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Chapter V. Fields and Galois Theory
V.6. Separability—Proofs of Theorems
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Lemma V.6.3

Lemma V.6.3

Lemma V.6.3. Let F be an extension field of K with char(K) = p # 0. If
u € F is algebraic over K, then uP" is separable over K for some n > 0.

Proof. If deg(u) = 1 over K, then u is separable and the result holds with
n = 0. If uis separable over K, then the result holds with n = 0. So let u
be nonseparable with irreducible polynomial f of degree greater than one.
We proceed by induction on the degree of u over K and assume the result
holds for elements of K of degree less than the degree of u. Since u is
nonseparable, then u is a root of f of multiplicity greater than 1 and so by
Theorem 111.6.10(iii), f'(u) = 0. By Exercise 111.6.3, f is a polynomial in
xP and f(x) = ag + a1xP + apx?P + -+ + mg.xg.u. say, and the degree of u
over K is jp. But then uP is of degree < j and so by the induction
hypothesis, the result holds for uP and so (uP)P” = uP™" is separable over
K for some m > 0. O]
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Theorem V.6.2

Theorem V.6.2

Theorem V.6.2. Let F be an extension field of K. then u € F is both
separable and purely inseparable over K if and only if u € K.

Proof. The element u € F is purely inseparable over K if (and only if) its
irreducible polynomial is of the form (x — u)™. u is separable if (an only

if) (x — u)™ has m distinct roots in some splitting field. But this occurs if
and only if m =1, which occurs if and only if x — u € K[x], which in turn
occurs if and only if u € K[x]. O
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Theorem V.6.4

Theorem V.6.4

Theorem V.6.4. If F is an algebraic extension field of a field K of
characteristic p # 0 then the following statements are equivalent:
(i) F is purely inseparable over K;
(ii) the irreducible polynomial of any u € F is of the form
xP" —a € K[x];
(iii) if u € F, then uP" € K for some n > 0;
(iv) the only elements of F which are separable over K are the
elements of K itself;
(v) F is generated over K by a set of purely inseparable
elements.

Proof. (i)=(ii) Let (x — u)™ € K|[x] be the irreducible polynomial of
u € F and let m = np" with ged(n, p) = (n,p) = 1. Then

(x —u)™ = (x — u)P’"" = (xP" — uP")" by Exercise IIl.1.11. Since

(x — u)™ € K[x] then the coefficient x?'("=1) namely +nuP" by the
Binomial Theorem (Theorem I11.1.6) must lie in K.
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Theorem V.6.4

Theorem V.6.4 (continued 1)

Theorem V.6.4. If F is an algebraic extension field of a field K of
characteristic p # 0 then the following statements are equivalent:

(i) F is purely inseparable over K;

(ii) the irreducible polynomial of any u € F is of the form
xP" —a € K[x].

Proof (continued). (i)=-(ii) [Exercise V.6.1 states: Let char(K) =p #0

and let n > 1 be an integer such that gcd(p,n) = (p,n) = 1. If v € F and

nv € K, then v € K.] Since gcd(n, p) = (n,p) = 1 and nuP" € K and

uP" € F (because u € F) then by Exercise V.6.1 (with v = uP") we have

uP" € K. Since (x — u)™ = (xP" — uP")" is irreducible in K[x], we must

have n =1 (or else it factors into a product of (xP" — uP") terms since

uP" € K). So (x — u)™ = xP" — a where a = uP" € K. That is, the

irreducible polynomial for u € F is of the form xP" — a € K[x]. Hence,

(i)=(ii).
0
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Theorem V.6.4

Theorem V.6.4 (continued 3)

Theorem V.6.4. If F is an algebraic extension field of a field K of
characteristic p # 0 then the following statements are equivalent:

(i) F is purely inseparable over K;
(i) if u € F, then uP" € K for some n > 0;

(v) F is generated over K by a set of purely inseparable
elements.

Proof. (i)=(v) By definition, each element of F is purely inseparable
over K and hence F is generated over K by the set F itself, say.

