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Theorem V.5.1

Theorem V.5.1

Theorem V.5.1. Let F be a field and let P be the intersection of all
subfields of F . Then P is a field with no proper subfields. If char(F ) = p
(where p is prime), then P ∼= Zp. If char(F ) = 0 then P ∼= Q.

Proof. Note that every subfield of F must contain 0 and 1F . Since P is
the intersection of all subfields of F then P has no proper subfields.
Clearly P contains all elements of the form m1F = 1F + 1F + · · ·+ 1F (m
times) for m ∈ N; replace 1F with −1F if m ∈ Z with m < 0).

By
Theorem III.1.9(i), the map ϕ : Z → P given by m 7→ m1F is a ring
homomorphisms with kernel (n) where n = char(F ) (this is valid for
n ≥ 0). Since P is a field then it has no zero divisors (see the second
Remark on page 116) then by Theorem III.1.9(iii), if n 6= 0 then n is prime.
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Theorem V.5.1

Theorem V.5.1

Theorem V.5.1. Let F be a field and let P be the intersection of all
subfields of F . Then P is a field with no proper subfields. If char(F ) = p
(where p is prime), then P ∼= Zp. If char(F ) = 0 then P ∼= Q.

Proof (continued). If n = p (prime) then Zp
∼= Z/(p) = Z/Ker(ϕ). By

the First Isomorphism Theorem (Corollary III.2.10), we then have that
Zp
∼= Z/Ker(ϕ) ∼= Im(ϕ) ⊂ P. Since Zp is a field and P has no proper

subfields, we must have ZP
∼= Im(ϕ) = P. If n = 0, then ϕ : Z → P is one

to one (a monomorphism) and by Corollary III.4.6 there is a unique
monomorphism of fields ϕ : Q → P (where Q is the field of quotients of
Z). As above, using the First Isomorphism Theorem, Q ∼= Im(ϕ) = P.
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Corollary V.5.2

Corollary V.5.2

Corollary V.5.2. If F is a finite field, then char(F ) = p 6= 0 for some
prime p and |F | = pn for some n ∈ N.

Proof. As in the proof of Theorem V.5.1, by Theorem III.1.9(iii), F has
prime characteristic p 6= 0. Since F is a finite dimensional vector space
over its prime subfield Zp (since F is finite itself), then by Theorem IV.2.4
[which we may have skipped] we have F ∼= ZP ⊕ Zp ⊕ · · · ⊕ Zp (n
summands) and hence |F | = pn.
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Theorem V.5.3

Theorem V.5.3

Theorem V.5.3. If F is a field and G is a finite subgroup of the
multiplicative group of nonzero elements of F , then G is a cyclic group. In
particular, the multiplicative group of all nonzero elements of a finite field
is cyclic.

Proof. If G is a nontrivial finite multiplicative subgroup of field F , then G
is abelian and so by the Fundamental Theorem of Finitely Generated
Abelian Groups (theorem II.2.1), G ∼= Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmk

(in additive
notation) where m1 > 1 and m1 | m2, m2 | m2, . . . , mk−1 | mk .

So
mk(Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmk

) = 0 (that is, mkz = 0 for all
z ∈ Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmk

). Since G is a multiplicative group, then
gmk = 1F for all g ∈ G . That is, every u ∈ G is a root of the polynomial
xmk − 1F ∈ F [x ]. By Theorem III.6.7, this polynomial has at most mk

distinct roots in F . So G must contain at most mk elements. Therefore,
|G | = m1m2 · · ·mk implies k = 1 and G ∼= Zm1 .
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Corollary V.5.4

Corollary V.5.4

Corollary V.5.4. If F is a finite field, then F is a simple extension of its
prime subfield Zp; that is, F = Zp(u) for some f ∈ F . (Notice
Hungerford’s comment on page 279 that we do not distinguish between
P ∼= Zp and P = Zp in term of the prime subfield.)

Proof. By Theorem V.5.3, the multiplicative group of nonzero elements of
F form a (finite) cyclic group. Let u be a generator of this multiplicative
group. Since Zp ⊂ F and u ∈ F , then Zp(u) ⊂ F .

