Theorem V.6.4. If F is an algebraic extension field of a field K of characteristic $p \neq 0$, then the following statements are equivalent:

1. F is an algebraic extension field of a field K of characteristic $p \neq 0$.
2. F is separable over K.
3. F is purely inseparable over K.

Proof. Let F be an extension field of K. If F is both separable and purely inseparable over K, then F is the field $K(x) = K[x_1, \ldots, x_n]$, where x_1, \ldots, x_n are algebraically independent over K. If F is both separable and purely inseparable over K, then F is the field $K(x) = K[x_1, \ldots, x_n]$, where x_1, \ldots, x_n are algebraically independent over K.

Lemma V.6.3. Let F be a field, K a subfield of F, and $a \in F$. Then a is separable over K if and only if a occurs in characteristic $p \neq 0$.

Proof. If a is separable over K, then a occurs in characteristic $p \neq 0$. Conversely, if a occurs in characteristic $p \neq 0$, then a is separable over K.

\[a \in K \iff \text{char}(K) = p \neq 0 \]

Exercise V.6.1. Let K be a field of characteristic $p \neq 0$, and let $n \in \mathbb{N}$. Then a is separable over K if and only if a occurs in characteristic $p \neq 0$.

Proof. If a is separable over K, then a occurs in characteristic $p \neq 0$. Conversely, if a occurs in characteristic $p \neq 0$, then a is separable over K.

Theorem V.6.2. Let F be an algebraic extension field of K. Then F is separable over K if and only if F is purely inseparable over K.

Proof. If F is separable over K, then F is purely inseparable over K. Conversely, if F is purely inseparable over K, then F is separable over K.

Exercise V.6.3. Let F be an algebraic extension field of K. Then F is separable over K if and only if F is purely inseparable over K.

Proof. If F is separable over K, then F is purely inseparable over K. Conversely, if F is purely inseparable over K, then F is separable over K.

\[a \in K \iff \text{char}(K) = p \neq 0 \]
are elements of K itself, and (iv) holds.

Theorem V.6.4.: If K is an algebraic extension field of a field F of characteristic different from 0, then the following statements are equivalent:

1. F is a separable extension field of K.
2. For every irreducible polynomial $f \in F[x]$ with $f(0) \neq 0$, there exists an integer $n \neq 0$ such that $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$.
3. For every irreducible polynomial $f \in F[x]$ with $f(0) \neq 0$, there exists an integer $n \neq 0$ such that $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ and $\nu(f) > 0$.

Proof: (i) \Rightarrow (ii) Let $f \in F[x]$, where $f(0) \neq 0$. Then $f(x)$ is separable and irreducible over K. Thus, $f(0) \neq 0$ and $\nu(f) > 0$.

(ii) \Rightarrow (iii) Let $f \in F[x]$, where $f(0) \neq 0$. Then $f(x)$ is separable and irreducible over K. Thus, $f(0) \neq 0$ and $\nu(f) > 0$.

(iii) \Rightarrow (i) Let $f \in F[x]$, where $f(0) \neq 0$. Then $f(x)$ is separable and irreducible over K. Thus, $f(0) \neq 0$ and $\nu(f) > 0$.

Theorem V.6.5.: If K is an algebraic extension field of a field F of characteristic different from 0, then the following statements are equivalent:

1. F is a separable extension field of K.
2. For every irreducible polynomial $f \in F[x]$ with $f(0) \neq 0$, there exists an integer $n \neq 0$ such that $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ and $\nu(f) > 0$.
3. For every irreducible polynomial $f \in F[x]$ with $f(0) \neq 0$, there exists an integer $n \neq 0$ such that $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ and $\nu(f) > 0$.

Proof: (i) \Rightarrow (ii) Let $f \in F[x]$, where $f(0) \neq 0$. Then $f(x)$ is separable and irreducible over K. Thus, $f(0) \neq 0$ and $\nu(f) > 0$.

(ii) \Rightarrow (iii) Let $f \in F[x]$, where $f(0) \neq 0$. Then $f(x)$ is separable and irreducible over K. Thus, $f(0) \neq 0$ and $\nu(f) > 0$.

