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Theorem V.6.2

Theorem V.6.2

Theorem V.6.2. Let F be an extension field of K . then u ∈ F is both
separable and purely inseparable over K if and only if u ∈ K .

Proof. The element u ∈ F is purely inseparable over K if (and only if) its
irreducible polynomial is of the form (x − u)m. u is separable if (an only
if) (x − u)m has m distinct roots in some splitting field. But this occurs if
and only if m = 1, which occurs if and only if x − u ∈ K [x ], which in turn
occurs if and only if u ∈ K [x ].
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Lemma V.6.3

Lemma V.6.3

Lemma V.6.3. Let F be an extension field of K with char(K ) = p 6= 0. If
u ∈ F is algebraic over K , then upn

is separable over K for some n ≥ 0.

Proof. If deg(u) = 1 over K , then u is separable and the result holds with
n = 0. If u is separable over K , then the result holds with n = 0. So let u
be nonseparable with irreducible polynomial f of degree greater than one.
We proceed by induction on the degree of u over K and assume the result
holds for elements of K of degree less than the degree of u.

Since u is
nonseparable, then u is a root of f of multiplicity greater than 1 and so by
Theorem III.6.10(iii), f ′(u) = 0. By Exercise III.6.3, f is a polynomial in
xp and f (x) = a0 + a1x

p + a2x
2p + · · ·+ ajx

jp, say, and the degree of u
over K is jp. But then up is of degree ≤ j and so by the induction
hypothesis, the result holds for up and so (up)p

m
= upm+1

is separable over
K for some m ≥ 0.
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Theorem V.6.4

Theorem V.6.4

Theorem V.6.4. If F is an algebraic extension field of a field K of
characteristic p 6= 0 then the following statements are equivalent:

(i) F is purely inseparable over K ;

(ii) the irreducible polynomial of any u ∈ F is of the form
xpn − a ∈ K [x ];

(iii) if u ∈ F , then upn ∈ K for some n ≥ 0;

(iv) the only elements of F which are separable over K are the
elements of K itself;

(v) F is generated over K by a set of purely inseparable
elements.

Proof. (i)⇒(ii) Let (x − u)m ∈ K [x ] be the irreducible polynomial of
u ∈ F and let m = npr with gcd(n, p) = (n, p) = 1. Then
(x − u)m = (x − u)p

rn = (xpr − upr
)n by Exercise III.1.11. Since

(x − u)m ∈ K [x ] then the coefficient xpr (n−1), namely ±nupr
by the

Binomial Theorem (Theorem III.1.6) must lie in K .
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Theorem V.6.4

Theorem V.6.4 (continued 1)

Theorem V.6.4. If F is an algebraic extension field of a field K of
characteristic p 6= 0 then the following statements are equivalent:

(i) F is purely inseparable over K ;

(ii) the irreducible polynomial of any u ∈ F is of the form
xpn − a ∈ K [x ].

Proof (continued). (i)⇒(ii) [Exercise V.6.1 states: Let char(K ) = p 6= 0
and let n ≥ 1 be an integer such that gcd(p, n) = (p, n) = 1. If v ∈ F and
nv ∈ K , then v ∈ K .] Since gcd(n, p) = (n, p) = 1 and nupr ∈ K and
upr ∈ F (because u ∈ F ) then by Exercise V.6.1 (with v = upr

) we have
upr ∈ K . Since (x − u)m = (xpr − upr

)n is irreducible in K [x ], we must
have n = 1 (or else it factors into a product of (xpr − upr

) terms since
upr ∈ K ).

So (x − u)m = xpr − a where a = upr ∈ K . That is, the
irreducible polynomial for u ∈ F is of the form xpn − a ∈ K [x ]. Hence,
(i)⇒(ii).
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Theorem V.6.4

Theorem V.6.4 (continued 2)

Theorem V.6.4. If F is an algebraic extension field of a field K of
characteristic p 6= 0 then the following statements are equivalent:

(ii) the irreducible polynomial of any u ∈ F is of the form
xpn − a ∈ K [x ];

(iii) if u ∈ F , then upn ∈ K for some n ≥ 0.

Proof (continued). (ii)⇒(iii) Since (ii) gives that xpn − a ∈ K [x ] is the
irreducible polynomial of u and so f (u) = upn − a = 0 then a = upn ∈ K .
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Theorem V.6.4

Theorem V.6.4 (continued 3)

Theorem V.6.4. If F is an algebraic extension field of a field K of
characteristic p 6= 0 then the following statements are equivalent:

(i) F is purely inseparable over K ;

(iii) if u ∈ F , then upn ∈ K for some n ≥ 0;

(v) F is generated over K by a set of purely inseparable
elements.

Proof. (i)⇒(v) By definition, each element of F is purely inseparable
over K and hence F is generated over K by the set F itself, say.

(iii)⇒(i) This follows from The Freshman’s Dream (Exercise III.1.11) as
follows: u ∈ F implies upn ∈ K and so spn − upn

= (x − u)p
n

is the
irreducible polynomial for u ∈ F and so u is purely inseparable over K .
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Theorem V.6.4

Theorem V.6.4 (continued 4)

Theorem V.6.4. If F is an algebraic extension field of a field K of
characteristic p 6= 0 then the following statements are equivalent:

(i) F is purely inseparable over K ;

(iv) the only elements of F which are separable over K are the
elements of K itself.

