Modern Algebra

Chapter V. Fields and Galois Theory

V.8. Cyclotomic Extensions—Proofs of Theorems

Theorem V 8.1

divide n, and let F be a cyclotomic extension of K of order n. Then the following hold. **Theorem V.8.1.** Let $n \in \mathbb{N}$, let K be a field such that char(K) does not

- (i) $F = K(\zeta)$ where $\zeta \in F$ is a primitive nth root of unity
- (ii) F is an abelian extension of dimension d where $d \mid \phi(n)$; if nis prime then F is actually a cyclic extension.
- (iii) $Aut_K(F)$ is isomorphic to a subgroup of order d of the multiplicative group of units of \mathbb{Z}_n .

 $f'(x) = nx^{n-1}$. So if f(c) = 0 then $f'(x)(c) \neq 0$ (because f'(x) = 0 only multiplicity one and so $x^n - 1_K$ has n distinct roots in any splitting field of for x = 0). So by Theorem III.6.10(i), $x^n - 1_K$ has only roots of in K[x]). With $f(x) = x^n - 1_K$ we have the formal derivative **Proof.** (i) Since char(K) $\nmid n$ then $nx^{n-1} \neq 0$ (i.e., is not the 0 polynomial

Modern Algebra

Theorem V.8.1 (continued 1)

following hold. divide n, and let F be a cyclotomic extension of K of order n. Then the **Theorem V.8.1.** Let $n \in \mathbb{N}$, let K be a field such that char(K) does not

- (i) $F=K(\zeta)$ where $\zeta\in F$ is a primitive nth root of unity
- (ii) F is an abelian extension of dimension d where $d\mid\phi(n)$; if nis prime then F is actually a cyclic extension.
- cyclic group, which is (by definition) a primitive nth root of unity, say has order n (and so is isomorphic to \mathbb{Z}_n) and contains a generator of this **Proof (continued). (i)** Thus the cyclic group of *n*th roots of unity in *F* $\zeta \in F.$ So the nth roots of unity are $1_K, \zeta, \zeta^2, \ldots, \zeta^{n-1}$ and these are all in $K(\zeta)$. Therefore $F = K(\zeta)$.
- factors of $x^n 1_K$ are separable. By Exercise V.3.13 (the (iii) \Rightarrow (ii) part), Theorem V.3.11 (the (ii) \Rightarrow (i) part), $F = K(\zeta)$ is algebraic and Galois over $F = K(\zeta)$ is separable and a splitting field of a polynomial in K[x]. By (ii) and (iii) Since $x^n - 1_K$ has n distinct roots in F, then the irreducible

Theorem V.8.1 (continued 2)

of x^n-1_K , so for some i with $1\leq i\leq n-1$ we have $\sigma(\zeta)=\zeta^i$. Similarly, since $\sigma^{-1}\in \operatorname{Aut}_K F$, then $\sigma^{-1}(\zeta)\zeta^j$ for some j with $1\leq j\leq n-1$. So $\zeta = \sigma^{-1}(\sigma(\zeta)) = \zeta^{ij}$. By Theorem I.3.4(v), we have $ij \equiv 1 \pmod n$ and hence $\bar{i} \in \mathbb{Z}_n$ as $\theta(\sigma) = \bar{i}$ where $\sigma(\zeta) = \zeta^i$. For $\sigma_1, \sigma_2 \in \operatorname{Aut}_F K$ with $\sigma_1(\zeta)=\zeta^{r_1}$ and $\sigma_2(\zeta)=\zeta^{r_2}$ we have is completely determined by $\sigma(\zeta)$. By Theorem V.2.2, $\sigma(\zeta)$ is also a root **Proof (continued).** (ii) and (iii) If $\sigma \in Aut_K F$, then since $F = K(\zeta)$, σ

$$\begin{array}{lcl} \theta(\sigma_1 \circ \sigma_2) & = & \overline{i_1 i_2} \text{ since } (\sigma_1 \circ \sigma_2)(\zeta) = \zeta^{i_1 i_2} \\ & = & \overline{i_1} \, \overline{i_2} = \theta(\sigma_1) \theta(\sigma_2) \end{array}$$

and so θ is a group homomorphism. Also, if $\sigma_1 \neq \sigma_2$ (and so $i_1 \neq i_2$ since so $\text{Im}(\theta)$ is a subgroup of the group of units in \mathbb{Z}_n . monomorphism. As commented above, if $\sigma(\zeta) = \zeta^i$ then \bar{i} is a unit in \mathbb{Z}_n , $\theta(\sigma_1)=\overline{i_1}
eq \overline{i_2}=\theta(\sigma_2)$ and θ is one to one. That is, θ is a group the σ 's are determined based on their values on ζ) then

January 2, 2016 4 / 11

Modern Algebra

Modern Algebra

January 2, 2016 5 / 11

Theorem V.8.1 (continued 3)

cyclic extension of K and (ii) follows. is a field and all nonzero elements of \mathbb{Z}_n are units and by Theorem V.5.3 is an abelian extension of K. By the Fundamental Theorem of Galois commented above, F is Galois over K and since $Aut_K F$ is abelian, then Fan abelian group with order d where $d \mid \varphi(n)$. So (iii) follows. As with d as the order of $Im(\theta)$, $d \mid \varphi(n)$. Also $Aut_K F \cong Im(\theta)$, so $Aut_K F$ is group of units in \mathbb{Z}_n is $\varphi(n)$, so be Lagrange's Theorem (Corollary I.4.6), Proof (continued). (ii) and (iii) By Exercise V.8.1, the order of the form a cyclic group. So $\operatorname{Aut}_K F \cong \operatorname{Im}(heta)$ is a cyclic group and so F is a Theory (Theorem V.2.5(ii)), $[F:K] = |\operatorname{Aut}_K F| = d$. If n is prime then \mathbb{Z}_n