(iii) \Rightarrow (i) Let $f \in F[x]$, where $f(0) \neq 0$. Then $f(x)$ is separable and irreducible over K. Thus, $f(0) \neq 0$ and $\nu(f) > 0$.
Corollary V.6.5: If \(K \) is a finite-dimensional purely inseparable extension of \(\mathbb{F} \), then \([K: \mathbb{F}] \neq 0 \) if and only if \(\text{char}(K) = p \). In this case, \(K \) is generated by \(n \) elements over \(\mathbb{F} \), where \(n \equiv 0 \) (mod \(p \)).

Theorem V.6.7 (continued): Suppose the only elements of \(F \) which are separable over \(\mathbb{F} \) are the characteristic \(p \) elements of \(F \), then the following statements are equivalent:

1. \(F \) is an algebraic extension field of a field \(K \) of characteristic \(p \).
2. \(F \) is an algebraic extension field of a field \(A \) of characteristic \(p \).
3. For some \(n \geq 0 \), \(F = \langle \alpha_1, \ldots, \alpha_n \rangle \) for \(\alpha_1, \ldots, \alpha_n \in A \) and \(\alpha_i \neq 0 \) for some \(i \).
4. \(F = \langle \alpha_1, \ldots, \alpha_n \rangle \) for \(\alpha_1, \ldots, \alpha_n \in A \) and \(\alpha_i \neq 0 \) for some \(i \).
5. \(F = \langle \alpha_1, \ldots, \alpha_n \rangle \) for \(\alpha_1, \ldots, \alpha_n \in A \) and \(\alpha_i \neq 0 \) for some \(i \).
6. \(F = \langle \alpha_1, \ldots, \alpha_n \rangle \) for \(\alpha_1, \ldots, \alpha_n \in A \) and \(\alpha_i \neq 0 \) for some \(i \).
7. \(F = \langle \alpha_1, \ldots, \alpha_n \rangle \) for \(\alpha_1, \ldots, \alpha_n \in A \) and \(\alpha_i \neq 0 \) for some \(i \).
8. \(F = \langle \alpha_1, \ldots, \alpha_n \rangle \) for \(\alpha_1, \ldots, \alpha_n \in A \) and \(\alpha_i \neq 0 \) for some \(i \).
9. \(F = \langle \alpha_1, \ldots, \alpha_n \rangle \) for \(\alpha_1, \ldots, \alpha_n \in A \) and \(\alpha_i \neq 0 \) for some \(i \).
10. \(F = \langle \alpha_1, \ldots, \alpha_n \rangle \) for \(\alpha_1, \ldots, \alpha_n \in A \) and \(\alpha_i \neq 0 \) for some \(i \).

Proof: (v) Suppose the only elements of \(F \) which are separable over \(\mathbb{F} \) are the characteristic \(p \) elements of \(F \), then the following statements are equivalent:
So by Theorem \(\{6.3\} \), \(F \cup S = \mathbb{K} \). The elements of \(F \cup S \) are both separable and purely inseparable over \(\mathbb{K} \).

(iii) The set of elements of \(F \cup S \) that are separable and purely inseparable over \(\mathbb{K} \) is separable over \(\mathbb{K} \).

Proof (continued). (iii) By Theorem \(\{6.2\} \), every element \(x \in F \cup S \) is separable or purely inseparable over \(\mathbb{K} \).

\[\mathbb{K} = F \cup S \]

If \(x \in F \), then \(x \) is purely inseparable over \(\mathbb{K} \).

If \(x \in S \), then \(x \) is separable over \(\mathbb{K} \).

Theorem \(\{6.7\} \). Let \(F \) be an algebraic extension field of \(K \), let \(S \subseteq F \) be the set of all elements of \(F \) which are separable over \(K \), and let \(P \) be the set of all elements of \(F \) which are purely inseparable over \(K \). Then \(F = K(S) \).