(iii)=(i) This follows from The Freshman's Dream (Exercise 111.1.11) as
follows: u € F implies uP” € K and so sP" — uP" = (x — u)”" is the
irreducible polynomial for u € F and so u is purely inseparable over K.
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Theorem V.6.4

Theorem V.6.4 (continued 2)

Theorem V.6.4. If F is an algebraic extension field of a field K of
characteristic p # 0 then the following statements are equivalent:

(ii) the irreducible polynomial of any u € F is of the form
xP" —a € K[x];
(iii) if u € F, then uP" € K for some n > 0.

Proof (continued). (ii)=-(iii) Since (ii) gives that x"" — a € K|[x] is the
irreducible polynomial of u and so f(u) = uP” —a =0 then a = u”" € K.
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Theorem V.6.4

Theorem V.6.4 (continued 4)

Theorem V.6.4. If F is an algebraic extension field of a field K of
characteristic p # 0 then the following statements are equivalent:

(i) F is purely inseparable over K;

(iv) the only elements of F which are separable over K are the
elements of K itself.

Proof. (i)=(iv) Let F be purely inseparable over K and let u € F be
separable over K. Then u is both separable and purely inseparable over K
and so by Theorem V.6.2, u € K. Conversely, if u € F and u & K then by
Theorem V.6.2, u is not both separable and purely separable (it is not
separable, in fact, since F is hypothesized to be purely inseparable over
K). So under the hypothesis (i), the only elements of F separable over K
are elements of K itself, and (iv) holds.
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Theorem V.6.4

Theorem V.6.4 (continued 5)

Theorem V.6.4. If F is an algebraic extension field of a field K of
characteristic p # 0 then the following statements are equivalent:

(iii) if u € F, then uP" € K for some n > 0;

(iv) the only elements of F which are separable over K are the
elements of K itself.

Proof. (iv)=-(iii) Suppose the only elements of F which are separable
over K are the elements of K itself. Then for u € F, by Lemma V.6.3, uP"
is separable over K and hence by hypothesis u?" € K and (iii) follows.
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Theorem V.6.4

Theorem V.6.4 (continued 7)

Proof (continued). (v)=-(iii) Now for any such f € K[xi, x2, .
have by “The Freshman's Dream” (Exercise 111.1.11) that

n ki k kn\ P
o up))P = AMU Ak kayeeskn Uy U tzav
by Theorem 111.5.4

n
ki k Ky \ P
= M ‘,Am»r»@...,»::%:% e :::v

by the Freshman's Dream

ne Pk, P K "\ kn
= D (o) (U] ) ()2 - (i)
e K

..y Xn] we

n

(f(ug, u2,.

n n n
since ay, k,...k, € K and uf ,u5 ... ul € K since each u; is purely

inseparable over K and this implies (as above) that FE € K. Therefore,
uP" = (f(uy, ua, ..., up)/g(ur, ..., u,))P" € K and (iii) follows. O
0 ]
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Theorem V.6.4

Theorem V.6.4 (continued 6)

Theorem V.6.4. If F is an algebraic extension field of a field K of
characteristic p # 0 then the following statements are equivalent:

(iii) if u € F, then uP" € K for some n > 0;

(v) F is generated over K by a set of purely inseparable
elements.

Proof. (v)=-(iii) Suppose F is generated over K by a set of purely
inseparable elements. Now if u is purely inseparable over K, then the proof
of (i)=(ii) above (which was given “element wise” for u € F purely
inseparable over K) we have that uP" € K for some n> 0. If u € F is an
arbitrary element of F (maybe not purely inseparable over K, but
generated by purely inseparable over K, but generated by purely
inseparables) then by Theorem V.1.3(vi) we have that

u=f(ur,up,...,up)/g(u1, Uy, ..., uy) where n € N,
f,g € K[xi,x2,...,Xn], U1, u2,...,u, are purely inseparable over K, and
g(uy,uz, ..., up) #0.

0 ] Modern Algebra February 14, 2016 11 /38

Corollary V.6.5

Corollary V.6.5

Corollary V.6.5. If F is a finite dimensional purely inseparable extension
field of K and char(K) = p # 0, then [F : K] = p" for some n > 0.

