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Theorem V.7.2

Theorem V.7.2

Theorem V.7.2. If F is a finite dimensional Galois extension field of K
and AutK (F ) = {σ1, σ2, . . . , σn} then for any u ∈ F ,

NK
F (u) = σ1(u)σ2(u) · · ·σn(u); and

TK
F (u) = σ1(u) + σ2(u) + · · ·+ σn(u).

Proof. Let K be an algebraic closure of K which contains F . Since F is
normal over K by Corollary V.3.15, then by Theorem V.3.14(iii) the
K -monomorphisms mapping F → K are precisely the K -automorphisms of
F (that is, the elements of AutKF ).

Also by Corollary V.3.15 F is
separable over K , so the largest subfield of F which is separable over K is
S = F itself and [F ,K ]i = [F ,S ] = [F ,F ] = 1. The result now follows
from the definition of norm and trace.
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Theorem V.7.3

Theorem V.7.3(i) and (ii)

Theorem V.7.3. Let F be a finite dimensional extension field of K . Then
for all u, v ∈ F :

(i) NK
F (u)NK

F (v) = NK
F (uv) and

TK
F (u) + TK

F (v) = TK
F (u + v);

(ii) if u ∈ K , then NK
F (u) = u[F :K ] and TK

F (u) = [F : K ]u;

(iii) NK
F (u) and TK

F (u) are elements of K . More precisely,
NK

F = ((−1)na0)
[F :K(u)] ∈ K and

TK
F (u) = −[F : K (u)]an−1 ∈ K , where a0 and an−1 are

determined by f = xn + an−1x
n−1 + · · ·+ a1x + a0 ∈ K [x ] is

the irreducible polynomial of u;

(iv) if E is an intermediate field, then NK
E (NE

F (u)) = NK
F (u)

and TK
E (TE

F (u)) = TK
F (u).
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Theorem V.7.3

Theorem V.7.3(i)

Theorem V.7.3. Let F be a finite dimensional extension field of K . Then
for all u, v ∈ F :

(i) NK
F (u)NK

F (v) = NK
F (uv) and

TK
F (u) + TK

F (v) = TK
F (u + v).

Proof. (i) Since K , F , and K are fields and the σi are homomorphisms,
then

NF
K (u)NF

K (v) = (σ1(u)σ2(u) · · ·σr (u))[F :K ]i × (σ1(v)σ2(v) · · ·σr (v))[F :K ]i

= (σ1(u)σ1(v)σ2(u)σ2(v) · · ·σr (u)σr (v))[F :K ]i

= (σ1(uv)σ2(uv) · · ·σr (uv))[F :K ]i

= NF
K (uv).
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Theorem V.7.3

Theorem V.7.3(i) (continued)

Theorem V.7.3. Let F be a finite dimensional extension field of K . Then
for all u, v ∈ F :

(i) NK
F (u)NK

F (v) = NK
F (uv) and

TK
F (u) + TK

F (v) = TK
F (u + v).

Proof (continued). (i) Also

T F
K (u) + T F

K (v) = [F : K ]i (σ1(u) + σ2(u) + · · ·+ σr (u))

+[F : K ]i (σ1(v) + σ2(v) + · · ·+ σr (v))

= [F : K ]i (σ1(u) + σ1(v) + σ2(u) + σ2(v) +

· · ·+ σr (u) + σr (v))

= [F : K ]i (σ1(u + v) + σ2(u + v) + · · ·+ σr (u + v))

= T F
K (u + v)

So (i) holds.
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Theorem V.7.3

Theorem V.7.3(ii)

Theorem V.7.3. Let F be a finite dimensional extension field of K . Then
for all u, v ∈ F :

(ii) if u ∈ K , then NK
F (u) = u[F :K ] and TK

F (u) = [F : K ]u.

Proof. (ii) By the second Note after Definition V.7.1 in the class notes,
we have that r = [F : K ]s . From the Remark at the top of page 286, we
have that [F : K ]s [F : K ]i = [F : K ].

Since each σi fixes the elements of
K , then for u ∈ K we have
NF

K (u) = (σ1(u)σ2(u) · · ·σr (u))[F :K ]i = (ur )[F :K ]i = u[F :K ]s [F :K ]i = u[F :K ],
and

TF
K (u) = [F : K ]i (σ1(u) + σ2(u) + · · ·+ σr (u))

= [F : K ]i (u + u + · · ·+ u) = [F : K ]i (ru)

= [F : K ]i [F : K ]su = [F : K ]u.
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Lemma V.7.5

Lemma V.7.5

Lemma V.7.5. If S is a set of distinct automorphisms of a field F , then S
is linearly independent.

Proof. ASSUME S is not linearly independent.

Then there exist nonzero
ai ∈ F and distinct σi ∈ S such that

a1σ1(u) + a2σ2(u) + · · ·+ anσn(u) = 0 for all u ∈ F . (1)

Among all such dependence relations, choose one with n minimal (notice
n ≥ 1 by the definition of “linearly independent,” so such an n exists by
the Law of Well Ordering of N on page 10). Since σ1 and σ2 are distinct,
there exists v ∈ F with σ1(v) 6= σ2(v). Applying (1) to the element uv
yields (since σ is a homomorphism):

a1σ1(u)σ1(v) + a2σ2(u)σ2(v) + · · ·+ anσn(u)σn(v) = 0 (2)

and multiplying (1) by σ1(v) gives

a1σ1(u)σ1(v) + a2σ2(u)σ1(v) + · · ·+ anσn(u)σ1(v) = 0. (3)
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Lemma V.7.5

Lemma V.7.5 (continued)

Lemma V.7.5. If S is a set of distinct automorphisms of a field F , then S
is linearly independent.