Also, 0F ∈ Zp and the
powers of u generate all nonzero elements of F , so Zp(u) = F .
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Lemma V.5.5

Lemma V.5.5

Lemma V.5.5. If F is a field of characteristic p and if r ≥ 1 is an integer,
then the map ϕ : F → F given by u 7→ upr

is a Zp-monomorphism of
fields. If F is finite, then ϕ is a Zp-automorphism of F .

Proof. First, we show that ϕ is a field homomorphism. Let u, v ∈ F .
Then

ϕ(uv) = (uv)p
r
= upr

vpr
since F is a field

= ϕ(u)ϕ(v).

By Exercise III.1.11 (The Freshman’s Dream), (u ± v)p
r
= upr ± vpr

and
so ϕ(u + v) = (u + v)p

r
= upr

+ vpr
= ϕ(u) + ϕ(v). So ϕ is a field

homomorphism.

Now ϕ(1F ) = apr

F = 1F , so each element of Zp, being of the form
1F + 1F + · · ·+ 1F , is fixed by ϕ, as claimed.
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Lemma V.5.5

Lemma V.5.5 (continued)

Lemma V.5.5. If F is a field of characteristic p and if r ≥ 1 is an integer,
then the map ϕ : F → F given by u 7→ upr

is a Zp-monomorphism of
fields. If F is finite, then ϕ is a Zp-automorphism of F .

Proof (continued). We only need to show that ϕ is one to one. If
ϕ(u) = ϕ(v) then upr

= vpr
or upr − vpr

= 0 or (u − v)p
r
= 0 by “The

Freshman’s Dream.” Since F is a field then it has no zero divisors and
hence u − v = 0 or u = v . Therefore, ϕ is one to one and ϕ : F → F is a
Zp-monomorphism.

Since ϕ : F → F is one to one, if F is finite then ϕ must also be onto and
ϕ is a Zp-automorphism of F .
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Proposition V.5.6

Proposition V.5.6

Proposition V.5.6. Let p be a prime and n ≥ 1 an integer. Then F is a
finite field with pn elements if and only if F is a splitting field of xpn − x
over Zp.

Proof. (1) If |F | = pn, then the multiplicative group of nonzero elements
of F has order pn − 1. Hence every nonzero u ∈ F satisfies upn − 1 = 1F

(see also the proof of Corollary V.5.3 for details). Thus every nonzero
u ∈ F is a root of x(xpn−1 − 1F ) = xpn − x ∈ Zp[x ] as well.

Since 0 ∈ F is
also a root of xpn − x , then spn − x has pn distinct roots in F (namely, 0
and the pn − 1 nonzero elements of F as shown above). Now xpn − x has
exactly pn roots by Theorem III.6.7 and by the Factor Theorem (Theorem
III.6.6) it splits over F . Since the roots of xpn − x are precisely the
elements of F , then F is a splitting field of xpn − x over Zp.
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Proposition V.5.6

Proposition V.5.6 (continued)

Proof (continued). (2) Now suppose F is a splitting field of
f (x) = xpn − x over Zp. Then since char(F ) = char(Zp) = p, we have
that the derivative f ′(x) = pnxpn−1 − 1 = −1 and so f and f ′ are
relatively prime in F [x ]. By Theorem III.6.10(ii), f has no multiple roots in
F and so f has pn distinct roots in F . Let ϕ : F → F be the
monomorphism of Lemma V.5.5 with r = n, where ϕ(u) = upn

. Then
u ∈ F is a root of f (x) = xpn − x if and only if ϕ(u) = u.

Now since ϕ is
a homomorphism, then u, v ∈ E we have ϕ(uv) = ϕ(u)ϕ(v) = uv and
ϕ(u + v) = ϕ(u) + ϕ)v) = u + v , so E is closed under + and · (and
0, 1F ∈ E ), so E is a subfield of F and E is of order pn. So E ⊂ F . Also,
ϕ fixes Zp elementwise and so Zp ⊂ E ⊂ F . Now F is a splitting field of
f (x) = xpn − x and so F = Zp(E ) ⊂ E (since E contains Zp). That is,
F = E and F is a finite field or order pn.
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Corollary V.5.8

Corollary V.5.8

Corollary V.5.8. If K is a finite field and n ∈ N, then there exists a simple
extension field F = K (U) of K such that F is finite and [F : K ] = n. Any
two n-dimensional extension fields of K are K -isomorphic.