Proof. By Theorem V.1.11, F is finitely generated and algebraic over K,
so F = K(u1, up,...,unm). By hypothesis, each u; € F is purely inseparable
over K and hence, by Exercise V.6.2, is inseparable over any intermediate
field and so u; is purely inseparable over K(u1, ua, ..., uj—1). By Theorem
V.6.4 (the (i)=(ii) part) we know that the irreducible polynomial for u;
over K(u1, ua, ..., u;_1) is of the form xP" — a for some n > 0 and some
a€ K(u,u,...,ui—1). By Theorem V.1.6 (parts (i) and (ii)) we have
that [K(u1, w2, ..., u;) : K(ug, u2,...,ui—1)] = p™ for some n; > 0. So for
the “towers” K C K(u1) C K(u1,u2) C -+- C K(u1,u,...,um) = F, we
have that in each step the dimension is a power of p. Therefore, by
Theorem V.1.2, [F : K] = p" for some n > 0. O

- 0
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Lemma V.6.6

Lemma V.6.6. If F is an extension field of K, X is a subset of F such
that F = K(X), and every element of X is separable over K, then F is a
separable extension of K.

Proof. If v € F, then by Theorem V.1.3, there is a finite subset

X' '=A{u,ua,...,up} € X such that v e K(X') = K(u1,ua,...,up} C X
such that v € K(X’') = K(u1, U, ..., up). Let f; € K[x] be the irreducible
separable polynomial of u; and let E be a splitting field of {fi, 2, ..., f}
over K(u1, uz,...,u,). By Exercise V.3.3, E is also a splitting field of
{f, fo,...,fa} over K. By Theorem V.3.11 (the (iii) implies the first part
of (ii) part), E is separable over K (in fact, Galois over K by Theorem
V.3.11, the (iii)=(i) part). So element v € F satisfies

v € K(uy, ua,...,u,) C E and since E is separable over K then every
element of E is separable over K (see Definition V.3.10) and so v is
separable over K. Since v € F is arbitrary, then F is separable over K. []

0

Theorem V.6.7(i), (i), (iv)

Modern Algebra

Theorem V.6.7(i)

Theorem V.6.7. Let F be an algebraic extension field of K, let S be the
set of all elements of F which are separable over K, and let P be the set
of all elements of F which are purely inseparable over K.

(i) S is a separable extension field of K.

(ii) F is purely inseparable over S.
(iv) PNS =K.

Proof. (i) If u,v € S and v # 0, then K(u, v) is separable over K by
Lemma V.6.6 with X = {u, v}. Since K(u, v) is a field, then v — v and
uv—! € K(u,v). Since K(u, v) is separable over K then u— v,uv-t € S
and S is a subfield of F. Of course S is separable over K.

(i) If char(K) = 0 then every algebraic element over K is separable over
K (see the comment at the top of page 283 or the Note before Lemma
V.6.3) so every element of F is separable over K and S + F.

0 ]
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Theorem V.6.7(i), (ii), (iv)

Theorem V.6.7

Theorem V.6.7. Let F be an algebraic extension field of K, let S be the
set of all elements of F which are separable over K, and let P be the set
of all elements of F which are purely inseparable over K.

(i) S is a separable extension field of K.

(ii) F is purely inseparable over S.
(iii) P is a purely inseparable extension field of K.
(iv) PNS =K.
(v) F is separable over P if and only if F = SP.
(iv) If F is normal over K, then S is Galois over K, F is Galois
over P, and Autk(S) = Autp(F) = Autk(F).
0 ] Modern Algebra February 14, 2016 15 / 38

Theorem V.6.7(i), (i), (iv)

Theorem V.6.7(ii)

Theorem V.6.7. Let F be an algebraic extension field of K, let S be the
set of all elements of F which are separable over K, and let P be the set
of all elements of F which are purely inseparable over K.

(ii) F is purely inseparable over S.
(iv) PNS =K.

Proof (continued). (ii) By Theorem V.6.2, every element u € F is both
separable and purely inseparable over S since u € S = F. Then F is purely
inseparable over S. If char(K) = p # 0, then by Lemma V.6.3, every
element u € F satisfies uP" is separable over K for some n > 0. Therefore
uP” € S'. So by Theorem V.6.4 (the (iii)=(i) part with K replaced with
S), F is purely inseparable over S.