Theorem \(\{6.7\} \). Let \(F \) be an algebraic extension field of \(K \), let \(S \subseteq F \) be the set of all elements of \(F \) which are separable over \(K \), and let \(P \) be the set of all elements of \(F \) which are purely inseparable over \(K \). Then \(F = K(S) \).

Proof (continued). (iii) By Theorem \(\{6.3\} \), the set of elements of \(F \cup S \) that are separable and purely inseparable over \(\mathbb{K} \) is separable over \(\mathbb{K} \).

So every element of \(F \cup S \) is separable over \(\mathbb{K} \) if \(F \) is a finite subset of \(F \) such that \(F \subseteq K(X) \), and every element of \(X \) is separable over \(\mathbb{K} \).
Corollary V.6.9 (continued 1)

Corollary V.6.9 (continued 2)

Corollary V.6.8
where \(E \) and \(F \) are.

\(f \) and \(g \) are similar. With \(\mathcal{F} \) as the index set for the \(\mathcal{F} \)-tuple.

The proof for \(\mathcal{F} \) not finite is similar. With \(\mathcal{F} \) as the index set for the \(\mathcal{F} \)-tuple.

\(f \) and \(g \) is in the collection \(\mathcal{M} \) above.

\(\mathcal{M} \) is the complete collection of such maps. So \(\mathcal{M} \) is a \(\kappa \)-monomorphism.

Thus \(\mathcal{M} \) is a \(\kappa \)-monomorphism. Then \(\mathcal{M} \) is also a splitting diagram over \(K \).

By Exercise 8.1, \(N \) is a splitting field over \(K \).

Then \(\mathcal{M} \) is a \(\kappa \)-monomorphism. So \(\mathcal{M} \) is a \(\kappa \)-monomorphism. Since \(\mathcal{M} \) is a splitting diagram over \(K \), \(N \) is an algebraic extension field of \(K \). Then \(\mathcal{M} \) is a \(\kappa \)-monomorphism. Since \(\mathcal{M} \) is a splitting diagram over \(K \), \(N \) is an algebraic extension field of \(K \).

Lemma 7.6.11. Let \(F \) be an algebraic extension field of \(E \). Then \(F \) is an algebraic extension field of \(E \).

\(\kappa \)-monomorphisms of \(F \). We also denote the extension \(K \).

\(\kappa \)-monomorphisms, \(\mathcal{M} \) and \(\mathcal{M} \). For \(\mathcal{F} \) of \(\mathcal{M} \)-3.8 as \(\mathcal{M} \), each \(\mathcal{M} \) extends to a field over \(E \) of the same set of \(\mathcal{M} \)-3.2. Since \(\mathcal{M} \) is a splitting diagram over \(K \), \(N \) is a splitting field over \(K \).

Then \(\mathcal{M} \) is a \(\kappa \)-monomorphism. So \(\mathcal{M} \) is a \(\kappa \)-monomorphism. Since \(\mathcal{M} \) is a splitting diagram over \(K \), \(N \) is an algebraic extension field of \(K \).

Lemma 7.6.11. Let \(F \) be an algebraic extension field of \(E \). Then \(F \) is an algebraic extension field of \(E \).

\(\kappa \)-monomorphisms of \(F \). We also denote the extension \(K \).

\(\kappa \)-monomorphisms, \(\mathcal{M} \) and \(\mathcal{M} \). For \(\mathcal{F} \) of \(\mathcal{M} \)-3.8 as \(\mathcal{M} \), each \(\mathcal{M} \) extends to a field over \(E \) of the same set of \(\mathcal{M} \)-3.2. Since \(\mathcal{M} \) is a splitting diagram over \(K \), \(N \) is a splitting field over \(K \).

Then \(\mathcal{M} \) is a \(\kappa \)-monomorphism. So \(\mathcal{M} \) is a \(\kappa \)-monomorphism. Since \(\mathcal{M} \) is a splitting diagram over \(K \), \(N \) is an algebraic extension field of \(K \).

Lemma 7.6.11. Let \(F \) be an algebraic extension field of \(E \). Then \(F \) is an algebraic extension field of \(E \).

