 4e = (−u1 − u2 − u3 − u4)(−u1u2u3 − u1u2u4 − u1u3u4 − u2u3u4)

−4(u1u2u3u4)
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Lemma V.4.10

Lemma V.4.10 (continued 2)

Proof (continued).

= (u1 + u2 + u3 + u4)(u1u2u3 + u1u2u4 + u1u3u4 + u2u3u4)

−4u1u2u3u4

= u1(u1u2u3 + u1u2u4 + u1u3u4) + u2(u1u2u3 + u1u2u4 + u2u3u4)

+u3(u1u2u3 + u1u3u4 + u2u3u4) + u4(u1u2u4 + u1u3u4 + u2u3u4)

= u1u2(u1u3 + u1u4) + u2
1u3u4 + u2u1(u2u3 + u2u4) + u2

2u3u4

u3u4(u1u3 + u2u3) + u1u2u
2
3 + u4u3(u1u4 + u2u4) + u1u2u

2
4

= u1u2(u1u3 + u2u4 + u1u4 + u2u3) + u3u4(u1u3 + u2u4 + u1u4 + u2u3)

+u1u3(u1u4 + u2u3) + u2u4(u1u4 + u2u3)

= (u1u2 + u3u4)[(u1u3 + u2u4) + (u1u4 + u2u3)]

+(u1u3 + u2u4)(u1u4 + u2u3)

and so the x coefficient in (∗) is bd − 4e.
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Lemma V.4.10

Lemma V.4.10 (continued 3)

Proof (continued). Finally, −b2e + 4ce − d2 equals

−(−u1 − u2 − u3 − u4)
2(u1u2u3u4)

+4(u1u2 + u1u3 + u1u4 + u2u3 + u2u4 + u3u4)(u1u2u3u4)

−(−u1u2u3 − u1u2u4 − u1u3u4 − u2u3u4)
2

= −[u2
1 + 2u1u2 + 2u1u3 + 2u1u4 + u2

2 + 2u2u3

+2u2u4 + u2
3 + 2u3u4 + u2

4 ](u1u2u3u4)

+4(u1u2 + u1u3 + u1u4 + u2u3 + u2u4 + u3u4)(u1u2u3u4)

−(u1u2u3 + u1u2u4 + u1u3u4 + u2u3u4)
2

= −[u2
1 − 2u1u2 − 2u1u3 − 2u1u4 + u2

2 − 2u2u3 − 2u2u4 + u2
3

−2u3u4 + u2
4 ](u1u2u3u4)− [u2

1u
2
2u

2
3 + 2u2

1u
2
2u3u4

+2u2
1u2u

2
3u4 + 2u1u

2
2u

2
3u4 + u2

1u
2
2u

2
4 + 2u2

1u2u3u
2
4

+2u1u
2
2u3u

2
4 + u2

1u
2
3u

2
4 + 2u1u2u

2
3u

2
4 + u2

2u
2
3u

2
4 ]
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Lemma V.4.10

Lemma V.4.10 (continued 4)

Proof (continued).

= −(u2
1 + u2

2 + u2
3 + u2

4)(u1u2u3u4)

−(u2
1u

2
2u

2
3 + u2

1u
2
2u

2
4 + u2

1u
2
3u

2
4 + u2

2u
2
3u

2
4)

= −[u1u2(u
2
1u3u4 + u2

2u3u4) + u3u4(u1u2u
2
3 + u1u2u

2
4)]

−[u1u2(u1u2u
2
3 + u1u2u

2
4) + u3u4(u

2
1u3u4 + u2

2u3u4)]

= −(u1u2 + u3u4)[(u
2
1u3u4 + u2

2u3u4) + (u1u2u
2
3 + u1u2u

2
4)]

= −(u1u2 + u3u4)[u1u3(u1u4 + u2u3) + u2u4(u2u3 + u1u4)]

= −(u1u2 + u3u4)(u1u3 + u2u4)(u1u4 + u2u3)

and so the constant term in (∗) is −b2c + 4ce − d2.

Hence, the resolvant cubic is
x3 − cx2 + (bd − e)x − b2e + 4ce − d2 ∈ K [x ] as claimed.

() Modern Algebra January 12, 2016 22 / 28



Lemma V.4.10

Lemma V.4.10 (continued 4)
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Proposition V.4.11

Proposition V.4.11

Proposition V.4.11. Let K be a field and f ∈ K [x ] an irreducible,
separable quartic with Galois group G (considered as a subgroup of S4).
Let α, β, γ be the roots of the resolvant cubic of f and let
m = [K (α, β, γ) : K ]. Then

(i) m = 6 ⇔ G = S4;

(ii) m = 3 ⇔ G = A4;

(iii) m = 1 ⇔ G = V ;

(iv) m = 2 ⇔ G ∼= D4 or G ∼= Z4; the the case that G ∼= D4, if f
is irreducible over K (α, β, γ) and G ∼= Z4.

Proof. Since K (α, β, γ) is a splitting field over K of a cubic, then by
Exercise V.3.5, m− [K (α, β, γ) : K ] divides 3! = 6 and so can only be 1, 2,
3, or 6. As argued in the note above, the Galois group can only be either
S4, A4, D4, V , or Z4. So the result follows if we can show the ⇐ part of
the implication (the converse must follow by a process of elimination).
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Proposition V.4.11

Proposition V.4.11 (continued 1)

Proof (continued). By part (i) of the Fundamental Theorem (Theorem
V.2.5(i)), |AutKK (α, β, γ)| = [K (α, β, γ) : K ] = m and by Lemma V.4.9,
AutKK (α, β, γ) ∼= G/(G ∩ V ), so we have that m = |G/(G ∩ V )|.