Proof. (i)⇒(iv) Let F be purely inseparable over K and let u ∈ F be
separable over K . Then u is both separable and purely inseparable over K
and so by Theorem V.6.2, u ∈ K . Conversely, if u ∈ F and u 6∈ K then by
Theorem V.6.2, u is not both separable and purely separable (it is not
separable, in fact, since F is hypothesized to be purely inseparable over
K ).

So under the hypothesis (i), the only elements of F separable over K
are elements of K itself, and (iv) holds.
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Theorem V.6.4

Theorem V.6.4 (continued 5)

Theorem V.6.4. If F is an algebraic extension field of a field K of
characteristic p 6= 0 then the following statements are equivalent:

(iii) if u ∈ F , then upn ∈ K for some n ≥ 0;

(iv) the only elements of F which are separable over K are the
elements of K itself.

Proof. (iv)⇒(iii) Suppose the only elements of F which are separable
over K are the elements of K itself. Then for u ∈ F , by Lemma V.6.3, upn

is separable over K and hence by hypothesis upn ∈ K and (iii) follows.
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Theorem V.6.4

Theorem V.6.4 (continued 6)

Theorem V.6.4. If F is an algebraic extension field of a field K of
characteristic p 6= 0 then the following statements are equivalent:

(iii) if u ∈ F , then upn ∈ K for some n ≥ 0;

(v) F is generated over K by a set of purely inseparable
elements.

Proof. (v)⇒(iii) Suppose F is generated over K by a set of purely
inseparable elements. Now if u is purely inseparable over K , then the proof
of (i)⇒(ii) above (which was given “element wise” for u ∈ F purely
inseparable over K ) we have that upn ∈ K for some n ≥ 0. If u ∈ F is an
arbitrary element of F (maybe not purely inseparable over K , but
generated by purely inseparable over K , but generated by purely
inseparables) then by Theorem V.1.3(vi) we have that
u = f (u1, u2, . . . , un)/g(u1, u2, . . . , un) where n ∈ N,
f , g ∈ K [x1, x2, . . . , xn], u1, u2, . . . , un are purely inseparable over K , and
g(u1, u2, . . . , un) 6= 0.
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Theorem V.6.4

Theorem V.6.4 (continued 7)

Proof (continued). (v)⇒(iii) Now for any such f ∈ K [x1, x2, . . . , xn] we
have by “The Freshman’s Dream” (Exercise III.1.11) that

(f (u1, u2, . . . , un))
pn

=
(∑

ak1,k2,...,knu
k1
1 uk2

2 · · · ukn
n

)pn

by Theorem III.5.4

=
∑(

ak1,k2,...,knu
k1
1 uk2

2 · · · ukn
n

)pn

by the Freshman’s Dream

=
∑

(ak1,k2,...,kn)
pn

(upn

1 )k1(upn

2 )k2 · · · (upn

n )kn

∈ K

since ak1,k2,...,kn ∈ K and upn

1 , upn

2 , . . . , upn

n ∈ K since each ui is purely

inseparable over K and this implies (as above) that upn

i ∈ K . Therefore,
upn

= (f (u1, u2, . . . , un)/g(u1, u2, . . . , un))
pn ∈ K and (iii) follows.
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Corollary V.6.5

Corollary V.6.5

Corollary V.6.5. If F is a finite dimensional purely inseparable extension
field of K and char(K ) = p 6= 0, then [F : K ] = pn for some n ≥ 0.

Proof. By Theorem V.1.11, F is finitely generated and algebraic over K ,
so F = K (u1, u2, . . . , um). By hypothesis, each ui ∈ F is purely inseparable
over K and hence, by Exercise V.6.2, is inseparable over any intermediate
field and so ui is purely inseparable over K (u1, u2, . . . , ui−1).

By Theorem
V.6.4 (the (i)⇒(ii) part) we know that the irreducible polynomial for ui

over K (u1, u2, . . . , ui−1) is of the form xpn − a for some n ≥ 0 and some
a ∈ K (u1, u2, . . . , ui−1). By Theorem V.1.6 (parts (i) and (ii)) we have
that [K (u1, u2, . . . , ui ) : K (u1, u2, . . . , ui−1)] = pni for some ni ≥ 0. So for
the “towers” K ⊂ K (u1) ⊂ K (u1, u2) ⊂ · · · ⊂ K (u1, u2, . . . , um) = F , we
have that in each step the dimension is a power of p. Therefore, by
Theorem V.1.2, [F : K ] = pn for some n ≥ 0.
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Lemma V.6.6

Lemma V.6.6

Lemma V.6.6. If F is an extension field of K , X is a subset of F such
that F = K (X ), and every element of X is separable over K , then F is a
separable extension of K .

Proof. If v ∈ F , then by Theorem V.1.3, there is a finite subset
X ′ = {u1, u2, . . . , un} ⊆ X such that v ∈ K (X ′) = K (u1, u2, . . . , un} ⊆ X
such that v ∈ K (X ′) = K (u1, u2, . . . , un).