Proof (continued). The difference of (2) and (3) is

a2[σ2(v)− σ1(v)]σ2(v) + a3[σ3(v)− σ3(v)]σ3(v)+

· · ·+ an[σn(v)− σ1(v)]σn(v) = 0

for all u ∈ F . Since a2 6= 0 (by the choice of relationship (1) with n
minimal) and σ2(v) 6= σ1(v) then not all coefficients are zero. But this
CONTRADICTS the minimality of n.

So the assumption that set S is not
linearly independent is incorrect and S is linearly independent.
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Theorem V.7.6

Theorem V.7.6

Theorem V.7.6. Let F be a cyclic extension field of degree n, σ a
generator of AutK (F ) and u ∈ F . Then

(i) TK
F (u) = 0 if and only if u = v − σ(v) for some v ∈ F ;

(ii) (Hilbert’s Theorem 90) NK
F (u) = 1K if and only if

u = vσ−1(v) for some nonzero v ∈ F .

Proof. By the definition of “cyclic extension,” we have that
|AutKF | = [F : K ] = n and since σ is a generator of AutKF , then
AutKF = {1F = σ0, σ, σ2, . . . , σn−1}.

By Theorem V.7.2,
T F

K (u) = T (u) = uσu + σ2u + · · ·+ σn−1u and
NF

K (u) = N(u) = u(σu)(σ2u) · · · (σn−1u).
(i) If u = v − σv , then

T F
K (u) = T (v − σv)

= T (v)− T (σv) since each σj is a homomorphism of F

= v + σv + σ2v + · · ·+ σn−1v − σv − σ2v − · · · − σn−1v − σnv

= v − σnv = v − σ0v = v − v = 0.
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Theorem V.7.6

Theorem V.7.6(i)

Theorem V.7.6. Let F be a cyclic extension field of degree n, σ a
generator of AutK (F ) and u ∈ F . Then

(i) TK
F (u) = 0 if and only if u = v − σ(v) for some v ∈ F .

Proof (continued). (i) Conversely, suppose T (u) = 0. Choose x ∈ F
such that T (w) = 1K as follows. By Lemma V.7.5, the 1K , σ, σ2, . . . , σn

are linearly independent and so for soem x ∈ F we have
T (z) = aF z + σz + σ2z + · · ·+ σn−1z 6= 0.

Since T (z) ∈ K by the Note
after Theorem V.7.2 (in the class notes; see Hungerford page 290), we
have that

σ[T (z)−1z ] = σ(T (z)−1)σ(z)

= (σ(T (z)))−1σ(z) since σ is a homomorphism

= T (z)−1σ(z) since σ fixes K and T (z)−1 ∈ K
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Theorem V.7.6

Theorem V.7.6(i) (continued 1)

Proof (continued). (i) Consequently, set w = T (z)−1z and then
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= T (z)−1(z + σz + σ2z + · · ·+ σn−1z)

since σ fixes T (z)−1 ∈ K , as argued above

= T (z)−1T (z) = 1K .

Now let v = uw + (u + σw)(σw) + (u + σu + σ2u)(σw) + (u + σu +
σ2u + σ3u)(σ3w) + · · ·+ (u + σu + · · ·+ σn−2u)(σn−2w).
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Theorem V.7.6

Theorem V.7.6(i) (continued 2)

Proof (continued). (i) Since we hypothesize that T (u) = 0 then
T (u) = u + σu + σ2u + · · ·+ σn−1u = 0 and so
u = −(σu + σ2u + · · ·+ σn−1u). So (since σ is a homomorphism)

v − σv = {uw + (u + σu)(σw) + (u + σu + σ2u)(σ2w)

+(u+σu+σ2u+σ3u)(σ3w)+ · · ·+(u+σu+σ2u+ · · ·+σn−2u)(σn−2w)}
−{(σu)(σw) + (σu + σ2u)(σ2w) + (σu + σ2 + σ3u)(σ3w)

+(σu+σ2u+σ3u+σ4u)(σ4w)+· · ·+(σu+σ2u+σ3u+· · ·+σn−1u)(σn−1w)}
= uw + uσw + uσ2w + uσ3w + · · ·+ uσn−2w

−(σu + σ2u + σ3u + · · ·+ σn−1u)(σn−1w)

= uw + uσw + uσ2w + · · ·+ uσn−2w + uσn−1w

since u = −(σu + σ2u + · · ·+ σn−1u) by above

= uT (w) = u1K = u.

So u = v − σ(v) for the value of v given above, and (i) follows.
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Theorem V.7.6

Theorem V.7.6(ii)

Theorem V.7.6. Let F be a cyclic extension field of degree n, σ a
generator of AutK (F ) and u ∈ F . Then

(ii) (Hilbert’s Theorem 90) NK
F (u) = 1K if and only if

u = vσ−1(v) for some nonzero v ∈ F .

Proof. (ii) Suppose u = vσ(v)−1 for some nonzero v ∈ F . Since σ is an
automorphism of order n, then σn(v−1) = v−1, σ(v−1) = σ(v)−1, and for
each 1 ≤ i ≤ n − 1 we have
σi (vσ(v)−1) = σi (v)σi (σ(v)−1) = σi (v)(σi (σ(v)))−1 = σi (v)σi+1(v)−1.