If G = S4, then G ∩ V = V and so
m = |G/(G ∩ V )| = |G/V | = |G |/|V | = 24/4 = 6 (by Lagrange’s
Theorem, Corollary I.4.6) and so (i) follows.

If G = A4, then G ∩ V = V (notice from the table in the Note above that
each element of of the transitive version of V ∼= Z2 ⊕ Z2 is an even
permutation) and so m = |G/(G ∩ V )| = |G/V | = |G |/|V | = 12/4 = 3
(by Lagrange’s Theorem) and so (ii) follows.

If G = V , then G ∩ V = G and so
m = |G/(G ∩ V )| = |G/G | = |G |/|G | = 4/4 = 1 (by Lagrange’s
Theorem) and so (iii) follows.
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Proposition V.4.11

Proposition V.4.11 (continued 2)

Proof (continued). If G ∼= D4, then we see from the table in the Note
above that transitive V is a subgroup of each of the three isomorphic
copies of D4, and so G ∩ V = V . Hence
m = |G/(G ∩ V )| = |G/V | = |G |/|V | = 8/4 = 2 (by Lagrange’s
Theorem) and so the first half of (iv) follows.

If G ∼= Z4, then we see from the table in the Note above that transitive V
shares two elements with each isomorphic copy of Z4, and so |G ∩ V | = 2.
Hence m = |G/(G ∩ V )| = |G |/|G ∩ V | = 4/2 = 2 (by Lagrange’s
Theorem) and so the second half of (iv) follows.

Now for the remaining claims of part (iv). Hypothesize that either G ∼= D4

or G ∼= Z4. Let u1, u2, u3, u4 be the roots of f is some splitting field F
(which exists by Corollary V.3.7). We establish two claims.
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Proposition V.4.11

Proposition V.4.11 (continued 3)

Proof (continued).
Claim 1. If G ∼= D4 then f is irreducible over K (α, β, γ).
Proof of Claim 1. Suppose G ∼= D4 so that G ∩ V = V (as described
above). Since V is a transitive subgroup (as shown in the table in the note
above) and G ∩ V = AutK(α,β,γ)F (by Lemma V.4.9 and the “Galois
correspondence” part of the Fundamental Theorem), there exists for each
pair i 6= j (1 ≤ i , j ≤ 4) a σ ∈ G ∩ V which induces an isomorphism
implying K (α, β, γ)(ui ) ∼= K (α, β, γ)(uj) such that σ(ui ) = uj and
σ|K(α,β,γ) is the identity.

Consequently for each i 6= j , ui and ujare rots of
the same irreducible polynomial over K (α, β, γ) by Corollary V.1.9. So
polynomial f must be this irreducible polynomial over K (α, β, γ). We have
shown that G ∼= D4 ⇒ f is irreducible over K (α, β, γ). QED
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Proposition V.4.11 (continued 4)

Proof (continued).
Claim 2. If G ∼= Z4 then f is reducible over K (α, β, γ).
Proof of Claim 2. Suppose G ∼= Z4. Then |G ∩ V | = 2 as argued above.
In addition, we see from the table in the Note above, this group of order 2
is not transitive. Now G ∩ V = AutK (α, β, γ)F (as justified in Claim 1).
Hence: for some i 6= j there is no σ ∈ G ∩ V such that σ(ui ) = uj (∗)

Now F is a splitting field over J(α, β, γ)(ui ) and over K (α, β, γ)(uj) (since
F is a splitting field of f over K ). ASSUME f is irreducible over
K (α, β, γ). Then by Corollary V.1.9 there is an isomorphism σ′ of fields
K (α, β, γ)(ui ) ∼= K (α, β, γ)(uj) which sends ui to uj and is the identity on
K (α, β, γ). By Theorem V.3.8, σ′ is extendible to an automorphism of F ,
say σ ∈ AutK(α,β,γ)F . But then for this σ ∈ G ∩ V we have σ(ui ) = uj ,
CONTRADICTING (∗). So the assumption is false and we have that f is
reducible. We have shown that G ∼= Z4 ⇒ f is reducible over K (α, β, γ).
QED
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Proposition V.4.11 (continued 5)

Proposition V.4.11. Let K be a field and f ∈ K [x ] an irreducible,
separable quartic with Galois group G (considered as a subgroup of S4).
Let α, β, γ be the roots of the resolvant cubic of f and let
m = [K (α, β, γ) : K ]. Then

(i) m = 6 ⇔ G = S4;

(ii) m = 3 ⇔ G = A4;

(iii) m = 1 ⇔ G = V ;

(iv) m = 2 ⇔ G ∼= D4 or G ∼= Z4; the the case that G ∼= D4, if f
is irreducible over K (α, β, γ) and G ∼= Z4.

Proof (continued). So in case (iv) we have that either G ∼= D4 or
G ∼= Z4. We have shown that G ∼= D4 ⇒ f is irreducible, and
G ∼= Z4 ⇒ f is reducible. These are the converses of the additional claims
in (iv), but by the process of elimination, the original claims follow.
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