Let fi ∈ K [x ] be the irreducible
separable polynomial of ui and let E be a splitting field of {f1, f2, . . . , fn}
over K (u1, u2, . . . , un). By Exercise V.3.3, E is also a splitting field of
{f1, f2, . . . , fn} over K . By Theorem V.3.11 (the (iii) implies the first part
of (ii) part), E is separable over K (in fact, Galois over K by Theorem
V.3.11, the (iii)⇒(i) part). So element v ∈ F satisfies
v ∈ K (u1, u2, . . . , un) ⊂ E and since E is separable over K then every
element of E is separable over K (see Definition V.3.10) and so v is
separable over K . Since v ∈ F is arbitrary, then F is separable over K .
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Theorem V.6.7(i), (ii), (iv)

Theorem V.6.7

Theorem V.6.7. Let F be an algebraic extension field of K , let S be the
set of all elements of F which are separable over K , and let P be the set
of all elements of F which are purely inseparable over K .

(i) S is a separable extension field of K .

(ii) F is purely inseparable over S .

(iii) P is a purely inseparable extension field of K .

(iv) P ∩ S = K .

(v) F is separable over P if and only if F = SP.

(iv) If F is normal over K , then S is Galois over K , F is Galois
over P, and AutK (S) ∼= AutP(F ) = AutK (F ).
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Theorem V.6.7(i), (ii), (iv)

Theorem V.6.7(i)

Theorem V.6.7. Let F be an algebraic extension field of K , let S be the
set of all elements of F which are separable over K , and let P be the set
of all elements of F which are purely inseparable over K .

(i) S is a separable extension field of K .

(ii) F is purely inseparable over S .

(iv) P ∩ S = K .

Proof. (i) If u, v ∈ S and v 6= 0, then K (u, v) is separable over K by
Lemma V.6.6 with X = {u, v}. Since K (u, v) is a field, then u − v and
uv−1 ∈ K (u, v). Since K (u, v) is separable over K then u − v , uv−1 ∈ S
and S is a subfield of F . Of course S is separable over K .

(ii) If char(K ) = 0 then every algebraic element over K is separable over
K (see the comment at the top of page 283 or the Note before Lemma
V.6.3) so every element of F is separable over K and S + F .
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Theorem V.6.7(i), (ii), (iv)

Theorem V.6.7(ii)

Theorem V.6.7. Let F be an algebraic extension field of K , let S be the
set of all elements of F which are separable over K , and let P be the set
of all elements of F which are purely inseparable over K .

(ii) F is purely inseparable over S .

(iv) P ∩ S = K .

Proof (continued). (ii) By Theorem V.6.2, every element u ∈ F is both
separable and purely inseparable over S since u ∈ S = F . Then F is purely
inseparable over S . If char(K ) = p 6= 0, then by Lemma V.6.3, every
element u ∈ F satisfies upn

is separable over K for some n ≥ 0.

Therefore
upn ∈ S ′. So by Theorem V.6.4 (the (iii)⇒(i) part with K replaced with
S), F is purely inseparable over S .

(iv) The elements of P ∩ S are both separable and purely inseparable over
K . So by Theorem V.6.2, P ∩ S = K .
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Corollary V.6.8

Corollary V.6.8

Corollary V.6.8. If F is a separable extension of E and E is a separable
extension field of K , then F is separable over K .

Proof. If S is the set of all elements of F which are separable over K ,
then by the Note above, separable extension E satisfies E ⊂ S . By
Theorem V.6.7(ii), F is purely inseparable over S .

But F is separable over
E (by hypothesis) and so by Exercise V.3.12, F is separable over the
intermediate field S . But the only elements of F which are purely
inseparable and separable over F are elements of F (by Theorem V.6.2).
So S = F and F is separable over K (by the definition of S).
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Corollary V.6.9

Corollary V.6.9

Corollary V.6.9. Let F be an algebraic extension field of K , with
char(K ) = p 6= 0. If F is separable over K , then F = KF pn

for each n ≥ 1.
If [F : K ] is finite and F = KF p (KF p is the smallest subfield of F
containing K ∪ F p), then F is separable over K . In particular, u ∈ F is
separable over K if and only if K (up) = K (u).

Proof. Let S be the set of all elements of F which are separable over K .
Notice that S is a subfield of F by Theorem V.6.7(i). Suppose [F : K ] is
finite.

Then by Theorem V.1.11, F is finitely generated and algebraic over
K . So F = K (u1, u2, . . . , um) for some u1, u2, . . . , um ∈ F . Now every
element of K is separable over K (for k ∈ K , the irreducible polynomial is
x − k), so K ⊆ S ⊆ F . Hence F = K (u1, u2, . . . , um) = S(u1, u2, . . . , um).
By Theorem V.6.7(iii), each ui is purely inseparable over S . By Theorem
V.6.4 (the (i)⇒(iii) part), there is n ≥ 1 such that upn

i ∈ S for every i (the
finiteness of collection u1, u2, . . . , um is used here). Take this n as fixed
now.
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Corollary V.6.9

Corollary V.6.9 (continued 1)

Proof (continued). Let u ∈ F and upn ∈ F pn
. Since u ∈ F then by

Theorem V.1.3(v), there are h, k ∈ S [x1, x2, . . . , xm] such that
u = h(u1, u2, . . . , um)/k(u1, u2, . . . , um). Now
upn

= (h(u1, u2, . . . , um)/k(u1, u2, . . . , um))p
n
. By the Freshman’s Dream

(Exercise III.1.11) applied inductively to a multinomial gives that upn
is in

fact a quotient of polynomials with coefficients in S evaluated at
upn

1 , upn

2 , . . . , upn

m . Since S is a field and each upn

i ∈ S from above, then
upn ∈ S and so F pn ⊂ S .