Theorem V.8.2

the following hold. divide n, and let $g_n(x)$ be the nth cyclotomic polynomial over K. Then **Theorem V.8.2.** Let $n \in \mathbb{N}$, let K be a field such that char(K) does not

- (i) $x^n 1_K = \prod_{d|n} g_d(x)$
- (ii) The coefficients of $g_n(x)$ lie in the prime subfield P of K. If then the coefficients are actually integers $\operatorname{char}(K) = 0$ and P is identified with the field $\mathbb Q$ of rationals
- ${
 m (iii)}\ \ {
 m Deg}(g_n(x))=arphi(n)$ where arphi is the Euler phi function

satisfies $|\eta| = d$. a primitive dth root of unity (where $d \mid n$) if and only if the order of η unity contains all dth roots of unity for every divisor d of n. Now $\eta \in G$ is Lemma V.7.10(i) applied to F, the cyclic group $G=\langle \zeta \rangle$ of all nth roots of extension of K or order n. Let $\zeta \in F$ be a primitive nth root of unity. By **Proof.** (i) Let F be the splitting field of $x^n - 1_K$. Then F is a cyclotomic

Theorem V.8.2 (continued 1)

the following hold. divide n, and let $g_n(x)$ be the nth cyclotomic polynomial over K. Then **Theorem V.8.2.** Let $n \in \mathbb{N}$, let K be a field such that char(K) does not

- (i) $x^n 1_K = \prod_{d|n} g_d(x)$.
- (ii) The coefficients of $g_n(x)$ lie in the prime subfield P of K. If char(K) = 0 and P is identified with the field $\mathbb Q$ of rationals, then the coefficients are actually integers

definition of $g_d(x)$), $g_d(x) = \prod_{\eta \in G, |\eta| = d} (x - \eta)$ and **Proof (continued).** (i) Therefore for each divisor d of n (by the

$$x^n - 1_K = \prod_{\eta \in G} (x - \eta) = \prod_{d \mid n} \left(\prod_{\eta \in G, |\eta| = d} (x - \eta) \right) = \prod_{d \mid n} g_d(x).$$

Clearly $q_1(x) \in x - 1_K \in P[x]$. (ii) We prove the first statement by (the Strong Principle of) Induction.

Theorem V.8.2 (continued 2)

 $f(x) = \prod_{d|n,d < n} g_d(x)$. Then $f \in P[x]$ by the induction hypothesis. In **Proof (continued).** (ii) Assume that (ii) is true for all k < n and let F[x] (F a cyclotomic extension of K of order n, as in the proof of (i))

$$x^n - 1_K = \prod_{d \mid n, d \le n} g_d(x) = g_n(x) \prod_{d \mid n, d < n} g_d(x) = g_n(x) f(x).$$

 $g_n(x) = h(x) \in P[x]$. So the first statement in (ii) is true for n and so $\deg(r) < \deg(f)$. Since $x^n - 1_K = fg_n$ from above, the uniqueness of hOn the other hand, $x^n - 1_K \in P[x]$ and f is monic (since each $g_d(x)$ is and r implies that r = 0 and $h = g_n$. Since $h(x) \in P[x]$ then we have that $x^n - 1_K - fh + r$ for unique $h, r \in P[x] \subset F[x]$ where monic). Consequently, by the Division Algorithm in P[x] (Theorem III.6.2)

Modern Algebra

Modern Algebra

January 2, 2016 9 / 11

January 2, 2016 8 / 11

Theorem V.8.2 (continued 4)

Theorem V.8.2 (continued 3)

Theorem V.8.2. Let $n \in \mathbb{N}$, let K be a field such that char(K) does not divide n, and let $g_n(x)$ be the nth cyclotomic polynomial over K. Then the following hold.

(ii) The coefficients of $g_n(x)$ lie in the prime subfield P of K. If $\operatorname{char}(K)=0$ and P is identified with the field $\mathbb Q$ of rationals then the coefficients are actually integers.

Proof (continued). (ii) If $\operatorname{char}(K)=0$ then the prime field $P\cong \mathbb{Q}$ by Theorem V.5.1. As argued above, $g_1(x)=x-1\in \mathbb{Z}[x]$ and by (i), $x^n-1=f(x)g_n(x)$ in $\mathbb{Q}[x]$ (with the above notation). By the Division Algorithm in $\mathbb{Z}[x]$, $x^n-1=fh+r$ were $\deg(r)<\deg(f)$, and $r,h\in \mathbb{Z}[x]$. But (as above) this implies r(x)=0 and $h(x)=g_n(x)$. Since $h(x)\in \mathbb{Z}[x]$ then $g_n(x)\in \mathbb{Z}[x]$ and the second statement in (ii) is true for all $n\in \mathbb{N}$.

roots of unity). By Theorem I.3.6, ζ^i where $1 \le i \le n$ is a primitive nth that every other primitive root is a power of ζ (since ζ generates all nth the following hold. But the number of such i is by definition precisely $\varphi(n)$. root of unity (i.e., a generator of G) if and only if gcd(i, n) = (i, n) = 1. number of primitive nth roots of unity. Let ζ be such a primitive root so **Proof (continued).** (iii) By the definition of $g_n(x)$, $\deg(g_n)$ is the divide n, and let $g_n(x)$ be the nth cyclotomic polynomial over K. Then **Theorem V.8.2.** Let $n \in \mathbb{N}$, let K be a field such that char(K) does not (iii) $\operatorname{Deg}(g_n(x)) = \varphi(n)$ where φ is the Euler phi function.