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Theorem V.4.2

Theorem V.4.2

Theorem V.4.2. Let K be a field and f ∈ K [x ] a polynomial with Galois
group G .

(i) G is isomorphic to a subgroup of some symmetric group Sn.
(ii) If irreducible f is separable of degree n, then n divides |G |

and G is isomorphic to a transitive subgroup of Sn.

Proof. (i) If u1, u2, . . . , un are the distinct roots of f in some splitting
field F (so 1 ≤ n ≤ deg(f )) then Theorem V.2.2 implies that every
σ ∈ AutKF induces a unique permutation of {u1, u2, . . . , un}.

Consider Sn

as the group of all permutations of {u1, u2, . . . , un}. For σ ∈ AutKF ,
define the mapping AutKF → Sn by mapping σ to the permutation it
induces on {u1, u2, . . . , un}, σ 7→ σ|{u1,u2,...,un}. Then for σ1, σ2 ∈ AutKF
we have σ1 ◦ σ2 7→ σ1|{u1,u2,...,un} ◦ σ2|{u1,u2,...,un} and so the mapping is a
homomorphism. Since F is the splitting field of f then
F = K (u1, u2, . . . , un) (see Definition V.3.1). We now show the mapping
is one to one. Let σ1, σ2 ∈ AutKE with σ1 6= σ2. Then there is some
g ∈ F = K (u1, u2, . . . , un) such that σ1(g) 6= σ2(g).
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Theorem V.4.2

Theorem V.4.2(i)

Theorem V.4.2. Let K be a field and f ∈ K [x ] a polynomial with Galois
group G .

(i) G is isomorphic to a subgroup of some symmetric group Sn.

Proof (continued). (i) By Theorem V.1.3(v),
g = h(u1, u2, . . . , un)k(u1, u2, . . . , un)

−1 for some h, k ∈ K [x1, x2, . . . , xn].
Since σ1 and σ2 are homomorphisms which fix K elementwise, σ1(g) =
h(σ1(u1), σ1(u2), . . . , σ1(un))k(σ1(u1), σ1(u1), σ1(u2), . . . , σ1(un))

−1 and
σ2(g) =
h(σ2(u1), σ2(u2), . . . , σ2(un))k(σ2(u1), σ2(u1), σ2(u2), . . . , σ2(un))

−1.
Since σ1(g) 6= σ2(g), then it must be that σ1|{u1,u2,...,un} 6= σ2|{u1,u2,...,un}.
That is, the mapping σ 7→ σ|{u1,u2,...,un} is one to one and so is a
monomorphism.

So this mapping is an isomorphism with its image. That
is, AutKF is isomorphic to some subgroup of Sn.
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Theorem V.4.2

Theorem V.4.2(ii)

Theorem V.4.2. Let K be a field and f ∈ K [x ] a polynomial with Galois
group G .

(ii) If irreducible f is separable of degree n, then n divides |G |
and G is isomorphic to a transitive subgroup of Sn.

Proof. (ii) The splitting field F of f ∈ K [x ] is Galois over K by Theorem
V.3.11 (the (iii)⇒(i) part). By Theorem V.1.6(ii) and (iii),
[K (u1) : K ] = n = deg(f ). By the Fundamental Theorem of Galois Theory
(Theorem V.2.5(i)) Galois group G = AutKF has a subgroup of index
n = [K (u1) : K ] (since the subgroups and intermediate fields, such as
K (u1), are in one to one correspondence with the same dimension/index).
Whence by Theorem V.1.2,
|G | = |AutK (F )| = [F : K ] = [F : K (u1)][K (u1) : K ] = [F : K (u1)]n and
so n divides |G |. By Corollary V.1.9, for any i 6= j , there is a
K -isomorphism σ : K (ui ) ∼= K (uj) such that σ(ui ) = uj .
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Theorem V.4.2

Theorem V.4.2(ii) (continued)

Theorem V.4.2. Let K be a field and f ∈ K [x ] a polynomial with Galois
group G .

(ii) If irreducible f is separable of degree n, then n divides |G |
and G is isomorphic to a transitive subgroup of Sn.

Proof (continued). (ii) By Theorem V.3.8, σ extends to a
K -automorphism of F ; that is, the extended σ is in AutKF and so using
the mapping defined in part (i) (which sends the extended σ to the
extended σ restricted to {u1, u2, . . . , un}) G is isomorphic to a subgroup of
Sn which sends ui to uj (recall that we are treating Sn as a permutation on
{u1, u2, . . . , un}). That is, G is isomorphic to a transitive subgroup of
Sn.

() Modern Algebra May 2, 2016 6 / 8



Theorem V.4.2

Theorem V.4.2(ii) (continued)

Theorem V.4.2. Let K be a field and f ∈ K [x ] a polynomial with Galois
group G .

(ii) If irreducible f is separable of degree n, then n divides |G |
and G is isomorphic to a transitive subgroup of Sn.

Proof (continued). (ii) By Theorem V.3.8, σ extends to a
K -automorphism of F ; that is, the extended σ is in AutKF and so using
the mapping defined in part (i) (which sends the extended σ to the
extended σ restricted to {u1, u2, . . . , un}) G is isomorphic to a subgroup of
Sn which sends ui to uj (recall that we are treating Sn as a permutation on
{u1, u2, . . . , un}). That is, G is isomorphic to a transitive subgroup of
Sn.

() Modern Algebra May 2, 2016 6 / 8



Theorem V.4.12

Theorem V.4.12

Theorem V.4.12. If p is prime and f is an irreducible polynomial of
degree p over the field of rational numbers Q which has precisely two
nonreal roots in the field of complex numbers C and p − 2 real roots, then
the Galois group of f is isomorphic to Sp.

Proof. Let G be the Galois group of f considered as a subgroup of Sp, as
described in the note following Theorem V.4.2. By Theorem V.4.2(ii)
(notice that f is separable), p divides |G |. By Cauchy’s Theorem
(Theorem II.5.2) G contains an element σ of order p.

By Corollary I.6.4, σ
is a p-cycle. Now complex conjugation, a + bi 7→ a− bi , is an
R-automorphism of C that moves every nonreal element of C. Then by
Theorem V.2.2, it interchanges the two nonreal roots of f and fixes the
other (real) roots. So G contains a transposition, say τ = (c , d) where c
and d are the complex roots of f .
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Theorem V.4.12

Theorem V.4.12 (continued)

Theorem V.4.12. If p is prime and f is an irreducible polynomial of
degree p over the field of rational numbers Q which has precisely two
nonreal roots in the field of complex numbers C and p − 2 real roots, then
the Galois group of f is isomorphic to Sp.

Proof (continued). Since p-cycle σ can be written σ = (c , j2, j3, . . . , jp)
(whence the roots of f are c , j2, j3, . . . , jp; notice that one of the ji ’s must
be equal to d), then some power of σ maps c to d (the power k = i − 1 if
d = ji ) and so for some k, σk = (c , d , i3, i4, . . . , ip) ∈ G . By changing
notation of the set being permuted, denote τ = (1, 2) and
σk = (1, 2, 3, . . . , p). By Exercise I.6.4 these two elements of Sp generate
Sp. Since G is isomorphic to a subgroup of Sp by Theorem V.4.2 and G
contains these two elements, then G = Sp
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