Hence

NF
K (u) = N(U) = u(σu)(σ2u)(σ3u) · · · (σn−1u)

= (vσ(v)−1)(σ(vσ(v)−1))(σ2(vσ(v)−1) · · · (σn−1(vσ(v)−1))

= (vσ(v)−1)(σvσ2(v)−1)(σ2vσ3(v)−1) · · · (σn−1vσn(v)−1)

since σi (vσ(v)−1) = σi (v)σi+1(v)−1 by above

= v(σ(v)−1σv)(σ2(v)−1σ2v) · · · (σn−1(v)−1σn−1v)(σn(v)−1)

= v(σn(v))−1 = vv−1 (since σn(v) = σ0(v) = v) = 1K .
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Theorem V.7.6

Theorem V.7.6(ii) (continued)

Proof (continued). (ii) Conversely, suppose NF
K (u) = N(u) = 1K (and

so u 6= 0; N(0) = 0 since σ(0) = 0 because σ is a homomorphism). By
Lemma V.7.5, {1K , σ, σ2, . . . , σn−1} are linearly independent and so there
is y ∈ F such that this linear combination of σi (y)’s is nonzero:
v ≡ (u)1F y + (uσu)σy + (uσuσ2u)σ2y + · · ·+
(uσuσ2uσ3u · · ·σn−2u)σn−2y + (uσuσ2uσ3u · · ·σn−1u)σn−1y .

Since we
have hypothesized that N(u) = uσuσ2uσ3u · · ·σn−1u = 1K , then v =
uy+(uσu)σy+(uσuσ2u)σ2y+· · ·+(uσuσ2uσ3u · · ·σn−2u)σn−2y+σn−1y .
So σv = (σu)σy + (σuσ2u)σ2y + (σuσ2uσ3u)σ3y + · · ·+
(σuσ2uσ3u · · ·σn−1u)σn−1y +σny and uσv = (uσu)σy +(uσuσ2u)σ2y +
(uσuσ2uσ3u)σ3y + · · ·+ (uσuσ2uσ3u · · ·σn−1u)σn−1y + uy (since
σn = σ0 = 1K ) = v . So uσv = v and u = vσ(v)−1 where v is as defined
above (notice that we hypothesizes v 6= 0, so σ(v) 6= 0 since σ is an
automorphism and hence is one to one).
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Theorem V.7.7

Theorem V.7.7

Proposition V.7.7. Let F be a cyclic extension field of K of degree n and
suppose n = mpt where 0 6= p = char(K ) and (m, p) = 1. Then there is a
chain of intermediate fields F ⊃ E0 ⊃ E1 ⊃ · · · ⊃ Et−1 ⊃ Et = K such
that F is a cyclic extension of E0 of degree m and for each 0 ≤ i ≤ t, Ei−1

is a cyclic extension of Ei of degree p.

Proof. Since F is a cyclic extension field of K then (by definition) F is
Galois over K and AutKF is cyclic (and so abelian). So every subgroup of
AutKF is normal.

Every subgroup of a cyclic group is cyclic and every
homomorphic image of a cyclic group is cyclic by Theorem I.3.5. By
Theorem I.5.5, the canonical epimorphism mapping G → G/N (where
N / G ) is a homomorphism from G to G/N, so that q quotient group of
cyclic groups is cyclic (and so abelian). Consequently, by the Fundamental
Theorem of Galois Theory (Theorem V.2.5(ii)) for any intermediate field E
(i.e., K ⊂ E ⊂ F ), since the subgroups AutEF and AutKE of AutKF are
cyclic (and so abelian and hence normal subgroups of AutKF ), then F is
Galois over E and E is Galois over K .
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Theorem V.7.7

Theorem V.7.7 (continued 1)

Proof (continued). So F is cyclic over E and E is cyclic over K .
Similarly, for any pair L,M of intermediate fields with L ⊂ M, we have
that M is a cyclic extension of L; in particular, M is algebraic and Galois
over L. By Exercise I.3.6, there is a unique subgroup H of AutKF of order
m (and H is cyclic since AutKF is cyclic). Let E0 = H ′ be the fixed field
of H. Since E0 is Galois over F then E ′

0 = AutEoF and E ′
0 = H ′′ = H.

Then F is cyclic over E0 of degree m and E0 is cyclic over K of degree pt

(here, K ⊂ E0 ⊂ F ). Since AutKE0 is cyclic of order pt it has a chain of
subgroups {1} = G0 < G1 < G2 < · · · < Gt−1 = AutKE0 with |Gi | = pi ,
[GiLGi−1 = p, and Gi/Gi−1 cyclic of order p (Theorem I.3.4(vii) justifies
the existence of these subgroups of cyclic group AutKE0). For each i , let
Ei be the fixed field of Gi (“relative to E0 an dAutKE0”; that is, in the
setting where E0 is treated as the finite dimensional extension of K ).
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Theorem V.7.7 (continued 1)
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Theorem V.7.7

Theorem V.7.7 (continued 2)

Proposition V.7.7. Let F be a cyclic extension field of K of degree n and
suppose n = mpt where 0 6= p = char(K ) and (m, p) = 1. Then there is a
chain of intermediate fields F ⊃ E0 ⊃ E1 ⊃ · · · ⊃ Et−1 ⊃ Et = K such
that F is a cyclic extension of E0 of degree m and for each 0 ≤ i ≤ t, Ei−1

is a cyclic extension of Ei of degree p.

Proof. The Fundamental Theorem of Galois Theory (Theorem V.2.5)
implies:

(i) E0 ⊃ E1 ⊃ E2 ⊃ · · · ⊃ Et−1 ⊃ Et = K (by the “one to one
correspondence” claim in Theorem V.2.5),

(ii) [Ei−1 : Ei ] = [Gi : Gi−1] = p (by part (i) f Theorem V.2.5),
and

(iii) AutEi
Ei−1

∼= Gi/Gi−1 (by part (ii) of Theorem V.2.5; since
all Galois groups are cyclic, they are abelian and so normal
subgroups of larger Galois groups).