Since F is purely inseparable over F pn
by

Theorem V.6.4 (the (iii)⇒(i) part), then S ⊂ F is purely inseparable over
F pn

. By Exercise V.6.2, since KF pn
is a field intermediate to F pn

and S
(notice that both K ⊆ S and F pn ⊆ S , so KF pn ⊆ S), we then have that
S is purely inseparable over KF pn

. S is separable over K by Theorem
V.6.7 and hence (by Exercise V.3.12(b)) S is separable over the
intermediate field KF pn

. So S is both separable and purely inseparable
over KF pn

, and so by Theorem V.6.2, S = KF pn
.
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Corollary V.6.9

Corollary V.6.9 (continued 2)

Proof (continued). As observed above, if h ∈ K [x1, x2, . . . , xm] then by
the Freshman’s Cream (Exercise III.1.11) applied inductively

h(x1, x2, . . . , xm)p
t

equals the polynomial in xpt

1 , xpt

2 , . . . , xpt

m with each
coefficient corresponding to a coefficient of h to power pt :(∑

i

aix
ki,1

1 x
ki,2

2 · · · xki,m
m

)pt

=
∑

i

(
aix

ki,1

1 x
ki,2

2 · · · xki,m
m

)pt

=
∑

i

apt

i (x
ki,1

1 )p
t
(x

ki,2

2 )p
t · · · (xki,m

m )p
t
=
∑

i

apt

i (xpt

1 )ki,1(xpt

2 )ki,2 · · · (xm)p
t
)ki,m .

So by Theorem V.1.3(v), for any t ≥ 1,

F pt
= [K (u1, u2, . . . , um)]p

t
= Kpt

(upt

1 , upt

2 , . . . , upt

m ).

Consequently for any t ≥ 1 we have

KF pt
= KK pt

(upt

1 , upt

2 , . . . , upt

m ) = K (upt

1 , upt

2 , . . . , upt

m )

(notice that KK pt
= K since 1 ∈ Kpt

).
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Corollary V.6.9

Corollary V.6.9 (continued 3)

Proof (continued). Notice that this argument holds for ANY generators
(not just the u1, u2, . . . , um we started with above). Now to establish the
claims of the corollary.

Suppose F = KF p. Then
K (u1, u2, . . . , um) = F = KF p = K (up

1 , up
2 , . . . , up

m) (the last equality
holding from above with t = 1). Iterating this argument gives

F = K (u1, u2, . . . , um) = K (up
1 , up

2 , . . . , up
m)

= K (up2

1 , up2

2 , . . . , up2

m )

...

= K (upn

1 , upn

2 , . . . , upn

m )

= KF pn
by above (with t = n)

= S as shown above.
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Corollary V.6.9

Corollary V.6.9 (continued 4)

Corollary V.6.9. Let F be an algebraic extension field of K , with
char(K ) = p 6= 0. If F is separable over K , then F = KF pn

for each n ≥ 1.
If [F : K ] is finite and F = KF p (KF p is the smallest subfield of F
containing K ∪ F p), then F is separable over K . In particular, u ∈ F is
separable over K if and only if K (up) = K (u).

Proof (continued). Since S is separable over K (Theorem V.6.7(i)), then
F is separable over K and the second claim of the corollary holds.

Conversely, if F is separable over K , then F is both separable and purely
inseparable over KF pn

(for all n ≥ 1). Therefore, by Theorem V.6.2,
F = KF pn

and the first claim of the corollary holds.
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Lemma V.6.11

Lemma V.6.11

Lemma V.6.11. Let F be an extension field of E , E an extension field of
K , and N a normal extension field of K containing F . If r is the cardinal
number of distinct E -monomorphisms mapping F :→ N and t is the
cardinal number of distinct K -monomorphisms mapping E :→ N, then rt
is the cardinal number of distinct K -monomorphisms mapping F → N.

Proof. First, suppose r , t are both finite. Let τ1, τ2, . . . , τr be all the
distinct E -monomorphisms mapping F → N and σ1, σ2, . . . , σt all the
distinct K -monomorphisms mapping E → N.

Since N is normal over K
then by Theorem V.3.14 (the (i)⇒(ii) part), N is a splitting field over K
of some set of polynomials in K [x ]. By Exercise V.3.2, N is also a splitting
field over E of the same set of polynomials. Since σi fixes K it fixes the
set of polynomials. By Theorem V.3.8 (with L = σi (K ), S = S ′ the set of
polynomials, M = N, and F of Theorem V.3.8 as N), each σi extends to a
K -automorphism of N. We also denote the extension as σi .
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Lemma V.6.11

Lemma V.6.11 (continued)

Proof. Each composite map σiτj then maps F → N, is one to one, and
fixes K (that is, each σiτj is a K -monomorphism mapping F → N). If
σiτj = σaτb then σ−1

a σiτj = τb. Since τj and τb fix E then σ−1
a σi |E = 1E .