(iv) The elements of PN S are both separable and purely inseparable over
K. So by Theorem V.6.2, PN S = K. ]
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Corollary V.6.8

Corollary V.6.8

Corollary V.6.8. If F is a separable extension of E and E is a separable
extension field of K, then F is separable over K.

Proof. If S is the set of all elements of F which are separable over K,
then by the Note above, separable extension E satisfies E C S. By
Theorem V.6.7(ii), F is purely inseparable over S. But F is separable over
E (by hypothesis) and so by Exercise V.3.12, F is separable over the
intermediate field S. But the only elements of F which are purely
inseparable and separable over F are elements of F (by Theorem V.6.2).
So S = F and F is separable over K (by the definition of S). O

Modern Algebra

Corollary V.6.9

Corollary V.6.9 (continued 1)

Proof (continued). Let u € F and uP" € FP". Since u € F then by
Theorem V.1.3(v), there are h, k € S[xq, x2, ..., Xm] such that
u=h(ui,up,...,um)/k(ui,un,...,um). Now

uP" = (h(uy, to, . .., um)/k(u1, Us, . .., Um))P". By the Freshman’s Dream
(Exercise 111.1.11) applied inductively to a multinomial gives that uP” is in
fact a quotient of polynomials with coefficients in S evaluated at

:Hnﬁ :w:i ,uby. Since S is a field and each FE € S from above, then
uP" € S and so FP" C S. Since F is purely inseparable over FP" by
Theorem V.6.4 (the (iii)=(i) part), then S C F is purely inseparable over
FP". By Exercise V.6.2, since KFP" is a field intermediate to FP" and S
(notice that both K C S and FP" C S, so KFP" C S), we then have that
S is purely inseparable over KFP". S is separable over K by Theorem
V.6.7 and hence (by Exercise V.3.12(b)) S is separable over the
intermediate field KFP". So S is both separable and purely inseparable
over KFP", and so by Theorem V.6.2, S = KFP".

0 ]
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Corollary V.6.9

Corollary V.6.9

Corollary V.6.9. Let F be an algebraic extension field of K, with
char(K) = p # 0. If F is separable over K, then F = KFP" for each n > 1.
If [F : K] is finite and F = KFP (KFP is the smallest subfield of F
containing K U FP), then F is separable over K. In particular, u € F is
separable over K if and only if K(uP) = K(u).

Proof. Let S be the set of all elements of F which are separable over K.
Notice that S is a subfield of F by Theorem V.6.7(i). Suppose [F : K] is
finite. Then by Theorem V.1.11, F is finitely generated and algebraic over
K. So F = K(u1,u,...,un) for some uy, up, ..., um € F. Now every
element of K is separable over K (for k € K, the irreducible polynomial is
x—k),so KCSCF. Hence F =K(up,u,...,um)=S(u1,up, ..., um).
By Theorem V.6.7(iii), each u; is purely inseparable over S. By Theorem
V.6.4 (the (i)=(iii) part), there is n > 1 such that u” € S for every i (the

i
finiteness of collection wy, Uy, ..., uny is used here). Take this n as fixed
now.
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Corollary V.6.9

Corollary V.6.9 (continued 2)
Proof (continued). As observed above, if h € K[x1,x2,...,Xm] then by

the Freshman’'s Cream (Exercise 111.1.11) applied inductively

t . . t t t .
h(x1,x2,...,xm)P equals the polynomial in x , x5 ..., xh with each

coefficient corresponding to a coefficient of h to power p*:

. . . . . . P
MU m\x%px%b .. .XM,E = MU Am\xp»ixm»:m - .x\m,av
i i
= D O P = D ) ) ()
i i

So by Theorem V.1.3(v), for any t > 1,

t

t

vF.L:.

t t t t t t
FP' = [K(ui,up,...,um)]P = KP (u ;U5 ... uf).
Consequently for any t > 1 we have
t t t t t t t t
KFP = KKP (uf ,ub ... ul)) = K(uf ,ub .. uf)

notice that KKP' = K since 1 € KP").
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Corollary V.6.9

Corollary V.6.9 (continued 3)

Proof (continued). Notice that this argument holds for ANY generators
(not just the uy, up, ..., um we started with above). Now to establish the
claims of the corollary.

