Modern Algebra

Chapter V. Fields and Galois Theory

V.4. The Galois Group of a Polynomial (Partial)—Proofs of Theorems

Theorem V.4.2(i)

Modern Algebra

group G **Theorem V.4.2.** Let K be a field and $f \in K[x]$ a polynomial with Galois

(i) G is isomorphic to a subgroup of some symmetric group S_n

Proof (continued). (i) By Theorem V.1.3(v),

is, $Aut_K F$ is isomorphic to some subgroup of S_n . monomorphism. So this mapping is an isomorphism with its image. That Since $\sigma_1(g) \neq \sigma_2(g)$, then it must be that $\sigma_1|_{\{u_1,u_2,...,u_n\}} \neq \sigma_2|_{\{u_1,u_2,...,u_n\}}$. $h(\sigma_2(u_1), \sigma_2(u_2), \ldots, \sigma_2(u_n))k(\sigma_2(u_1), \sigma_2(u_1), \sigma_2(u_2), \ldots, \sigma_2(u_n))^{-1}$ Since σ_1 and σ_2 are homomorphisms which fix K elementwise, $\sigma_1(g) =$ $g = h(u_1, u_2, \dots, u_n)k(u_1, u_2, \dots, u_n)^{-1}$ for some $h, k \in K[x_1, x_2, \dots, x_n]$. That is, the mapping $\sigma\mapsto\sigma|_{\{u_1,u_2,...,u_n\}}$ is one to one and so is a $h(\sigma_1(u_1), \sigma_1(u_2), \dots, \sigma_1(u_n))k(\sigma_1(u_1), \sigma_1(u_1), \sigma_1(u_2), \dots, \sigma_1(u_n))^{-1}$ and

Theorem V 4 2

group G **Theorem V.4.2.** Let K be a field and $f \in K[x]$ a polynomial with Galois

- (i) G is isomorphic to a subgroup of some symmetric group S_n
- (ii) If irreducible f is separable of degree n, then n divides |G|and G is isomorphic to a transitive subgroup of S_n .

we have $\sigma_1 \circ \sigma_2 \mapsto \sigma_1|_{\{u_1,u_2,...,u_n\}} \circ \sigma_2|_{\{u_1,u_2,...,u_n\}}$ and so the mapping is a define the mapping $\operatorname{\mathsf{Aut}}_{\mathcal{K}} F o S_n$ by mapping σ to the permutation it as the group of all permutations of $\{u_1, u_2, \ldots, u_n\}$. For $\sigma \in \operatorname{Aut}_K F$, $\sigma \in \operatorname{Aut}_K F$ induces a unique permutation of $\{u_1, u_2, \dots, u_n\}$. Consider S_n is one to one. Let $\sigma_1, \sigma_2 \in \operatorname{Aut}_K E$ with $\sigma_1 \neq \sigma_2$. Then there is some homomorphism. Since F is the splitting field of f then induces on $\{u_1, u_2, \dots, u_n\}$, $\sigma \mapsto \sigma|_{\{u_1, u_2, \dots, u_n\}}$. Then for $\sigma_1, \sigma_2 \in \operatorname{Aut}_K F$ field F (so $1 \le n \le \deg(f)$) then Theorem V.2.2 implies that every **Proof.** (i) If u_1, u_2, \ldots, u_n are the distinct roots of f in some splitting $F = K(u_1, u_2, \ldots, u_n)$ (see Definition V.3.1). We now show the mapping

 $g \in F = K(u_1, u_2, \ldots, u_n)$ such that $\sigma_1(g) \neq \sigma_2(g)$.