So σa = σi and a = i (σa, σi are originally defined on E and then
extended; since σa = σi on E the extensions are also equal).

Since σi is
one to one, then σiτj = σiτb implies that τj = τb and j = b. Therefore,
the rt K -monomorphisms σiτj mapping F → N where 1 ≤ i ≤ t and
1 ≤ j ≤ r are all distinct. To show this is all such mappings, let σ : F → N
be any K -monomorphism. Then σ|E = σi for some i (since σ1, σ2, . . . , σt

is the complete collection of such maps). So σ−1
i σ is a K -monomorphism

mapping F → N which ithe identity on E . Therefore σ−1
i σ = τj for some

j , whence σ = σiτj and so σ is in the collection of rt mappings above.

The proof for r or t not finite is similar. With I as the index set for the
σi ’s and J as the index set for the τj ’s, we again take the collection σiτj

where i ∈ I and j ∈ J.
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Proposition V.6.12

Proposition V.6.12

Proposition V.6.12. Let F be a finite dimensional extension field of K
and N a normal extension field of K containing F . The number of distinct
K -monomorphisms mapping F → N is precisely [F : K ]s , the separable
degree of F over K .

Proof. Let S be the maximal subfield of F separable over K (see Theorem
V.6.7(i) and the Remark following Theorem V.6.7). As argued in the proof
of Lemma V.6.11, Theorem V.3.14, Exercise V.3.2, and Theorem V.3.8
imply that every K -monomorphism mapping S → N extends to a
K -monomorphism of N. By restricting such a mapping to F we have a
K -monomorphism mapping F → N.

We claim that the number of distinct K -monomorphisms mapping F → N
is the same as the number of distinct K -monomorphisms mapping S → N.
If char(K ) = 0, this is trivially true since Theorem V.6.2 (and the note
following it) then implies that F = S . So let char(K ) = p 6= 0 and suppose
σ, τ are K -monomorphisms mapping F → N such that σ = τ on S .
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Proposition V.6.12

Proposition V.6.12 (continued 1)

Proof (continued). If u ∈ F then, since F is an algebraic extension of K
(Theorem V.1.11) and F is purely inseparable over S (Theorem V.6.7, the
(i)⇒(ii) part and Theorem V.6.4, the (i)⇒(iii) part) implies that upn ∈ S
for some n ≥ 0. Therefore

σ(u)p
n

= σ(upn
) since σ is a homomorphism

= τ(upn
) since σ = τ on S and upn ∈ S

= τ(u)p
n

since τ is a homomorphism.

Then σ(u)p
n − τ(u)p

n
= 0 and by the Freshman’s Dream (Exercise

III.1.11), (σ(u)− τ(u))p
n

= 0 and σ(u) = τ(u) (we are in a field, so there
are no zero divisors).

This is σ = τ on S then σ = τ on F and so σ = τ ,
proving our claim. Consequently, it suffices WLOG to assume that F is
separable over K (that is, F = S).
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Proposition V.6.12

Proposition V.6.12 (continued 2)

Proof (continued). In this case we have

[F : K ] = [F : S ][S : K ] by Theorem V.1.2

= (1)[F : K ]s by the definition of [F : K ]s

= [F : K ]s .

Let E be a field intermediate to K and F (i.e., K ⊂ E ⊂ F ). By Exercise
V.3.12, since F is separable over K , then F is separable over E and E is
separable over K . So [F : E ] = [F : E ]s and [E : K ] = [E : K ]s (see the
Remark after Definition V.6.10).

We now complete the proof by induction on n = [F : K ] = [F : K ]s . The
case n = 1 is trivial since this implies that F = k (by Exercise V.1.1(a))
and there is only n = 1 K -monomorphism mapping K = F into N
(namely, the identity mapping).
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Proposition V.6.12

Proposition V.6.12 (continued 3)

Proof (continued). Now for the induction hypothesis, suppose the result
holds for all k < n; that is, suppose that if F ′ is any field where F ′ is a
finite dimensional extension field of field K ′, say k = [E ′ : K ′], and field N ′

is a normal extension field of K ′ containing E ′, then the number of
distinct K -monomorphisms mapping E ′ → N ′ is precisely [E ′ : K ′]s .

If n > 1 then F 6= K , so there is u ∈ F \ K where
[F : K (u)][K (u) : K ] = [F : K ] by Theorem V.1.2 where
[K (u) : K ] = r > 1.

(1) If r < n, then by the induction hypothesis with E = K (u), there are
r = [E : K ] = [E : K ]s distinct K -monomorphisms mapping E → N. So
n = [F : K ] = [F : E ][E : K ] = [F : E ]s [E : K ]s = [F : E ]sr . By Exercise
V.3.A, N is a normal extension of E and [F : E ] = n/r < n, so by the
induction hypothesis (with N = N ′, F ′ = F , and K ′ = E ) the number of
distinct E -monomorphisms mapping F → N is [F : E ]s .
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Proposition V.6.12

Proposition V.6.12 (continued 4)

Proof (continued). By Lemma V.6.11, the number of distinct
K -monomorphisms mapping F → N is [F : E ]s [E : K ]s = [F : K ]s , and so
the result holds for r < n.