Therefore, Ei−1 is a cyclic extension of Ei of degree [Ei−1 : Ei ] = p.
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Theorem V.7.8

Theorem V.7.8

Proposition V.7.8. Let K be a field of characteristic p 6= 0. F is a cyclic
extension field of K of degree p if and only if F is a splitting field over K
of an irreducible polynomial of the form xp − x − a ∈ K [x ]. In this case
F = K (u) where u is any root of xp − x − a.

Proof. (1) Suppose F is a cyclic extension field of K of degree p.

If σ is a
generator of the cyclic group AutKF then by Theorem V.7.3(ii),
F F

K (1K ) = [F : K ]1K = p1K = 0 since K is of characteristic p. Whence,
by Theorem V.7.6(i), 1K = v − σ(v) for some v ∈ F . With u = −v we
have σ(u) = σ(−v) = −σ(v) = 1K − v = 1K + u 6= u, whence u 6∈ K
(because σ ∈ AutKF and so σ fixes the elements of K ). Since [F : K ] = p
prime, there are no intermediate fields (by Theorem V.1.2) and we must
have F = K (u) (that is, we know K ⊂ K (u) ⊂ F by K 6= K (u) and K (u)
cannot be a “proper” intermediate field, so F = K (u)).
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Theorem V.7.8

Theorem V.7.8 (continued 1)

Proof (continued). Since σ(u) = u + 1K and σ is a homomorphism then
σ(up) = σ(u)p = (u + 1K )p and since K is of characteristic p then
p1K = 0 and so by the Binomial Theorem (Theorem III.1.6),
(u + 1K )p = up + 1p

K = up + 1K (we do not necessarily know that
F = K (u) is of characteristic p and so we cannot use the Freshman’s
Cream [Exercise III.1.11] here). These combine to give
σ(up − u) = σ(up)− σ(u) = (up + 1K )− (u + 1K ) = up − u; that is,
up − u is fixed by σ. Since F is a cyclic extension of K then (by the
definition of “cyclic extension”) F is Galois over K and so (by the
definition of “Galois extension”) the fixed field of AutKF is precisely K , so
a = up − u ∈ K . Therefore, u is a root of xp − x − a ∈ K [x ].

Since the
degree of u over K is (Definition V.1.7) [K (u) : K ] = [F : K ] = p, then
xp − x − a must be the irreducible polynomial of u over K (see Theorem
V.1.6).

() Modern Algebra December 30, 2015 20 / 32



Theorem V.7.8

Theorem V.7.8 (continued 1)

Proof (continued). Since σ(u) = u + 1K and σ is a homomorphism then
σ(up) = σ(u)p = (u + 1K )p and since K is of characteristic p then
p1K = 0 and so by the Binomial Theorem (Theorem III.1.6),
(u + 1K )p = up + 1p

K = up + 1K (we do not necessarily know that
F = K (u) is of characteristic p and so we cannot use the Freshman’s
Cream [Exercise III.1.11] here). These combine to give
σ(up − u) = σ(up)− σ(u) = (up + 1K )− (u + 1K ) = up − u; that is,
up − u is fixed by σ. Since F is a cyclic extension of K then (by the
definition of “cyclic extension”) F is Galois over K and so (by the
definition of “Galois extension”) the fixed field of AutKF is precisely K , so
a = up − u ∈ K . Therefore, u is a root of xp − x − a ∈ K [x ]. Since the
degree of u over K is (Definition V.1.7) [K (u) : K ] = [F : K ] = p, then
xp − x − a must be the irreducible polynomial of u over K (see Theorem
V.1.6).

() Modern Algebra December 30, 2015 20 / 32



Theorem V.7.8

Theorem V.7.8 (continued 1)

Proof (continued). Since σ(u) = u + 1K and σ is a homomorphism then
σ(up) = σ(u)p = (u + 1K )p and since K is of characteristic p then
p1K = 0 and so by the Binomial Theorem (Theorem III.1.6),
(u + 1K )p = up + 1p

K = up + 1K (we do not necessarily know that
F = K (u) is of characteristic p and so we cannot use the Freshman’s
Cream [Exercise III.1.11] here). These combine to give
σ(up − u) = σ(up)− σ(u) = (up + 1K )− (u + 1K ) = up − u; that is,
up − u is fixed by σ. Since F is a cyclic extension of K then (by the
definition of “cyclic extension”) F is Galois over K and so (by the
definition of “Galois extension”) the fixed field of AutKF is precisely K , so
a = up − u ∈ K . Therefore, u is a root of xp − x − a ∈ K [x ]. Since the
degree of u over K is (Definition V.1.7) [K (u) : K ] = [F : K ] = p, then
xp − x − a must be the irreducible polynomial of u over K (see Theorem
V.1.6).

() Modern Algebra December 30, 2015 20 / 32



Theorem V.7.8

Theorem V.7.8 (continued 2)

Proof (continued). As shown in the proof of Theorem V.5.1, the prime
subfield Zp of K consists of the p distinct elements
Zp = {0, 1K , 2 · 1K , 3 · 1K , . . . , (p − 1) · 1K}. Treating Zp as a
multiplicative group of order p − 1 (see Exercise I.1.7) we have that for all
i ∈ Zp, ip−1 = 1K or ip = i (this is also argued in the first paragraph of
the proof of Theorem V.5.6). Since u is a root of xp − x − a we have for
each i ∈ Zp that

(u + i)p − (u + i)− 1 = up + ip − u − 1− a (as argued above, based on the Binomial Theorem)

= (up − u − a)(i − i) = 0.

