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Chapter V. Fields and Galois Theory
V.5. Finite Fields—Proofs of Theorems

Thermaa W Hungadond

#_:_..1_

Modern Algebra

Theorem V.5.1

Theorem V.5.1

Theorem V.5.1. Let F be a field and let P be the intersection of all
subfields of F. Then P is a field with no proper subfields. If char(F) =p
(where p is prime), then P = Z,. If char(F) = 0 then P = Q.

Proof (continued). If n = p (prime) then Z, = Z/(p) = Z/Ker(y). By
the First Isomorphism Theorem (Corollary 111.2.10), we then have that

Zp = 7/Ker(p) = Im(p) C P. Since Zy is a field and P has no proper
subfields, we must have Zp = Im(¢) = P. If n =0, then ¢ : Z — P is one
to one (a monomorphism) and by Corollary 111.4.6 there is a unique
monomorphism of fields @ : Q — P (where Q is the field of quotients of
Z). As above, using the First Isomorphism Theorem, Q = Im(®) = P. [
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Theorem V.5.1

Theorem V.5.1

Theorem V.5.1. Let F be a field and let P be the intersection of all
subfields of F. Then P is a field with no proper subfields. If char(F) = p
(where p is prime), then P = Z,. If char(F) = 0 then P = Q.

Proof. Note that every subfield of F must contain 0 and 1¢. Since P is
the intersection of all subfields of F then P has no proper subfields.
Clearly P contains all elements of the form mlg =1+ 1+ --- 4+ 1 (m
times) for m € N; replace 1g with —1f if m € Z with m < 0). By
Theorem I11.1.9(i), the map ¢ : Z — P given by m +— mlg is a ring
homomorphisms with kernel (n) where n = char(F) (this is valid for

n > 0). Since P is a field then it has no zero divisors (see the second
Remark on page 116) then by Theorem II1.1.9(iii), if n # 0 then n is prime.
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Corollary V.5.2

Corollary V.5.2

Corollary V.5.2. If F is a finite field, then char(F) = p # 0 for some
prime p and |F| = p” for some n € N,

Proof. As in the proof of Theorem V.5.1, by Theorem I11.1.9(iii), F has
prime characteristic p # 0. Since F is a finite dimensional vector space
over its prime subfield Z, (since F is finite itself), then by Theorem IV.2.4
[which we may have skipped] we have F =2 Zp & Zp, & --- & Zp (n
summands) and hence |F| = p". ]
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Theorem V.5.3

Theorem V.5.3

Theorem V.5.3. If F is a field and G is a finite subgroup of the
multiplicative group of nonzero elements of F, then G is a cyclic group. In
particular, the multiplicative group of all nonzero elements of a finite field
is cyclic.

Proof. If G is a nontrivial finite multiplicative subgroup of field F, then G
is abelian and so by the Fundamental Theorem of Finitely Generated
Abelian Groups (theorem 11.2.1), G =2 Zyy, & Zm, B - - ® Zm, (in additive
notation) where my > 1 and my | my, my | ma, ..., me_1 | mk. So

My (Zmy © Zm, ® -+ ® Zm,) = 0 (that is, mz = 0 for all

ZE€Lmy ®Lmy® - @ ZLpm,). Since G is a multiplicative group, then

g™ = 1f for all g € G. That is, every u € G is a root of the polynomial
xM« —1F € F[x]. By Theorem I11.6.7, this polynomial has at most my
distinct roots in F. So G must contain at most my elements. Therefore,

|G| = mimy---my implies k =1 and G = Zp,. O
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Lemma V.5.5

Lemma V.5.5. If F is a field of characteristic p and if r > 1 is an integer,
then the map ¢ : F — F given by u+— uP is a Zp-monomorphism of
fields. If F is finite, then ¢ is a Zp-automorphism of F.