(2) If r = [K (u) : K ] = n = [F : K ] then by Theorem V.1.2,
[F : K ] = [F : K (u)][K (u) : K ] and so [F : K (u)] = 1 and by Exercise
V.1.1(a), F = K (u). So [F : K ] = [K (u) : K ] is the degree of the
(separable) irreducible polynomial f ∈ K [x ] of u by Theorem V.1.6(iii).

Every K -monomorphism σ : F → N (or K (u) → N) is completely
determined by its value at u, say v = σ(u). By Theorem V.2.2, v = σ(u)
is also a root of f . There are at most [F : K ] = deg(f ) such roots and so
at most [F : K ] such K -monomorphisms. Since u ∈ N is a root of f and
since N is normal over K then (by the definition of normal, see Definition
V.3.13) f splits in N. Also, f is separable and so each of the roots of f is a
simple root and so there are [F : K ] = deg(f ) such roots and hence (by
Corollary V.1.9) F : K such K -monomorphisms mapping F → N. The
result now holds by induction.
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Corollary V.6.14

Corollary V.6.14

Corollary V.6.14. Let f ∈ K [x ] be an irreducible monic polynomial over a
field K , F a splitting field of f over K and ui a root of f in F . Then

(i) every root of f has multiplicity [K (u1) : K ]i so that in F [x ]

f (x) = ((x − u1)(x − u2) · · · (x − un))
[K(u1):K ]i ,

where u1, u2, . . . , un are all the distinct roots of f and
n = [K (u1) : K ]s ;

(ii) u
[K(u1):K ]i
1 is separable over K .

Proof. If char(K ) = 0 then the purely inseparable extensions of K are
trivial, [K (u) : K ]i = 1, and every algebraic element over K is separable
over K (see the comment after Theorem V.6.2).

So f is separable in F [x ]
and u1 is separable over K ; hence (i) and (ii) follow. Now let
char(K ) = p 6= 0.
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Corollary V.6.14

Corollary V.6.14 (continued 1)

Proof (continued). (i) For any i > 1, ui 6= u1 is also a root of f in F , so
by Corollary V.1.9 there is a K -isomorphism σ giving K (u1) ∼= K (ui ) and
with σ(u1) = ui . By Exercise V.3.2, F is a splitting field of f over both of
the intermediate fields K (u1) and K (ui ). By Theorem V.3.8 (with K = L,
F = M, and S = S ′ = {f }), σ extends to a K -automorphism of F . Since
f ∈ K [x ] we have by Theorem V.2.2 that each σ(uj) is a root of f and so

(x − u1)
r1(x − u2)

r2 · · · (x − un)
rn = f

= σf = (x − σ(u1))
r1(x − σ(u2))

r2 · · · (x − σ(un))
rn .

Since u1, u2, . . . , un are distinct, σ is one to one, the fact that K [x ] is a
unique factorization domain by Theorem III.6.14, and σ(u1) = ui , then
(x − ui )

ri = (x − σ(u1))
r1 . So we must have that ri = r1. Similarly by

changing σ so that it maps u1 to the other ui , we have that each ri = r .
That is, every root of f has multiplicity r = r1 so that
f = (x − u1)

r (x − u2)
r · · · (x − un)

r and [K (u1) : K ] = deg(f ) = nr .
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r (x − u2)
r · · · (x − un)

r and [K (u1) : K ] = deg(f ) = nr .
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Corollary V.6.14

Corollary V.6.14 (continued 2)

Proof (continued). Now Corollary V.1.9 and Theorem V.2.2 imply that
the only K -monomorphisms (Corollary V.1.9 is “if an only if”) mapping
K (u)1) → F are the n σ’s which map u1 to ui (respectively). Since f is a
splitting field of {f } over K , by Theorem V.3.14 (the (ii)⇒(i) part), F is
normal over K . So by Proposition V.6.12 (with th eF of Proposition
V.6.12 as K (u1), and the N of Proposition V.6.12 as F , so that the
[F : K ]s of Proposition V.6.12 is [F (u1) : K ]s), [K (u1) : K ]s is the number
of K -monomorphisms mapping K (u1) → F . That is, [K (u1) : K ]s = n.

Therefore, since [K (u1) : K ] = [K (u1) : K ]i [K (u1) : K ]s (see the Remark
after Definition V.6.10),
[K (u1) : K ]i = [K (u1) : K ]/[K (u1) : K ]s = nr/n = r , and (i) follows.
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Proposition V.6.15. The Primitive Element Theorem

Proposition V.6.15(i)

Proposition V.6.15. The Primitive Element Theorem.
Let F be a finite dimensional extension field of K .

(i) If F is separable over K , then F is a simple extension of K .
(ii) (Artin) More generally, F is a simple extension of K if and

only if there are only finitely many intermediate fields.

Proof. (i) Since F is a separable extension of K , then it is an algebraic
extension and so by Theorem V.3.16(iii), there is a Galois extension F1 of
K that contains F . Since we hypothesize [F : K ] is finite, then by Theorem
V.3.15(iv) [F : K ] is finite.

