Corollary V.5.2. If \(p \) is a prime field, then \(\text{char}(F) \neq 0 \).

Proof. As in the proof of Theorem V.5.1, by Corollary III.1.9((II)), \(F \) has prime \(p \) and \(|F| = p \) for some \(n \in \mathbb{N} \).

Theorem V.5.1. Let \(F \) be a field and let \(p \) be the intersection of all subfields of \(F "). Since \(p \) is prime, then \(0 \neq d = \prod_{i=1}^{m} (x - a_i) \) for some \(m \in \mathbb{N} \).

Remark on page II.10: Since \(F \) is a field, then \(F \) has zero divisors (see the second homomorphism theorem kernel (K) for \(F \)). This is valid for the map \(\phi : \mathbb{Z} \rightarrow \phi(\mathbb{Z}) \) where \(\phi \) is a ring homomorphism, and hence (by Theorem II.8((II))), the map \(\phi : \mathbb{Z} \rightarrow \phi(\mathbb{Z}) \) is an endomorphism of \(\mathbb{Z} \).

Proof. Note that every subfield of \(F \) is finite, since \(p \) is prime. Therefore, \(F \) is a field with no proper subfields. It follows that \(\text{char}(F) \neq 0 \) and \(d = \prod_{i=1}^{m} (x - a_i) \) for some \(a_i \in \mathbb{F} \).
Since 0 = (n) + (n) = (n + n) + (n) = (n + (n + n)) = (n + (n + n)) + (n) + (n) = (n +s}
are \mathbb{F}-isomorphic.

Exercise V.3.3: F is a splitting field over K. By Corollary V.3.9, F and E are $d_F \mathbb{Z}$ fields of $x^r \in \mathbb{K}$, and hence $d = |d_F \mathbb{Z}| = |E| = \frac{n!}{|d_F \mathbb{Z}|}$. Hence, $|d_F \mathbb{Z}|$ is the number of vectors in F that is, $|F : K|$, then $|F : K|$ is finite if and only if F is a splitting field of $x^r \in \mathbb{K}$.

Proposition V.3.5: F is a splitting field of $x^r \in \mathbb{K}$ over \mathbb{K}. Then, $|d_F \mathbb{Z}|$ is a splitting field of $x^r \in \mathbb{K}$, and hence F is finite if and only if F is a splitting field of $x^r \in \mathbb{K}$.

Corollary V.5.8: Every \mathbb{F}-isomorphic field \mathbb{K} contains a splitting field of $x^r \in \mathbb{K}$.

Corollary V.5.6: Every \mathbb{F}-isomorphic field \mathbb{K} contains a splitting field of $x^r \in \mathbb{K}$.

Proof (continued): Let \mathbb{K} be a splitting field of $x^r \in \mathbb{K}$. Then, $|d_F \mathbb{Z}|$ is a splitting field of $x^r \in \mathbb{K}$, and hence F is finite if and only if F is a splitting field of $x^r \in \mathbb{K}$.
Proposition 5.10 (continued)

If F is a finite dimensional extension field of a finite cyclic field K, then F is finite and is Galois over K. The Galois group Aut$_F(K)$ is cyclic.

Proof. Let \mathbb{Z}^d be the prime subfield of K (which is guaranteed to exist by Proposition V.5.10). If F is a finite dimensional extension field of a finite cyclic field K.