Modern Algebra

Chapter V. Fields and Galois Theory V.5. Finite Fields—Proofs of Theorems

Theorem V.5.1

subfields of F. Then P is a field with no proper subfields. If char(F) = p(where p is prime), then $P \cong \mathbb{Z}_p$. If char(F) = 0 then $P \cong \mathbb{Q}$. **Theorem V.5.1.** Let F be a field and let P be the intersection of all

times) for $m \in \mathbb{N}$; replace 1_F with -1_F if $m \in \mathbb{Z}$ with m < 0). By the intersection of all subfields of F then P has no proper subfields. Remark on page 116) then by Theorem III.1.9(iii), if $n \neq 0$ then n is prime $n \ge 0$). Since P is a field then it has no zero divisors (see the second homomorphisms with kernel (n) where n = char(F) (this is valid for Clearly P contains all elements of the form $m1_F=1_F+1_F+\cdots+1_F$ (m**Proof.** Note that every subfield of F must contain 0 and 1_F . Since P is Theorem III.1.9(i), the map $arphi: \mathbb{Z} o P$ given by $m \mapsto m1_F$ is a ring

Modern Algebra

3 / 15

Theorem V 5 1

Corollary V.5.2

subfields of F. Then P is a field with no proper subfields. If $\operatorname{char}(F) = \rho$ (where p is prime), then $P \cong \mathbb{Z}_p$. If char(F) = 0 then $P \cong \mathbb{Q}$. **Theorem V.5.1.** Let F be a field and let P be the intersection of all

to one (a monomorphism) and by Corollary III.4.6 there is a unique \mathbb{Z}). As above, using the First Isomorphism Theorem, $\mathbb{Q} \cong \operatorname{Im}(\overline{\varphi}) = P$. monomorphism of fields $\overline{\varphi}:\mathbb{Q}\to P$ (where \mathbb{Q} is the field of quotients of subfields, we must have $\mathbb{Z}_P \cong \operatorname{Im}(\varphi) = P$. If n = 0, then $\varphi : \mathbb{Z} \to P$ is one $\mathbb{Z}_p\cong \mathbb{Z}/\mathrm{Ker}(\varphi)\cong \mathrm{Im}(\varphi)\subset P$. Since \mathbb{Z}_p is a field and P has no proper the First Isomorphism Theorem (Corollary III.2.10), we then have that **Proof (continued).** If n = p (prime) then $\mathbb{Z}_p \cong \mathbb{Z}/(p) = \mathbb{Z}/\mathrm{Ker}(\varphi)$. By

> prime p and $|F| = p^n$ for some $n \in \mathbb{N}$ **Corollary V.5.2.** If F is a finite field, then $char(F) = p \neq 0$ for some

over its prime subfield \mathbb{Z}_p (since F is finite itself), then by Theorem IV.2.4 summands) and hence $|F| = p^n$. [which we may have skipped] we have $F\cong \mathbb{Z}_P\oplus \mathbb{Z}_p\oplus \cdots \oplus \mathbb{Z}_p$ (n prime characteristic $p \neq 0$. Since F is a finite dimensional vector space **Proof.** As in the proof of Theorem V.5.1, by Theorem III.1.9(iii), F has

Modern Algebra

Theorem V 5 3

particular, the multiplicative group of all nonzero elements of a finite field multiplicative group of nonzero elements of F, then G is a cyclic group. In **Theorem V.5.3.** If F is a field and G is a finite subgroup of the