By the Fundamental Theorem of Galois Theory
(Theorem V.2.5(i)), AutKF1 is finite (since AutKFi = [F1 : K ]) and, since
there is a one to one correspondence between the set of intermediate fields
of the extension and the set of all subgroups of AutKF1 (by the
Fundamental Theorem) with |AutKFi | = [Fi : K ] for each intermediate
field Fi then there are only finitely many intermediate fields between K
and F1. Therefore, there can be only a finite number of intermediate fields
in the extension of K by F . This proves (i).
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Proposition V.6.15. The Primitive Element Theorem

Proposition V.6.15(ii)

Proposition V.6.15. The Primitive Element Theorem.
Let F be a finite dimensional extension field of K .

(ii) (Artin) More generally, F is a simple extension of K if and
only if there are only finitely many intermediate fields.

Proof. (ii) If K is a finite field and F = K (u) is a simple finite
dimensional extension of K (say [F : K ] = n). If Fi is any intermediate
field then by Theorem V.1.2, [F : K ] = [F : Fi ][Fi : K ].

So there are only a
finite number of possibilities for [Fi : K ] (the number of divisors of
[F : K ]). By Corollary V.5.8, any two extension fields of K of the same
dimension are K -isomorphic. So, up to isomorphism, there are only finitely
many possible intermediate fields. Conversely, if F is a finite dimensional
extension of K , say [F : K ] = n, then by Corollary V.5.8 there is a simple
extension of K , K (u), and F ∼= K (u).
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Proposition V.6.15. The Primitive Element Theorem

Proposition V.6.15(ii) (continued 1)

Proof (continued). (ii) Now suppose K is infinite and that F is a finite
dimensional extension of K with only finitely many intermediate fields.
Since [F : K ] is finite, we can choose u ∈ F such that [K (u) : K ] is
maximal. ASSUME K (u) 6= F .

Then there exists v ∈ F \ K (u). Consider
all (simple extension) intermediate fields of the form K (u + zv) with
a ∈ K . Since K is an infinite field then there are infinitely many elements
of F of the form u + av where u ∈ F , v ∈ F \K (U), and a ∈ K . However,
there are by hypothesis only finitely many intermediate fields between K
and F . So for some a, b ∈ K with a 6= b we must have
K (uav) = K (u + bv) (or else we have infinitely many simple extensions of
K intermediate to K and F ). So for this a and b, u − bv ∈ K (u − av) and
(a− b)v = (u + av)− (u − bv) ∈ K (u + az). Since a, b ∈ K and a 6= b,
then (a− b), (a− b)−1 ∈ K and so v = (a− b)−1(a− b)v ∈ K (u + av)
and v 6∈ K (u) (by the choice of v), so K ⊂ K (u) ( K (u + av). Whence
[K (u + av) : K ] > [K (u) : K ].

() Modern Algebra February 14, 2016 36 / 38



Proposition V.6.15. The Primitive Element Theorem

Proposition V.6.15(ii) (continued 1)

Proof (continued). (ii) Now suppose K is infinite and that F is a finite
dimensional extension of K with only finitely many intermediate fields.
Since [F : K ] is finite, we can choose u ∈ F such that [K (u) : K ] is
maximal. ASSUME K (u) 6= F . Then there exists v ∈ F \ K (u). Consider
all (simple extension) intermediate fields of the form K (u + zv) with
a ∈ K . Since K is an infinite field then there are infinitely many elements
of F of the form u + av where u ∈ F , v ∈ F \K (U), and a ∈ K .

However,
there are by hypothesis only finitely many intermediate fields between K
and F . So for some a, b ∈ K with a 6= b we must have
K (uav) = K (u + bv) (or else we have infinitely many simple extensions of
K intermediate to K and F ). So for this a and b, u − bv ∈ K (u − av) and
(a− b)v = (u + av)− (u − bv) ∈ K (u + az). Since a, b ∈ K and a 6= b,
then (a− b), (a− b)−1 ∈ K and so v = (a− b)−1(a− b)v ∈ K (u + av)
and v 6∈ K (u) (by the choice of v), so K ⊂ K (u) ( K (u + av). Whence
[K (u + av) : K ] > [K (u) : K ].

() Modern Algebra February 14, 2016 36 / 38



Proposition V.6.15. The Primitive Element Theorem

Proposition V.6.15(ii) (continued 1)

Proof (continued). (ii) Now suppose K is infinite and that F is a finite
dimensional extension of K with only finitely many intermediate fields.
Since [F : K ] is finite, we can choose u ∈ F such that [K (u) : K ] is
maximal. ASSUME K (u) 6= F . Then there exists v ∈ F \ K (u). Consider
all (simple extension) intermediate fields of the form K (u + zv) with
a ∈ K . Since K is an infinite field then there are infinitely many elements
of F of the form u + av where u ∈ F , v ∈ F \K (U), and a ∈ K . However,
there are by hypothesis only finitely many intermediate fields between K
and F . So for some a, b ∈ K with a 6= b we must have
K (uav) = K (u + bv) (or else we have infinitely many simple extensions of
K intermediate to K and F ). So for this a and b, u − bv ∈ K (u − av) and
(a− b)v = (u + av)− (u − bv) ∈ K (u + az).