Thus u + i ∈ K (u) = F is a root of xp − x − a for each i ∈ Zp, whence F
contains p distinct roots of xp − x − a. Therefore F = K (u) is a splitting
field over K of xp − x − a. Finally, if u + i is any root of xp − x − a, then
“clearly” K (u + i) = K (u) = F (since the other roots (ui ) + j for j ∈ Zp

are still in K (u + i)).
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Theorem V.7.8

Theorem V.7.8 (continued 3)

Proposition V.7.8. Let K be a field of characteristic p 6= 0. F is a cyclic
extension field of K of degree p if and only if F is a splitting field over K
of an irreducible polynomial of the form xp − x − a ∈ K [x ]. In this case
F = K (u) where u is any root of xp − x − a.

Proof (continued). (2) Suppose F is a splitting field over K of
xp − x − a ∈ K [x ]. “We shall not assume that xp − x − a is irreducible and
shall prove somewhat more than is stated in the theorem.” If u is a root of
xp − x − a, then as shown above (based on the Binomial Theorem, not
based on the specific value of a used above) K (u) contains p distinct roots
of xp − x − a, namely u, t + 1k , u + 2 · 1K , . . . , u + (p − 1) · 1K ∈ K (u).

But xp − x − a has at most p roots in F and these roots generate F over
K (since we have hypothesized that F is a splitting field over K of
xp − x − a). Therefore F = K (u) and the irreducible factors of xp − x − a
are separable (since xp − x − a has p distinct roots).
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Theorem V.7.8

Theorem V.7.8 (continued 4)

Proof (continued). By Exercise V.3.13 (the (iii)⇒(ii) part), F is
separable and a spitting field of a polynomial in K [x ], and by Theorem
V.3.11 (the (ii)⇒(i) part) F is algebraic and Galois over K . Every
τ ∈ AutKF = AutKK (u) is completely determined by τ(u). Theorem
V.2.2 implies that τ maps roots of xp − x − a to roots of xp − x − a, so
τ(u) = u + i for some i ∈ Zp. For such τ ∈ AutKF and i ∈ Zp define
θ : AutKF → Zp as θ(τ) = i . Then for τ1, τ2 ∈ AutKF where
τ1(u) = u + i1 and τ2(u) = u + i2 we have
θ(τ1 ◦ τ2)(u) = τ1(τ2(u)) = τ1(u + i2) = u + (i1 + i2). So θ is a
homomorphism.

Also, if τ1 6= τ2 then τ1(u) 6= τ2(u) (since the τ ’s are
determined by their values on u) or i1 6= i2, and θ(τ1) = i1 6= i2 = θ(τ2).
So τ is one to one. That is, τ is a monomorphism. So AutKF ∼= Im(θ)
and Im(θ) is a subgroup of Zp so (by Lagrange’s Theorem) Im(θ) is either
{1} or Zp.
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Theorem V.7.8 (continued 4)
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Theorem V.7.8

Theorem V.7.8 (continued 5)

Proposition V.7.8. Let K be a field of characteristic p 6= 0. F is a cyclic
extension field of K of degree p if and only if F is a splitting field over K
of an irreducible polynomial of the form xp − x − a ∈ K [x ]. In this case
F = K (u) where u is any root of xp − x − a.

Proof (continued). If AutKF = {1} then [F : K ] = 1 by Theorem
V.2.5(i) (Fundamental Theorem of Galois Theory), whence u ∈ K and
xp − x − a splits in K [x ]. However, we have hypothesized that xp − x − a
is irreducible cover K , so we must have autKF ∼= Zp. In this case, F is
cyclic over K of degree p.

() Modern Algebra December 30, 2015 24 / 32



Theorem V.7.8

Theorem V.7.8 (continued 5)

Proposition V.7.8. Let K be a field of characteristic p 6= 0. F is a cyclic
extension field of K of degree p if and only if F is a splitting field over K
of an irreducible polynomial of the form xp − x − a ∈ K [x ]. In this case
F = K (u) where u is any root of xp − x − a.

Proof (continued). If AutKF = {1} then [F : K ] = 1 by Theorem
V.2.5(i) (Fundamental Theorem of Galois Theory), whence u ∈ K and
xp − x − a splits in K [x ]. However, we have hypothesized that xp − x − a
is irreducible cover K , so we must have autKF ∼= Zp. In this case, F is
cyclic over K of degree p.

() Modern Algebra December 30, 2015 24 / 32



Corollary V.7.9

Corollary V.7.9

Corollary V.7.9. If K is a field of characteristic p 6= 0 and
xp − x − a ∈ K [x ], then xp − x − a is either irreducible of splits in K [x ].

Proof. We use the notation from the proof of Proposition V.7.8. In view
of the last paragraph of that proof (where Hungerford says that he “shall
prove somewhat more than is stated in the theorem”) it suffices to prove
that if AutKF = Im(0) = Zp, then xp − x − a is irreducible.

By Theorem
V.3.6, xp − x − a has p roots in the algebraic closure of K . If Im(θ) = Zp

(and so Im(θ) 6= {1}) then there are roots u an dv of xp − x − a in K . As
argued above, v = u + i for some i ∈ Zp, so there is τ ∈ AutKF such that
τ(u) = v and so τ : K (u) → K (v) is an isomorphism (choose τ with
θ(τ) = i). By Corollary V.1.9, u and v are roots of the same irreducible
polynomial in K [x ]. Since u and v were any roots of xp − x − a, then
xp − x − a is the irreducible polynomial in K [x ] of which u an dv are
roots.
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Lemma V.7.10

Lemma V.7.10

Lemma V.7.10. Let n ∈ N and K a field which contains a primitive nth
root of unity ζ.

(i) If d | n, then ζn/d = η is a primitive dth root of unity in K .