Suppose F = KFP. Then

K(u,uz, ... um) =F = KFP = K(ul,u5, ... uf) (the last equality
holding from above with t = 1). Iterating this argument gives
F=K(u,u...num) = K(ul,ub, ... uP)
2 2 2
= K(uf,ub,...,ul)
= Kl 5, ... uR)
= KFP" by above (with t = n)
= S as shown above.
0] Modern Algebra February 14, 2016 22 /38

Lemma V.6.11

Lemma V.6.11

Lemma V.6.11. Let F be an extension field of E, E an extension field of
K, and N a normal extension field of K containing F. If r is the cardinal
number of distinct E-monomorphisms mapping F :— N and t is the
cardinal number of distinct K-monomorphisms mapping E :— N, then rt
is the cardinal number of distinct K-monomorphisms mapping F — N.

Proof. First, suppose r, t are both finite. Let 71, 7,...,7, be all the
distinct E-monomorphisms mapping F — N and o1, 032,...,0; all the
distinct K-monomorphisms mapping E — N. Since N is normal over K
then by Theorem V.3.14 (the (i)=(ii) part), N is a splitting field over K
of some set of polynomials in K[x]|. By Exercise V.3.2, N is also a splitting
field over E of the same set of polynomials. Since o} fixes K it fixes the
set of polynomials. By Theorem V.3.8 (with L = 0;(K), S = S’ the set of
polynomials, M = N, and F of Theorem V.3.8 as N), each o; extends to a
K-automorphism of N. We also denote the extension as ;.

0 ]
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Corollary V.6.9

Corollary V.6.9 (continued 4)

Corollary V.6.9. Let F be an algebraic extension field of K, with
char(K) = p # 0. If F is separable over K, then F = KFP" for each n > 1.
If [F : K] is finite and F = KFP (KFP is the smallest subfield of F
containing K U FP), then F is separable over K. In particular, u € F is
separable over K if and only if K(uP) = K(u).

Proof (continued). Since S is separable over K (Theorem V.6.7(i)), then
F is separable over K and the second claim of the corollary holds.

Conversely, if F is separable over K, then F is both separable and purely
inseparable over KFP" (for all n > 1). Therefore, by Theorem V.6.2,
F = KFP" and the first claim of the corollary holds. [
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Lemma V.6.11

Lemma V.6.11 (continued)

Proof. Each composite map o;7; then maps F — N, is one to one, and
fixes K (that is, each o;7; is a K-monomorphism mapping F — N). If
oiTj = 04Tp then QMHSJ. = Tp. Since 7; and 7y, fix E then o loile = 1k.
So 0, =0; and a =i (0,4, 0; are originally defined on E and then
extended; since o, = o; on E the extensions are also equal). Since o is
one to one, then o;7; = o;7p implies that 7; = 7, and j = b. Therefore,
the rt K-monomorphisms o;7; mapping F — N where 1 </ <t and

1 < j < r are all distinct. To show this is all such mappings, let o : F — N
be any K-monomorphism. Then o|g = o; for some i (since 01,09, ...,0¢
is the complete collection of such maps). So Q_.Lq is a K-monomorphism
mapping F — N which ithe identity on E. Therefore Q\.LQ = 7; for some
J, whence 0 = o7 and so o is in the collection of rt mappings above.

The proof for r or t not finite is similar. With [ as the index set for the
oi's and J as the index set for the 7;'s, we again take the collection o;7;

where i € [ and j € J. [
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Proposition V.6.12

Proposition V.6.12

Proposition V.6.12. Let F be a finite dimensional extension field of K
and N a normal extension field of K containing F. The number of distinct
K-monomorphisms mapping F — N is precisely [F : K]s, the separable
degree of F over K.

Proof. Let S be the maximal subfield of F separable over K (see Theorem
V.6.7(i) and the Remark following Theorem V.6.7). As argued in the proof
of Lemma V.6.11, Theorem V.3.14, Exercise V.3.2, and Theorem V.3.8
imply that every K-monomorphism mapping S — N extends to a
K-monomorphism of N. By restricting such a mapping to F we have a
K-monomorphism mapping F — N.