Since a, b ∈ K and a 6= b,
then (a− b), (a− b)−1 ∈ K and so v = (a− b)−1(a− b)v ∈ K (u + av)
and v 6∈ K (u) (by the choice of v), so K ⊂ K (u) ( K (u + av). Whence
[K (u + av) : K ] > [K (u) : K ].

() Modern Algebra February 14, 2016 36 / 38



Proposition V.6.15. The Primitive Element Theorem

Proposition V.6.15(ii) (continued 1)

Proof (continued). (ii) Now suppose K is infinite and that F is a finite
dimensional extension of K with only finitely many intermediate fields.
Since [F : K ] is finite, we can choose u ∈ F such that [K (u) : K ] is
maximal. ASSUME K (u) 6= F . Then there exists v ∈ F \ K (u). Consider
all (simple extension) intermediate fields of the form K (u + zv) with
a ∈ K . Since K is an infinite field then there are infinitely many elements
of F of the form u + av where u ∈ F , v ∈ F \K (U), and a ∈ K . However,
there are by hypothesis only finitely many intermediate fields between K
and F . So for some a, b ∈ K with a 6= b we must have
K (uav) = K (u + bv) (or else we have infinitely many simple extensions of
K intermediate to K and F ). So for this a and b, u − bv ∈ K (u − av) and
(a− b)v = (u + av)− (u − bv) ∈ K (u + az). Since a, b ∈ K and a 6= b,
then (a− b), (a− b)−1 ∈ K and so v = (a− b)−1(a− b)v ∈ K (u + av)
and v 6∈ K (u) (by the choice of v), so K ⊂ K (u) ( K (u + av). Whence
[K (u + av) : K ] > [K (u) : K ].

() Modern Algebra February 14, 2016 36 / 38



Proposition V.6.15. The Primitive Element Theorem

Proposition V.6.15(ii) (continued 1)

Proof (continued). (ii) Now suppose K is infinite and that F is a finite
dimensional extension of K with only finitely many intermediate fields.
Since [F : K ] is finite, we can choose u ∈ F such that [K (u) : K ] is
maximal. ASSUME K (u) 6= F . Then there exists v ∈ F \ K (u). Consider
all (simple extension) intermediate fields of the form K (u + zv) with
a ∈ K . Since K is an infinite field then there are infinitely many elements
of F of the form u + av where u ∈ F , v ∈ F \K (U), and a ∈ K . However,
there are by hypothesis only finitely many intermediate fields between K
and F . So for some a, b ∈ K with a 6= b we must have
K (uav) = K (u + bv) (or else we have infinitely many simple extensions of
K intermediate to K and F ). So for this a and b, u − bv ∈ K (u − av) and
(a− b)v = (u + av)− (u − bv) ∈ K (u + az). Since a, b ∈ K and a 6= b,
then (a− b), (a− b)−1 ∈ K and so v = (a− b)−1(a− b)v ∈ K (u + av)
and v 6∈ K (u) (by the choice of v), so K ⊂ K (u) ( K (u + av). Whence
[K (u + av) : K ] > [K (u) : K ].

() Modern Algebra February 14, 2016 36 / 38



Proposition V.6.15. The Primitive Element Theorem

Proposition V.6.15(ii) (continued 2)

Proof (continued). (ii) But this CONTRADICTS the choice of u such
that [K (u) : K ] is maximal (for all simple extensions of K ). So the
assumption that K (u) 6= F is false and hence F = K (u) and F is a simple
extension of K .

Conversely, assume K is infinite and that F = K (u) is a simple extension.
Since [F : K ] is finite, then by Theorem V.1.11 F is an algebraic extension
of K and so u is algebraic over K . Let E be an intermediate field an
dg ∈ E [x ] the irreducible monic polynomial of u over E .

If
g = xn + an−1x

n−1 + · · ·+ a1x + a0 then
[F : E ] = [K (u) : E ] = [E (u) : E ] = n by Theorem V.1.6 (parts (ii) and
(iii)). Now F = K (u) ⊇ E ⊇ K (a0, a1, . . . , an−1) ⊇ K (since g ∈ E [x ]
then a0, a1, . . . , an−1 ∈ E ) and since g is irreducible over E then it is
irreducible over K (a0, a1, . . . , an−1).
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Proposition V.6.15. The Primitive Element Theorem

Proposition V.6.15(ii) (continued 3)

Proof (continued). (ii) Also, K (u) = K (a0, a1, . . . , an−1)(u), so again by
Theorem V.1.6 (parts (ii) and (iii)) we have
[F : K (a0, a1, . . . , an−1] = [K (u) : K (a0, a1, . . . , an−1] = n. By Theorem
V.1.2, [F : E ][E : K (a0, a1, . . . , an)] = n and so
[E : K (a0, a1, . . . , an−1)] = 1 and E = K (a0, a1, . . . , an−1). Thus every
intermediate field E is uniquely determined by the irreducible monic
polynomial g of u over E . If f is the monic irreducible polynomial of u
over K , then g | f by Theorem V.1.6(ii).

Since f factors uniquely in any
splitting field (by Corollary III.6.4, F [x ] is a unique factorization domain
for any field F ), then f can have only a finite number of distinct monic
divisors. Consequently, there are only a finite number of intermediate
fields.
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