Proof. Given K of order pr (this must be the order of K by Corollary
V.5.2), let F be a splitting field of f (x) = xprn − x over K . By Proposition
V.5.6, every u ∈ K satisfies upr

= u and it follows inductively (by

repeatedly raising both sides to the pr power) that uprn

= u for all u ∈ K .

Now we have Zp ⊂ K ⊂ F where F is a splitting field of f over K , so by
Exercise V.3.3 F is a splitting field of f over Zp. The proof of Proposition
V.5.6 shows that F consists of precisely the pnr distinct roots of f
(namely, the set E in the proof). Now with the dimension of F over K as
[F : K ], then since |K | is finite then the number of vectors in F (treated
as a vector space over K ) is |K |[F :K ]; that is,
pnr = |F | = |K |[F :K ] = (pr )[F :K ]. Whence [F : K ] = n. Corollary V.5.4
implies that F is a simple extension of its prime subfield and hence of K .
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Corollary V.5.8

Corollary V.5.8 (continued)

Corollary V.5.8. If K is a finite field and n ∈ N, then there exists a simple
extension field F = K (U) of K such that F is finite and [F : K ] = n. Any
two n-dimensional extension fields of K are K -isomorphic.

Proof (continued). If F1 is another extension field of K with
[F1 : K ] = n, then

[F1 : Zp] = [F1 : K ][K : Zp] by Theorem V.1.2

= n[K : Zp] = nr

since [K : Zp] = r because |K | = pr (as argued above for F as a vector
space over finite K ). Whence, as above, F1| = |Zp|[F1:Zp] = pnr . By
Proposition V.5.6, F1 is a splitting field of xpnr

= x over Zp and hence (by
Exercise V.3.3) is a splitting field over K . By Corollary V.3.9, F and F1

are K -isomorphic.
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Proposition V.5.10

Proposition V.5.10

Proposition V.5.10. If F is a finite dimensional extension field of a finite
field K , then F is finite and is Galois over K . The Galois group AutK (F ) is
cyclic.

Proof. Let Zp be the prime subfield of K (which is guaranteed to exist by
Theorem V.5.1 and Corollary V.5.2). Then F is finite dimensional over Zp

since, by Theorem V.1.2, [F : Zp] = [F : K ][K : Zp].

Let [F : Zp] = n and
then (treating F as an n-dimensional vector space over finite field Zp, as
discussed in the proof of Corollary V.5.8) |F | = pn. By the proof of
Proposition V.5.6, F is a splitting field over Zp of f (x) = xpn − x (the set
E in the proof) and hence be Exercise V.3.2 is a splitting field of f over K .
Also, all roots of f are distinct (see the proof of Proposition V.5.6). By
Theorem (the (iii)⇒(i) part) F is Galois over K . The map ϕ : F → F
given by u 7→ up is a Zp-automorphism by Lemma V.5.5 (with r = 1).
Since ϕn maps u 7→ npn

= u then ϕn is the identity on F .
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Proposition V.5.10

Proposition V.5.10 (continued)

Proposition V.5.10. If F is a finite dimensional extension field of a finite
field K , then F is finite and is Galois over K . The Galois group AutK (F ) is
cyclic.

Proof (continued). No lower power k of ϕ can be the identity, or else

the polynomial xpk − x would have pn distinct roots in F where pk < pn,
contradicting Theorem III.6.7. By the Fundamental Theorem of Galois
Theory (Theorem V.2.5(i)) |AutZpF | = [F : Zp] = n, and since
ϕ ∈ AutZpF is an element of order n then ϕ must generate AutZpF and
AutZpF is cyclic. Since Zp ⊂ K then AutKF is a subgroup of AutZpF and
so AutKF is cyclic by Theorem I.3.5.
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