(ii) If d | n and u is a nonzero root of xd − a ∈ K [x ], then xd − a
had d distinct roots, namely u, ηu, η2u, . . . , ηd−1u, where
η ∈ K is a primitive dth root of unity. Furthermore K (u) is a
splitting field of xd − a over K and is Galois over K .

Proof. (i) Since ζ is a primitive nth root of unity, it generates a
multiplicative cyclic group of order n. By Theorem 1.3.4(iv), if d | n then
η = ζn/d has order d , whence η is a primitive dth root of unity in K .

(ii) Let u be a root of xd − 1. Then ηiu = ζni/du satisfies
(ηiu)d = ζniud = 1Kud = a and so ηiu is also a root of xd − a. Since η is
a primitive dth root of unity by (i), then η0 = 1K , η, η2, . . . , ηd−1 are
distinct (the text quotes Theorem I.3.4(vi) here).

() Modern Algebra December 30, 2015 26 / 32



Lemma V.7.10

Lemma V.7.10

Lemma V.7.10. Let n ∈ N and K a field which contains a primitive nth
root of unity ζ.

(i) If d | n, then ζn/d = η is a primitive dth root of unity in K .

(ii) If d | n and u is a nonzero root of xd − a ∈ K [x ], then xd − a
had d distinct roots, namely u, ηu, η2u, . . . , ηd−1u, where
η ∈ K is a primitive dth root of unity. Furthermore K (u) is a
splitting field of xd − a over K and is Galois over K .

Proof. (i) Since ζ is a primitive nth root of unity, it generates a
multiplicative cyclic group of order n. By Theorem 1.3.4(iv), if d | n then
η = ζn/d has order d , whence η is a primitive dth root of unity in K .

(ii) Let u be a root of xd − 1. Then ηiu = ζni/du satisfies
(ηiu)d = ζniud = 1Kud = a and so ηiu is also a root of xd − a.

Since η is
a primitive dth root of unity by (i), then η0 = 1K , η, η2, . . . , ηd−1 are
distinct (the text quotes Theorem I.3.4(vi) here).

() Modern Algebra December 30, 2015 26 / 32



Lemma V.7.10

Lemma V.7.10

Lemma V.7.10. Let n ∈ N and K a field which contains a primitive nth
root of unity ζ.

(i) If d | n, then ζn/d = η is a primitive dth root of unity in K .

(ii) If d | n and u is a nonzero root of xd − a ∈ K [x ], then xd − a
had d distinct roots, namely u, ηu, η2u, . . . , ηd−1u, where
η ∈ K is a primitive dth root of unity. Furthermore K (u) is a
splitting field of xd − a over K and is Galois over K .

Proof. (i) Since ζ is a primitive nth root of unity, it generates a
multiplicative cyclic group of order n. By Theorem 1.3.4(iv), if d | n then
η = ζn/d has order d , whence η is a primitive dth root of unity in K .

(ii) Let u be a root of xd − 1. Then ηiu = ζni/du satisfies
(ηiu)d = ζniud = 1Kud = a and so ηiu is also a root of xd − a. Since η is
a primitive dth root of unity by (i), then η0 = 1K , η, η2, . . . , ηd−1 are
distinct (the text quotes Theorem I.3.4(vi) here).

() Modern Algebra December 30, 2015 26 / 32



Lemma V.7.10

Lemma V.7.10

Lemma V.7.10. Let n ∈ N and K a field which contains a primitive nth
root of unity ζ.

(i) If d | n, then ζn/d = η is a primitive dth root of unity in K .

(ii) If d | n and u is a nonzero root of xd − a ∈ K [x ], then xd − a
had d distinct roots, namely u, ηu, η2u, . . . , ηd−1u, where
η ∈ K is a primitive dth root of unity. Furthermore K (u) is a
splitting field of xd − a over K and is Galois over K .

Proof. (i) Since ζ is a primitive nth root of unity, it generates a
multiplicative cyclic group of order n. By Theorem 1.3.4(iv), if d | n then
η = ζn/d has order d , whence η is a primitive dth root of unity in K .

(ii) Let u be a root of xd − 1. Then ηiu = ζni/du satisfies
(ηiu)d = ζniud = 1Kud = a and so ηiu is also a root of xd − a. Since η is
a primitive dth root of unity by (i), then η0 = 1K , η, η2, . . . , ηd−1 are
distinct (the text quotes Theorem I.3.4(vi) here).

() Modern Algebra December 30, 2015 26 / 32



Lemma V.7.10

Lemma V.7.10 (continued)

Lemma V.7.10. Let n ∈ N and K a field which contains a primitive nth
root of unity ζ.

(ii) If d | n and u is a nonzero root of xd − a ∈ K [x ], then xd − a
had d distinct roots, namely u, ηu, η2u, . . . , ηd−1u, where
η ∈ K is a primitive dth root of unity. Furthermore K (u) is a
splitting field of xd − a over K and is Galois over K .

Proof (continued). (ii) Consequently, since η ∈ K , the roots
u, ηu, η2u, . . . , ηd−1u of xd − a are distinct elements of K (u). Thus K (u)
is a splitting field of xd − a over K . The irreducible factors of xd − a are
separable since all the roots are distinct. By Exercise V.3.13 (the (iii)⇒(ii)
part), K (u) is separable and a splitting field of a polynomial in K [x ]. By
Theorem V.3.11 (the (ii)⇒(i) part), K (u) is algebraic and Galois over
K .
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Lemma V.7.10 (continued)
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Theorem V.7.11

Theorem V.7.11

Theorem V.7.11. Let n ∈ N and K a field which contains a primitive nth
root of unity ζ. Then the following conditions on an extension field F of K
are equivalent.