 $g^{m_k}=1_{ extit{ iny F}}$ for all $g\in G.$ That is, every $u\in G$ is a root of the polynomial $z\in\mathbb{Z}_{m_1}\oplus\mathbb{Z}_{m_2}\oplus\cdots\oplus\mathbb{Z}_{m_k}$). Since G is a multiplicative group, then distinct roots in F. So G must contain at most m_k elements. Therefore, $x^{m_k}-1_F\in F[x]$. By Theorem III.6.7, this polynomial has at most m_k notation) where $m_1>1$ and $m_1\mid m_2,\ m_2\mid m_2,\ \ldots,\ m_{k-1}\mid m_k.$ So Abelian Groups (theorem II.2.1), $G\cong \mathbb{Z}_{m_1}\oplus \mathbb{Z}_{m_2}\oplus \cdots \oplus \mathbb{Z}_{m_k}$ (in additive **Proof.** If G is a nontrivial finite multiplicative subgroup of field F, then G $m_k(\mathbb{Z}_{m_1}\oplus\mathbb{Z}_{m_2}\oplus\cdots\oplus\mathbb{Z}_{m_k})=0$ (that is, $m_kz=0$ for all is abelian and so by the Fundamental Theorem of Finitely Generated $|G|=m_1m_2\cdots m_k$ implies k=1 and $|G|\cong \mathbb{Z}_{m_1}$.

> $P\cong \mathbb{Z}_p$ and $P=\mathbb{Z}_p$ in term of the prime subfield.) Hungerford's comment on page 279 that we do not distinguish between prime subfield \mathbb{Z}_p ; that is, $F = \mathbb{Z}_p(u)$ for some $f \in F$. (Notice **Corollary V.5.4.** If F is a finite field, then F is a simple extension of its

powers of u generate all nonzero elements of F, so $\mathbb{Z}_p(u) = F$. group. Since $\mathbb{Z}_p \subset F$ and $u \in F$, then $\mathbb{Z}_p(u) \subset F$. Also, $0_F \in \mathbb{Z}_p$ and the F form a (finite) cyclic group. Let u be a generator of this multiplicative **Proof.** By Theorem V.5.3, the multiplicative group of nonzero elements of

6 / 15

Lemma V.5.5

fields. If F is finite, then φ is a \mathbb{Z}_p -automorphism of F. then the map $\varphi: F \to F$ given by $u \mapsto u^{p^r}$ is a \mathbb{Z}_p -monomorphism of **Lemma V.5.5.** If F is a field of characteristic p and if $r \ge 1$ is an integer,

Proof. First, we show that φ is a field homomorphism. Let $u, v \in F$.

$$\varphi(uv) = (uv)^{p^r} = u^{p^r} v^{p^r} \text{ since } F \text{ is a field}$$
$$= \varphi(u)\varphi(v).$$

homomorphism. so $\varphi(u+v)=(u+v)^{p'}=u^{p'}+v^{p'}=\varphi(u)+\varphi(v)$. So φ is a field By Exercise III.1.11 (The Freshman's Dream), $(u\pm v)^{
ho'}=u^{
ho'}\pm v^{
ho'}$ and

 $1_F + 1_F + \cdots + 1_F$, is fixed by φ , as claimed

Lemma V.5.5 (continued)

fields. If F is finite, then φ is a \mathbb{Z}_p -automorphism of Fthen the map $\varphi: F \to F$ given by $u \mapsto u^{p'}$ is a \mathbb{Z}_p -monomorphism of **Lemma V.5.5.** If F is a field of characteristic p and if $r \ge 1$ is an integer

Proof (continued). We only need to show that φ is one to one. If $\varphi(u) = \varphi(v)$ then $u^{p'} = v^{p'}$ or $u^{p'} - v^{p'} = 0$ or $(u - v)^{p'} = 0$ by "The \mathbb{Z}_p -monomorphism. hence u - v = 0 or u = v. Therefore, φ is one to one and $\varphi : F \to F$ is a Freshman's Dream." Since F is a field then it has no zero divisors and

 φ is a \mathbb{Z}_p -automorphism of F. Since $\varphi: F \to F$ is one to one, if F is finite then φ must also be onto and

January 1, 2016 8 / 15

January 1, 2016 9 / 15

Modern Algebra

Corollary V 5.4

Now $\varphi(1_F)=a_F^{
ho'}=1_F$, so each element of $\mathbb{Z}_{
ho}$, being of the form