Proof. First, we show that ¢ is a field homomorphism. Let u,v € F.
Then

o(uv) = (uv)? = uP vP since F is a field
= e(u)p(v).
By Exercise 111.1.11 (The Freshman's Dream), (u £ v)P" = uP" 4+ vP" and

so p(u+v)=(u+v)P = uP +vP = p(u) + p(v). So ¢ is a field
homomorphism.

Now ¢(1f) = mm\ = 1F, so each element of Z,, being of the form
1+ 1+ -+ 1F, is fixed by ¢, as claimed.

0 ]
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Corollary V.5.4

Corollary V.5.4

Corollary V.5.4. If F is a finite field, then F is a simple extension of its
prime subfield Z,; that is, F = Zy(u) for some f € F. (Notice
Hungerford's comment on page 279 that we do not distinguish between
P = Zpy and P = Zp in term of the prime subfield.)

Proof. By Theorem V.5.3, the multiplicative group of nonzero elements of
F form a (finite) cyclic group. Let u be a generator of this multiplicative
group. Since Z, C F and u € F, then Nn?v C F. Also, O € Zp, and the

powers of u generate all nonzero elements of F, so Zy(u) = F. O
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Lemma V.5.5 (continued)

Lemma V.5.5. If F is a field of characteristic p and if r > 1 is an integer,
then the map ¢ : F — F given by u+— uP is a Zp-monomorphism of
fields. If F is finite, then ¢ is a Zp-automorphism of F.

Proof (continued). We only need to show that ¢ is one to one. If

o(u) = o(v) then uP" = vP" or uP" — vP" =0 or (u—v)P =0 by “The
Freshman's Dream.” Since F is a field then it has no zero divisors and
hence u — v =0 or u = v. Therefore, ¢ isonetooneand p: F — Fis a
Zp-monomorphism.

Since ¢ : F — F is one to one, if F is finite then ¢ must also be onto and
¢ is a Zp-automorphism of F. [
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Proposition V.5.6

Proposition V.5.6

Proposition V.5.6. Let p be a prime and n > 1 an integer. Then F is a
finite field with p” elements if and only if F is a splitting field of xP" — x
over Zp.

Proof. (1) If |F| = p", then the multiplicative group of nonzero elements
of F has order p” — 1. Hence every nonzero u € F satisfies uP" —1 = 1F
(see also the proof of Corollary V.5.3 for details). Thus every nonzero

u € Fis a root of x(xP"~1 — 1) = xP" — x € Zp[x] as well. Since 0 € F is
also a root of xP" — x, then sP" — x has p” distinct roots in F (namely, 0
and the p" — 1 nonzero elements of F as shown above). Now x?" — x has
exactly p” roots by Theorem I11.6.7 and by the Factor Theorem (Theorem
111.6.6) it splits over F. Since the roots of xP" — x are precisely the
elements of F, then F is a splitting field of xP" — x over Zp.
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Corollary V.5.8

Corollary V.5.8

Corollary V.5.8. If K is a finite field and n € N, then there exists a simple
extension field F = K(U) of K such that F is finite and [F : K] = n. Any
two n-dimensional extension fields of K are K-isomorphic.

Proof. Given K of order p" (this must be the order of K by Corollary
V.5.2), let F be a splitting field of f(x) = xP" — x over K. By Proposition
V.5.6, every u € K satisfies uP" = u and it follows inductively (by

repeatedly raising both sides to the p" power) that uP" = uforall uc K.
Now we have Z, C K C F where F is a splitting field of f over K, so by
Exercise V.3.3 F is a splitting field of f over Z,. The proof of Proposition
V.5.6 shows that F consists of precisely the p™ distinct roots of f
(namely, the set E in the proof). Now with the dimension of F over K as
[F : K], then since |K]| is finite then the number of vectors in F (treated
as a vector space over K) is |K|IF*K]: that is,

p" = |F| = |K|IF:KT = (p")IF:K]. Whence [F : K] = n. Corollary V.5.4
implies that F is a simple extension of its prime subfield and hence of K.
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Proposition V.5.6