Theorem V.4.2(ii)

group G **Theorem V.4.2.** Let K be a field and $f \in K[x]$ a polynomial with Galois

- (ii) If irreducible f is separable of degree n, then n divides |G|and G is isomorphic to a transitive subgroup of S_n
- Whence by Theorem V.1.2, $n = [K(u_1) : K]$ (since the subgroups and intermediate fields, such as (Theorem V.2.5(i)) Galois group $G = Aut_K F$ has a subgroup of index $[\mathcal{K}(u_1):\mathcal{K}]=n=\mathsf{deg}(f)$. By the Fundamental Theorem of Galois Theory V.3.11 (the (iii) \Rightarrow (i) part). By Theorem V.1.6(ii) and (iii), **Proof.** (ii) The splitting field F of $f \in K[x]$ is Galois over K by Theorem $K(u_1)$, are in one to one correspondence with the same dimension/index).
- K-isomorphism $\sigma: K(u_i) \cong K(u_j)$ such that $\sigma(u_i) = u_j$. so n divides |G|. By Corollary V.1.9, for any $i \neq j$, there is a $|G| = |\mathsf{Aut}_K(F)| = [F:K] = [F:K(u_1)][K(u_1):K] = [F:K(u_1)]n$ and

Modern Algebra

May 2, 2016 4 / 8

Modern Algebra May 2, 2016 5 / 8

Theorem V 4 12

Theorem V.4.2(ii) (continued)

Theorem V.4.2. Let K be a field and $f \in K[x]$ a polynomial with Galois group G.

(ii) If irreducible f is separable of degree n, then n divides |G| and G is isomorphic to a transitive subgroup of S_n .

Proof (continued). (ii) By Theorem V.3.8, σ extends to a K-automorphism of F; that is, the extended σ is in $\operatorname{Aut}_K F$ and so using the mapping defined in part (i) (which sends the extended σ to the extended σ restricted to $\{u_1, u_2, \ldots, u_n\}$) G is isomorphic to a subgroup of S_n which sends u_i to u_j (recall that we are treating S_n as a permutation on $\{u_1, u_2, \ldots, u_n\}$). That is, G is isomorphic to a transitive subgroup of S_n .

Theorem V.4.12. If p is prime and f is an irreducible polynomial of degree p over the field of rational numbers $\mathbb Q$ which has precisely two nonreal roots in the field of complex numbers $\mathbb C$ and p-2 real roots, then the Galois group of f is isomorphic to S_p .

Proof. Let G be the Galois group of f considered as a subgroup of S_p , as described in the note following Theorem V.4.2. By Theorem V.4.2(ii) (notice that f is separable), p divides |G|. By Cauchy's Theorem (Theorem II.5.2) G contains an element σ of order p. By Corollary I.6.4, σ is a p-cycle. Now complex conjugation, $a+bi\mapsto a-bi$, is an \mathbb{R} -automorphism of \mathbb{C} that moves every nonreal element of \mathbb{C} . Then by Theorem V.2.2, it interchanges the two nonreal roots of f and fixes the other (real) roots. So G contains a transposition, say $\tau=(c,d)$ where c and d are the complex roots of f.

Theorem V.4.12 (continued)

Theorem V.4.12. If p is prime and f is an irreducible polynomial of degree p over the field of rational numbers \mathbb{Q} which has precisely two nonreal roots in the field of complex numbers \mathbb{C} and p-2 real roots, then the Galois group of f is isomorphic to S_p .

Proof (continued). Since p-cycle σ can be written $\sigma = (c, j_2, j_3, \ldots, j_p)$ (whence the roots of f are c, j_2, j_3, \ldots, j_p ; notice that one of the j_i 's must be equal to d), then some power of σ maps c to d (the power k = i - 1 if $d = j_i$) and so for some k, $\sigma^k = (c, d, i_3, i_4, \ldots, i_p) \in G$. By changing notation of the set being permuted, denote $\tau = (1, 2)$ and $\sigma^k = (1, 2, 3, \ldots, p)$. By Exercise I.6.4 these two elements of S_p generate S_p . Since G is isomorphic to a subgroup of S_p by Theorem V.4.2 and G contains these two elements, then $G = S_p$

() Modern Algebra May 2, 2016 8 / 8