Modern Algebra

Proposition V.5.6

Proposition V.5.6 (continued)

over \mathbb{Z}_p . finite field with p^n elements if and only if F is a splitting field of $x^{p^n}-x$ **Proposition V.5.6.** Let p be a prime and $n \ge 1$ an integer. Then F is a

elements of F, then F is a splitting field of $x^{p^n} - x$ over \mathbb{Z}_p . and the p^n-1 nonzero elements of F as shown above). Now $x^{p^n}-x$ has also a root of $x^{p^n} - x$, then $s^{p^n} - x$ has p^n distinct roots in F (namely, 0 of F has order p^n-1 . Hence every nonzero $u\in F$ satisfies $u^{p^n}-1=1_F$ exactly p^n roots by Theorem III.6.7 and by the Factor Theorem (Theorem $u\in F$ is a root of $x(x^{p^n-1}-1_F)=x^{p^n}-x\in \mathbb{Z}_p[x]$ as well. Since $0\in F$ is **Proof.** (1) If $|F| = p^n$, then the multiplicative group of nonzero elements (see also the proof of Corollary V.5.3 for details). Thus every nonzero III.6.6) it splits over F. Since the roots of $x^{p^n} - x$ are precisely the

 φ fixes \mathbb{Z}_p elementwise and so $\mathbb{Z}_p \subset E \subset F$. Now F is a splitting field of $f(x) = x^{p^n} - x$ and so $F = \mathbb{Z}_p(E) \subset E$ (since E contains \mathbb{Z}_p). That is, $\varphi(u+v)=\varphi(u)+\varphi(v)=u+v$, so E is closed under + and · (and a homomorphism, then $u,v\in E$ we have $\varphi(uv)=\varphi(u)\varphi(v)=uv$ and $f(x)=x^{p^n}-x$ over \mathbb{Z}_p . Then since $\operatorname{char}(F)=\operatorname{char}(\mathbb{Z}_p)=p$, we have that the derivative $f'(x)=p^nx^{p^n-1}-1=-1$ and so f and f' are F = E and F is a finite field or order p^n . $0,1_F\in E$), so E is a subfield of F and E is of order p^n . So $E\subset F$. Also, $u \in F$ is a root of $f(x) = x^{p^n} - x$ if and only if $\varphi(u) = u$. Now since φ is monomorphism of Lemma V.5.5 with r=n, where $\varphi(u)=u^{p^n}$. Then relatively prime in F[x]. By Theorem III.6.10(ii), f has no multiple roots in **Proof (continued).** (2) Now suppose F is a splitting field of F and so f has p^n distinct roots in F. Let $\varphi: F \to F$ be the

Corollary V 5 8

January 1, 2016

Corollary V.5.8 (continued)

two n-dimensional extension fields of K are K-isomorphic extension field F = K(U) of K such that F is finite and [F : K] = n. Any **Corollary V.5.8.** If K is a finite field and $n \in \mathbb{N}$, then there exists a simple

 $[F_1:K]=n$, then **Proof** (continued). If F_1 is another extension field of K with

 $[F_1:K][K:\mathbb{Z}_p]$ by Theorem V.1.2

space over finite K). Whence, as above, $F_1|=|\mathbb{Z}_p|^{[F_1:\mathbb{Z}_p]}=p^{nr}$. By Proposition V.5.6, F_1 is a splitting field of $x^{p^{nr}}=x$ over \mathbb{Z}_p and hence since $[K:\mathbb{Z}_p]=r$ because $|K|=p^r$ (as argued above for F as a vector are K-isomorphic Exercise V.3.3) is a splitting field over K. By Corollary V.3.9, F and F_1 = x over $\mathbb{Z}_{oldsymbol{
ho}}$ and hence (by