(i) F is cyclic of degree d , where d | n;

(ii) F is a splitting field over K of a polynomial of the form
xn − a ∈ K [x ] (in which case F = K (u), for any root u of
xn − a);

(iii) F is a splitting field over K of an irreducible polynomial of
the form xd − b ∈ K [x ], where d | n (in which case
F = K (v), for any root v of xd − b).

Proof. (ii)⇒(i) Suppose F is a splitting field over K of a polynomial of
the form xn − a ∈ K [x ]. By Lemma V.7.10(ii), F = K (u) and F is Galois
over K for any root of xn − a.

If σ ∈ AutKF = AutKK (u) then σ is
completely determined by σ(u), which is a root of xn − a by Theorem
V.2.2.
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Theorem V.7.11

Theorem V.7.11 (continued 1)

Proof (continued). (ii)⇒(i) Therefore, σ(u) = ζ iu for some i (where
0 ≤ i ≤ n − 1) by Lemma V.7.10(ii) where ζ is the given primitive root of
unity. Define θ : AutKF → {nth roots of unity} as θ(σ) = ζ i where
σ(u) = ζ iu. Then for σ1, σ2 ∈ AutKF where σ1(u) = ζ i1u and
σ2(u) = ζ i2u we have (since σ1(σ2(u)) = ζ i1(ζ i2u)) that
θ(σ1 ◦ σ2) = ζ i1+i2 = ζ i−1ζ i2 = θ(σ1)θ(σ2), so θ is a homomorphism.

If
σ1 6= σ2 then σ1(u) 6= σ2(u) (since elements of AutKF = AutKK (u) are
determined by their values on u) and so σ1(u) = ζ i1u 6= ζ i2u = σ2(u)
where 0 ≤ i1 ≤ n− 1, 0 ≤ i2 ≤ n− 2. i1 6= i2 and θ(σ1) = i1 6= i2 = θ(σ2).
So θ is one to one and so is a monomorphism. So AutKF is isomorphic to
a subgroup of Zn (since the multiplicative nth roots of unity form a group
isomorphic to the cyclic group Zn) then AutKF is cyclic of some order d
where d | n (Hungerford quotes Theorem I.3.5 and Corollary I.4.6 here).
Hence F is cyclic of degree d over K and (i) follows.
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Theorem V.7.11

Theorem V.7.11 (continued 2)

Theorem V.7.11. Let n ∈ N and K a field which contains a primitive nth
root of unity ζ. Then the following conditions on an extension field F of K
are equivalent.

(i) F is cyclic of degree d , where d | n;

(ii) F is a splitting field over K of a polynomial of the form
xn − a ∈ K [x ] (in which case F = K (u), for any root u of
xn − a).

Proof. (i)⇒(ii) Suppose F is cyclic of degree d over K where d | n. Then
d = [F : K ]. Say a generator of AutKF is σ.

Let η = ζn/d ∈ K be a
primitive dth root of unity. By Theorem V.7.3(ii),
NF

K (η) = η[F :K ] = ηd = 1K , so by Theorem V.7.6 (Hilbert’s Theorem 90)
we have η = wσ(w)−1 for some w ∈ F . With v = w−1 we have
σ(v) = ηw−1 = ηv and σ(vd) = σ(v)d = (ηv)d = ηdvd = vd . Since F is
Galois over K (by hypothesis) and vd is fixed by σ, then vd = b must lie
in K so that v is a root of xd − b ∈ K [x ].
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in K so that v is a root of xd − b ∈ K [x ].
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Theorem V.7.11

Theorem V.7.11 (continued 2)

Theorem V.7.11. Let n ∈ N and K a field which contains a primitive nth
root of unity ζ. Then the following conditions on an extension field F of K
are equivalent.

(i) F is cyclic of degree d , where d | n;

(ii) F is a splitting field over K of a polynomial of the form
xn − a ∈ K [x ] (in which case F = K (u), for any root u of
xn − a).

Proof. (i)⇒(ii) Suppose F is cyclic of degree d over K where d | n. Then
d = [F : K ]. Say a generator of AutKF is σ. Let η = ζn/d ∈ K be a
primitive dth root of unity. By Theorem V.7.3(ii),
NF

K (η) = η[F :K ] = ηd = 1K , so by Theorem V.7.6 (Hilbert’s Theorem 90)
we have η = wσ(w)−1 for some w ∈ F . With v = w−1 we have
σ(v) = ηw−1 = ηv and σ(vd) = σ(v)d = (ηv)d = ηdvd = vd . Since F is
Galois over K (by hypothesis) and vd is fixed by σ, then vd = b must lie
in K so that v is a root of xd − b ∈ K [x ].
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Theorem V.7.11

Theorem V.7.11 (continued 2)

Theorem V.7.11. Let n ∈ N and K a field which contains a primitive nth
root of unity ζ. Then the following conditions on an extension field F of K
are equivalent.

(i) F is cyclic of degree d , where d | n;

(ii) F is a splitting field over K of a polynomial of the form
xn − a ∈ K [x ] (in which case F = K (u), for any root u of
xn − a).