Proposition V.5.6 (continued)

Proof (continued). (2) Now suppose F is a splitting field of

f(x) = xP" — x over Z,. Then since char(F) = char(Z,) = p, we have
that the derivative f’(x) = p"xP""1 —1 = —1 and so f and f’ are
relatively prime in F[x]. By Theorem I11.6.10(ii), f has no multiple roots in
F and so f has p” distinct roots in F. Let ¢ : F — F be the
monomorphism of Lemma V.5.5 with r = n, where ©(u) = uP". Then

u € Fis a root of f(x) = xP" — x if and only if ¢(u) = u. Now since ¢ is
a homomorphism, then u, v € E we have p(uv) = ¢(u)p(v) = uv and
o(u+v) =p(u)+¢)v) =u+v, so E is closed under + and - (and

0,1 € E), so E is a subfield of F and E is of order p". So E C F. Also,
¢ fixes Z, elementwise and so Z, C E C F. Now F is a splitting field of
f(x) = xP" — x and so F = Z,(E) C E (since E contains Z,). That is,

F = E and F is a finite field or order p". [
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Corollary V.5.8

Corollary V.5.8 (continued)

Corollary V.5.8. If K is a finite field and n € N, then there exists a simple
extension field F = K(U) of K such that F is finite and [F : K] = n. Any
two n-dimensional extension fields of K are K-isomorphic.

Proof (continued). If F; is another extension field of K with
[F1: K] = n, then

[F1:Zp) = [F1:K][K :Zp] by Theorem V.1.2
= n[K:Zp| =nr

since [K : Zp] = r because |K| = p" (as argued above for F as a vector
space over finite K). Whence, as above, Fi| = |Z,|lF1Z#] = pm By
Proposition V.5.6, F; is a splitting field of x?" = x over Zp and hence (by
Exercise V.3.3) is a splitting field over K. By Corollary V.3.9, F and f;
are K-isomorphic. O
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Proposition V.5.10 Proposition V.5.10

Proposition V.5.10 Proposition V.5.10 (continued)

Proposition V.5.10. If F is a finite dimensional extension field of a finite

field K, then F is finite and is Galoi K. The Galoi Autk(F) i . L : . .
' en TS Tinite and is Lalols over ¢ Galois group Auty (F) s Proposition V.5.10. If F is a finite dimensional extension field of a finite

lic.
cyele field K, then F is finite and is Galois over K. The Galois group Autk(F) is

Proof. Let Z, be the prime subfield of K (which is guaranteed to exist by cyclic.

Theorem V.5.1 and Corollary V.5.2). Then F is finite dimensional over Z,
since, by Theorem V.1.2, [F : Zp] = [F : K][K : Zp). Let [F : Zp] = n and
then (treating F as an n-dimensional vector space over finite field Z,, as
discussed in the proof of Corollary V.5.8) |F| = p". By the proof of
Proposition V.5.6, F is a splitting field over Z, of f(x) = xP" — x (the set
E in the proof) and hence be Exercise V.3.2 is a splitting field of f over K.
Also, all roots of f are distinct (see the proof of Proposition V.5.6). By
Theorem (the (iii)=(i) part) F is Galois over K. The map ¢ : F — F
given by u — uP is a Zp-automorphism by Lemma V.5.5 (with r = 1).
Since ¢" maps u — nP" = u then " is the identity on F.

Proof (continued). No lower power k of ¢ can be the identity, or else
the polynomial xP“ — x would have p" distinct roots in F where pX < p”,
contradicting Theorem [11.6.7. By the Fundamental Theorem of Galois
Theory (Theorem V.2.5(i)) |Autz, F| = [F : Zy] = n, and since

¢ € Autg,F is an element of order n then ¢ must generate Autz, F and
Autz, F is cyclic. Since Z, C K then AutxF is a subgroup of Autz, F and
so AutkF is cyclic by Theorem 1.3.5. O