Modern Algebra

V.5.6, every $u \in K$ satisfies $u^{p'} = u$ and it follows inductively (by **Proof.** Given K of order p^r (this must be the order of K by Corollary V.5.2), let F be a splitting field of $f(x) = x^{p^m} - x$ over K. By Proposition two n-dimensional extension fields of K are K-isomorphic.

extension field F = K(U) of K such that F is finite and [F : K] = n. Any

Corollary V.5.8. If K is a finite field and $n \in \mathbb{N}$, then there exists a simple

Now we have $\mathbb{Z}_p \subset K \subset F$ where F is a splitting field of f over K, so by repeatedly raising both sides to the ho^r power) that $u^{
ho^{r^n}}$ = u for all $u \in K$

V.5.6 shows that F consists of precisely the p^{nr} distinct roots of f(namely, the set E in the proof). Now with the dimension of F over K as Exercise V.3.3 F is a splitting field of f over \mathbb{Z}_p . The proof of Proposition [F:K], then since |K| is finite then the number of vectors in F (treated

 $p^{nr}=|F|=|K|^{[F:K]}=(p^r)^{[F:K]}$. Whence [F:K]=n. Corollary V.5.4 as a vector space over K) is $|K|^{[F:K]}$; that is, implies that F is a simple extension of its prime subfield and hence of ${\mathcal K}$.

January 1, 2016 12 / 15

January 1, 2016 13 / 15

Modern Algebra

Proposition V.5.10 (continued)

Proposition V.5.10

Proposition V.5.10. If F is a finite dimensional extension field of a finite field K, then F is finite and is Galois over K. The Galois group $\operatorname{Aut}_K(F)$ is cyclic.

Proof. Let \mathbb{Z}_p be the prime subfield of K (which is guaranteed to exist by Theorem V.5.1 and Corollary V.5.2). Then F is finite dimensional over \mathbb{Z}_p since, by Theorem V.1.2, $[F:\mathbb{Z}_p]=[F:K][K:\mathbb{Z}_p]$. Let $[F:\mathbb{Z}_p]=n$ and then (treating F as an n-dimensional vector space over finite field \mathbb{Z}_p , as discussed in the proof of Corollary V.5.8) $|F|=p^n$. By the proof of Proposition V.5.6, F is a splitting field over \mathbb{Z}_p of $f(x)=x^{p^n}-x$ (the set E in the proof) and hence be Exercise V.3.2 is a splitting field of f over K. Also, all roots of f are distinct (see the proof of Proposition V.5.6). By Theorem (the (iii) \Rightarrow (i) part) F is Galois over K. The map $\varphi:F\to F$ given by $u\mapsto u^p$ is a \mathbb{Z}_p -automorphism by Lemma V.5.5 (with r=1). Since φ^n maps $u\mapsto n^{p^n}=u$ then φ^n is the identity on F.

Proposition V.5.10. If F is a finite dimensional extension field of a finite field K, then F is finite and is Galois over K. The Galois group $\operatorname{Aut}_K(F)$ is cyclic.

Proof (continued). No lower power k of φ can be the identity, or else the polynomial $x^{p^k}-x$ would have p^n distinct roots in F where $p^k< p^n$, contradicting Theorem III.6.7. By the Fundamental Theorem of Galois Theory (Theorem V.2.5(i)) $|\operatorname{Aut}_{\mathbb{Z}_p}F|=[F:\mathbb{Z}_p]=n$, and since $\varphi\in\operatorname{Aut}_{\mathbb{Z}_p}F$ is an element of order n then φ must generate $\operatorname{Aut}_{\mathbb{Z}_p}F$ and $\operatorname{Aut}_{\mathbb{Z}_p}F$ is cyclic. Since $\mathbb{Z}_p\subset K$ then Aut_KF is a subgroup of $\operatorname{Aut}_{\mathbb{Z}_p}F$ and so Aut_KF is cyclic by Theorem I.3.5.