We claim that the number of distinct K-monomorphisms mapping F — N
is the same as the number of distinct K-monomorphisms mapping S — N.
If char(K) = 0, this is trivially true since Theorem V.6.2 (and the note
following it) then implies that F = S. So let char(K) = p # 0 and suppose
o, T are K-monomorphisms mapping F — N such that 0 = 7 on S.

0
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Proposition V.6.12

Proposition V.6.12 (continued 2)

Proof (continued). In this case we have

[F: K] = [F:S][S: K] by Theorem V.1.2
(1)[F : K]s by the definition of [F : K]s

= [F:K]s.

Let E be a field intermediate to K and F (i.e., K C E C F). By Exercise
V.3.12, since F is separable over K, then F is separable over E and E is
separable over K. So [F : E] = [F : E]s and [E : K] = [E : K]s (see the
Remark after Definition V.6.10).

We now complete the proof by induction on n = [F : K] = [F : K]s. The
case n = 1 is trivial since this implies that F = k (by Exercise V.1.1(a))
and there is only n = 1 K-monomorphism mapping K = F into N
(namely, the identity mapping).

0 ]
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Proposition V.6.12

Proposition V.6.12 (continued 1)

Proof (continued). If u € F then, since F is an algebraic extension of K
(Theorem V.1.11) and F is purely inseparable over S (Theorem V.6.7, the
(i)=(ii) part and Theorem V.6.4, the (i)=(iii) part) implies that u?" € S
for some n > 0. Therefore

o(u)P =

= l:nsv sihcco=7onSandu” €S

n . . .
o(uP") since o is a homomorphism

n . . .
= 7(u)P since 7 is a homomorphism.

Then o(u)P" — 7(u)P" = 0 and by the Freshman’s Dream (Exercise
111.1.11), (o(u) — 7(u))P" = 0 and o(u) = 7(u) (we are in a field, so there
are no zero divisors). Thisis 0 =7 on S then o =7 on F and so 0 = 7,
proving our claim. Consequently, it suffices WLOG to assume that F is
separable over K (that is, F = S).
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Proposition V.6.12

Proposition V.6.12 (continued 3)

Proof (continued). Now for the induction hypothesis, suppose the result
holds for all k < n; that is, suppose that if F’ is any field where F’ is a
finite dimensional extension field of field K’, say k = [E’ : K'], and field N
is a normal extension field of K’ containing E’, then the number of
distinct K-monomorphisms mapping E’ — N’ is precisely [E’ : K']s.

If n> 1 then F # K, so there is u € F \ K where
[F: K(u)][K(u) : K] = [F : K] by Theorem V.1.2 where
[K(u): K]=r>1.

(1) If r < n, then by the induction hypothesis with E = K(u), there are
r=[E : K] = [E : K]s distinct K-monomorphisms mapping E — N. So
n=|[F:K]|=[F:E]E:K]=][F:E][E:K]s=|[F: E]sr. By Exercise
V.3.A, N is a normal extension of E and [F : E] = n/r < n, so by the
induction hypothesis (with N = N’, F/ = F, and K’ = E) the number of
distinct E-monomorphisms mapping F — N is [F : E]s.
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Proposition V.6.12

Proposition V.6.12 (continued 4)

Proof (continued). By Lemma V.6.11, the number of distinct
K-monomorphisms mapping F — N is [F : E]s[E : K]s = [F : K]s, and so
the result holds for r < n.

(2) If r =[K(u) : K] = n=[F : K] then by Theorem V.1.2,
[F:K]=[F:K(u)][K(u): K] and so [F : K(u)] =1 and by Exercise
V.1.1(a), F = K(u). So [F : K] = [K(u) : K] is the degree of the
(separable) irreducible polynomial f € K|[x]| of u by Theorem V.1.6(iii).
Every K-monomorphism o : F — N (or K(u) — N) is completely
determined by its value at u, say v = o(u). By Theorem V.2.2, v = o(u)
is also a root of f. There are at most [F : K] = deg(f) such roots and so
at most [F : K] such K-monomorphisms. Since u € N is a root of f and
since N is normal over K then (by the definition of normal, see Definition
V.3.13) f splits in N. Also, f is separable and so each of the roots of fis a
simple root and so there are [F : K| = deg(f) such roots and hence (by
Corollary V.1.9) F : K such K-monomorphisms mapping F — N. The
result now holds by induction. [