Proof. (i)⇒(ii) Suppose F is cyclic of degree d over K where d | n. Then
d = [F : K ]. Say a generator of AutKF is σ. Let η = ζn/d ∈ K be a
primitive dth root of unity. By Theorem V.7.3(ii),
NF

K (η) = η[F :K ] = ηd = 1K , so by Theorem V.7.6 (Hilbert’s Theorem 90)
we have η = wσ(w)−1 for some w ∈ F . With v = w−1 we have
σ(v) = ηw−1 = ηv and σ(vd) = σ(v)d = (ηv)d = ηdvd = vd . Since F is
Galois over K (by hypothesis) and vd is fixed by σ, then vd = b must lie
in K so that v is a root of xd − b ∈ K [x ].
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Theorem V.7.11

Theorem V.7.11 (continued 3)

Proof (continued). (i)⇒(ii) By Lemma V.7.10(ii), K (v) ⊂ F and K (v)
is a splitting field over K of xd − b (whose distinct roots are
v , ηv , η2v , . . . , ηd−1v). Furthermore for each i , where 0 ≤ i ≤ d − 1,
σi (v) = ηiv since σ(v) = ηv so that σi is an isomorphism between K (v)
and K (ηiv). By Corollary I.1.9 (since σi fixes K ) v and ηiv are roots of
the same irreducible polynomial over K . Since this holds for all i where
0 ≤ i ≤ d − 1, the irreducible polynomial of which these all are a root must
be xd − b and so xd − b is irreducible in K [x ]. By Theorem V.1.6 (parts
(ii) and (iii)), [F (v) : K ] = d .

We now have that d = [K (v) : K ] = [F : K ]
where K (v) ⊆ F , so [K (v) : F ] = 1 by Theorem V.1.2 and hence
K (v) = F . So F is a splitting field of xd − b over K and (iii) follows.
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Theorem V.7.11

Theorem V.7.11 (continued 3)

Proof (continued). (i)⇒(ii) By Lemma V.7.10(ii), K (v) ⊂ F and K (v)
is a splitting field over K of xd − b (whose distinct roots are
v , ηv , η2v , . . . , ηd−1v). Furthermore for each i , where 0 ≤ i ≤ d − 1,
σi (v) = ηiv since σ(v) = ηv so that σi is an isomorphism between K (v)
and K (ηiv). By Corollary I.1.9 (since σi fixes K ) v and ηiv are roots of
the same irreducible polynomial over K . Since this holds for all i where
0 ≤ i ≤ d − 1, the irreducible polynomial of which these all are a root must
be xd − b and so xd − b is irreducible in K [x ]. By Theorem V.1.6 (parts
(ii) and (iii)), [F (v) : K ] = d . We now have that d = [K (v) : K ] = [F : K ]
where K (v) ⊆ F , so [K (v) : F ] = 1 by Theorem V.1.2 and hence
K (v) = F . So F is a splitting field of xd − b over K and (iii) follows.
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Theorem V.7.11

Theorem V.7.11 (continued 3)

Proof (continued). (i)⇒(ii) By Lemma V.7.10(ii), K (v) ⊂ F and K (v)
is a splitting field over K of xd − b (whose distinct roots are
v , ηv , η2v , . . . , ηd−1v). Furthermore for each i , where 0 ≤ i ≤ d − 1,
σi (v) = ηiv since σ(v) = ηv so that σi is an isomorphism between K (v)
and K (ηiv). By Corollary I.1.9 (since σi fixes K ) v and ηiv are roots of
the same irreducible polynomial over K . Since this holds for all i where
0 ≤ i ≤ d − 1, the irreducible polynomial of which these all are a root must
be xd − b and so xd − b is irreducible in K [x ]. By Theorem V.1.6 (parts
(ii) and (iii)), [F (v) : K ] = d . We now have that d = [K (v) : K ] = [F : K ]
where K (v) ⊆ F , so [K (v) : F ] = 1 by Theorem V.1.2 and hence
K (v) = F . So F is a splitting field of xd − b over K and (iii) follows.
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Theorem V.7.11

Theorem V.7.11 (continued 4)

Proof. (iii)⇒(ii) Suppose F is a splitting field over K of an irreducible
polynomial of the form xd − b ∈ K [x ] where d | n. If v ∈ F is a root of
xd − b ∈ K [x ] then F = K (v) by Lemma V.7.10(ii). Now
(ζv)n = ζnvn = 1Kvd(n/d) = bn/d ∈ K where ζ is the primitive nth root
of unity hypothesized to be in K . So ζv is a root of xn − a ∈ K [x ] where
z = bn/d . By Lemma V.7.10(ii), K (ζv) is a splitting field of xn − a over
K .

But since ζ ∈ K then K (ζv) = K (v) = F and so F is a splitting field
of xn − a and (ii) follows.
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Theorem V.7.11

Theorem V.7.11 (continued 4)

Proof. (iii)⇒(ii) Suppose F is a splitting field over K of an irreducible
polynomial of the form xd − b ∈ K [x ] where d | n. If v ∈ F is a root of
xd − b ∈ K [x ] then F = K (v) by Lemma V.7.10(ii). Now
(ζv)n = ζnvn = 1Kvd(n/d) = bn/d ∈ K where ζ is the primitive nth root
of unity hypothesized to be in K . So ζv is a root of xn − a ∈ K [x ] where
z = bn/d . By Lemma V.7.10(ii), K (ζv) is a splitting field of xn − a over
K . But since ζ ∈ K then K (ζv) = K (v) = F and so F is a splitting field
of xn − a and (ii) follows.
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Theorem V.7.11

Theorem V.7.11 (continued 4)

Proof. (iii)⇒(ii) Suppose F is a splitting field over K of an irreducible
polynomial of the form xd − b ∈ K [x ] where d | n. If v ∈ F is a root of
xd − b ∈ K [x ] then F = K (v) by Lemma V.7.10(ii). Now
(ζv)n = ζnvn = 1Kvd(n/d) = bn/d ∈ K where ζ is the primitive nth root
of unity hypothesized to be in K . So ζv is a root of xn − a ∈ K [x ] where
z = bn/d . By Lemma V.7.10(ii), K (ζv) is a splitting field of xn − a over
K . But since ζ ∈ K then K (ζv) = K (v) = F and so F is a splitting field
of xn − a and (ii) follows.
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