\(\kappa \)-monomorphisms of \(F \). We also denote the extension \(K \).

\(\kappa \)-monomorphisms, \(\mathcal{M} \) and \(\mathcal{M} \). For \(\mathcal{F} \) of \(\mathcal{M} \)-3.8 as \(\mathcal{M} \), each \(\mathcal{M} \) extends to a field over \(E \) of the same set of \(\mathcal{M} \)-3.2. Since \(\mathcal{M} \) is a splitting diagram over \(K \), \(N \) is a splitting field over \(K \).

Then \(\mathcal{M} \) is a \(\kappa \)-monomorphism. So \(\mathcal{M} \) is a \(\kappa \)-monomorphism. Since \(\mathcal{M} \) is a splitting diagram over \(K \), \(N \) is an algebraic extension field of \(K \).

Lemma 7.6.11. Let \(F \) be an algebraic extension field of \(E \). Then \(F \) is an algebraic extension field of \(E \).
Proposition V.6.12 (continued)

Definition V.1.2

Remark after Definition V.6.10.

Proposition V.6.12 (continued)
Proposition V.6.14 (continued)

\[(j) \seteq [\lambda : (\mathbb{K}) \lambda] \text{ and } n_x = \lambda = \lambda \text{ is the number of distinct roots of } \lambda \text{ in } \mathbb{K} \seteq \{ \lambda : (\mathbb{K}) \lambda \}. \]

After Definition V.6.10, the remark, since every root of a polynomial of degree \(j \) is of multiplicity \(j \) in \(\mathbb{K} \), we must have that \(n_x = \lambda \). Similarly, by Theorem III.6.14 and the number of distinct roots of \(\lambda \) is \(n_x = \lambda \).

Since \(u \) is a splitting field of \(\lambda \) over \(\mathbb{K} \), the proof of Proposition V.6.12 is already done.

Proof (continued).

Corollary V.6.14 (continued)

The result now holds by induction. Corollary V.6.14 follows:\n
\[f = (\mathbb{K}) \lambda \text{ such that } \lambda \text{ is not an irreducible polynomial in } \mathbb{K}. \]

Theorem V.6.2 shows that if \(f \) is a polynomial with no multiple roots, then \(f \) is separable over \(\mathbb{K} \). Hence, for each \(\lambda \) in \(\mathbb{K} \), \(\lambda \) is separable over \(\mathbb{K} \).

Let \(\lambda \) be an irreducible monic polynomial over \(\mathbb{K} \). Then \(\lambda \) has a splitting field over \(\mathbb{K} \) and \(\lambda \) is separable over \(\mathbb{K} \).

\[\| \]
Proof (continued). (ii) Now suppose \mathbf{k} is infinite and that F is a finite dimensional extension of $\mathbf{k}.$ Consider the maximal (simple) intermediate field $K,$ i.e., $\mathbf{k} \subset F \subset K,$ and let $\mathbf{v} \in \mathbf{k}.^*$ Since F is an infinite field, there are infinitely many elements $\mathbf{v} \in \mathbf{V}$ with $\mathbf{V} = \text{image}(\mathbf{v}).$ Therefore, there can be only a finite number of intermediate fields $K.$ But if F is any extension field of $\mathbf{k}.$ Let F be a finite dimensional extension field of $\mathbf{k}.$

Proposition V.6.15 (continued II)
Fields.

Conversely, there are only a finite number of intermediate divisors. Consequently, there can have only a finite number of distinct monic splitting fields (by Corollary 11.6.4) \(F[x] \) is a unique factorization domain for any field \(\mathbb{F} \). Thus every \(\mathbb{F} \) is the monic irreducible polynomial of a monic irreducible polynomial of \(\mathbb{F} \).

Intermediates field \(\mathbb{F} \) is uniquely determined by the irreducible monic polynomial. Thus every monic \(\mathbb{F} \) is the monic irreducible polynomial of a monic irreducible polynomial of \(\mathbb{F} \).

Proposition 11.6.4 (continued)