Corollary V.6.14

Corollary V.6.14 (continued 1)

Proof (continued). (i) For any i > 1, u; # u; is also a root of f in F, so
by Corollary V.1.9 there is a K-isomorphism o giving K(u1) = K(u;) and

with o(u1) = u;j. By Exercise V.3.2, F is a splitting field of f over both of
the intermediate fields K(u1) and K(u;). By Theorem V.3.8 (with K = L,
F =M, and S =5 = {f}), o extends to a K-automorphism of F. Since
f € K[x] we have by Theorem V.2.2 that each o(u;) is a root of f and so

(x — ) (x —w)? - (x—uy)" =f

=of =(x—a(u))(x = () --- (x = a(un))"

Since uy, up, ..., u, are distinct, o is one to one, the fact that K[x] is a
unique factorization domain by Theorem 111.6.14, and o(u;) = u;, then
(x — uj)i = (x —o(u1))". So we must have that r; = r;. Similarly by
changing o so that it maps u; to the other uj, we have that each r; = r.
That is, every root of f has multiplicity r = r; so that
f=(x—u)(x—uw) - (x—u," and [K(u1) : K] = deg(f) = nr.
0 ]
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Corollary V.6.14

Corollary V.6.14

Corollary V.6.14. Let f € K[x] be an irreducible monic polynomial over a
field K, F a splitting field of f over K and u; a root of f in F. Then

(i) every root of f has multiplicity [K(u1) : K]; so that in F[x]
) = (0x— ) (x = 1) -+ (x — )0 H,

where uy, uo, ..., u, are all the distinct roots of f and
n=[K(u): Kls;

(i) ulF()K]i s separable over K.

Proof. If char(K) = 0 then the purely inseparable extensions of K are
trivial, [K(u) : K]; = 1, and every algebraic element over K is separable
over K (see the comment after Theorem V.6.2). So f is separable in F[x]
and u; is separable over K; hence (i) and (ii) follow. Now let

char(K) = p # 0.

0
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Corollary V.6.14

Corollary V.6.14 (continued 2)

Proof (continued). Now Corollary V.1.9 and Theorem V.2.2 imply that
the only K-monomorphisms (Corollary V.1.9 is “if an only if”) mapping
K(u)l) — F are the n o's which map u; to u; (respectively). Since f is a
splitting field of {f} over K, by Theorem V.3.14 (the (ii)=(i) part), F is
normal over K. So by Proposition V.6.12 (with th eF of Proposition
V.6.12 as K(u1), and the N of Proposition V.6.12 as F, so that the

[F : K]s of Proposition V.6.12 is [F(u1) : K]s), [K(u1) : K]s is the number
of K-monomorphisms mapping K(u1) — F. Thatis, [K(uv1) : K]s = n.
Therefore, since [K(u1) : K] = [K(u1) : K]i[K(u1) : K]s (see the Remark
after Definition V.6.10),

[K(u1) : K]i = [K(u1) : K]/[K(u1) : K]s = nr/n=r, and (i) follows.
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Proposition V.6.15. The Primitive Element Theorem

Proposition V.6.15(i)

Proposition V.6.15. The Primitive Element Theorem.
Let F be a finite dimensional extension field of K.

(i) If F is separable over K, then F is a simple extension of K.

(ii) (Artin) More generally, F is a simple extension of K if and

only if there are only finitely many intermediate fields.

Proof. (i) Since F is a separable extension of K, then it is an algebraic
extension and so by Theorem V.3.16(iii), there is a Galois extension F; of
K that contains F. Since we hypothesize [F : K] is finite, then by Theorem
V.3.15(iv) [F : K] is finite. By the Fundamental Theorem of Galois Theory
(Theorem V.2.5(i)), Autk Fy is finite (since AutkF; = [F1 : K]) and, since
there is a one to one correspondence between the set of intermediate fields
of the extension and the set of all subgroups of AutkF; (by the
Fundamental Theorem) with |Autk Fj| = [F; : K] for each intermediate
field F; then there are only finitely many intermediate fields between K
and F;. Therefore, there can be only a finite number of intermediate fields
in the extension of K by F. This proves (i).
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Proposition V.6.15. The Primitive Element Theorem

Proposition V.6.15(ii) (continued 1)

Proof (continued). (ii) Now suppose K is infinite and that F is a finite
dimensional extension of K with only finitely many intermediate fields.
Since [F : K] is finite, we can choose u € F such that [K(u) : K] is
maximal. ASSUME K(u) # F. Then there exists v € F \ K(u). Consider
all (simple extension) intermediate fields of the form K(u + zv) with

a € K. Since K is an infinite field then there are infinitely many elements
of F of the form u+ av where u € F, v € F\ K(U), and a € K. However,
there are by hypothesis only finitely many intermediate fields between K
and F. So for some a, b € K with a # b we must have

K(usv) = K(u + bv) (or else we have infinitely many simple extensions of
K intermediate to K and F). So for this a and b, u — bv € K(u — av) and
(a—b)v=(u+av)—(u—bv) € K(u+ az). Since a,b € K and a # b,
then (a—b),(a—b)"t € Kandso v =(a—b)L(a—b)veK(u+av)
and v ¢ K(u) (by the choice of v), so K C K(u) € K(u+ av). Whence
[K(u+av): K] > [K(u) : K].
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Proposition V.6.15. The Primitive Element Theorem

Proposition V.6.15(ii)

Proposition V.6.15. The Primitive Element Theorem.
Let F be a finite dimensional extension field of K.

(i) (Artin) More generally, F is a simple extension of K if and
only if there are only finitely many intermediate fields.

Proof. (ii) If K is a finite field and F = K(u) is a simple finite
dimensional extension of K (say [F : K] = n). If F; is any intermediate
field then by Theorem V.1.2, [F : K] = [F : Fi][F; : K]. So there are only a
finite number of possibilities for [F; : K] (the number of divisors of

[F : K]). By Corollary V.5.8, any two extension fields of K of the same
dimension are K-isomorphic. So, up to isomorphism, there are only finitely
many possible intermediate fields. Conversely, if F is a finite dimensional
extension of K, say [F : K] = n, then by Corollary V.5.8 there is a simple
extension of K, K(u), and F = K(u).
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Proposition V.6.15. The Primitive Element Theorem

Proposition V.6.15(ii) (continued 2)

Proof (continued). (ii) But this CONTRADICTS the choice of u such
that [K(u) : K] is maximal (for all simple extensions of K). So the
assumption that K(u) # F is false and hence F = K(u) and F is a simple
extension of K.

Conversely, assume K is infinite and that F = K(u) is a simple extension.
Since [F : K] is finite, then by Theorem V.1.11 F is an algebraic extension
of K and so u is algebraic over K. Let E be an intermediate field an

dg € E[x] the irreducible monic polynomial of u over E. If

g=x"+ ap_1x" 14 .-+ a;x + ag then

[F:E]=[K(u): E] =[E(u) : E] = n by Theorem V.1.6 (parts (ii) and
(iii)). Now F = K(u) 2 E D K(ag, a1,...,an—1) 2 K (since g € E[x]
then ag, a1,...,an—1 € E) and since g is irreducible over E then it is
irreducible over K(ag, a1,...,an-1)-
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Proposition V.6.15. The Primitive Element Theorem

Proposition V.6.15(ii) (continued 3)

Proof (continued). (ii) Also, K(u) = K(ao, a1, - .., an—1)(u), so again by
Theorem V.1.6 (parts (ii) and (iii)) we have

[F: K(ap, a1,-..,an—1] = [K(u) : K(a0,a1,...,an—1] = n. By Theorem
V.1.2, [F : E][E : K(ao, a1, ...,an)] = n and so

[E : K(ao,a1,---,an-1)] =1and E = K(ao,a1,...,an—1). Thus every
intermediate field E is uniquely determined by the irreducible monic
polynomial g of u over E. If f is the monic irreducible polynomial of u
over K, then g | f by Theorem V.1.6(ii). Since f factors uniquely in any
splitting field (by Corollary 111.6.4, F[x] is a unique factorization domain
for any field F), then f can have only a finite number of distinct monic
divisors. Consequently, there are only a finite number of intermediate
fields. [



