Modern Algebra

Chapter V. Fields and Galois Theory

V.8. Cyclotomic Extensions—Proofs of Theorems

Table of contents

Theorem V.8.1. Let $n \in \mathbb{N}$, let K be a field such that char(K) does not divide n, and let F be a cyclotomic extension of K of order n. Then the following hold.

- (i) $F = K(\zeta)$ where $\zeta \in F$ is a primitive *n*th root of unity.
- (ii) F is an abelian extension of dimension d where $d \mid \phi(n)$; if n is prime then F is actually a cyclic extension.

(iii) $\operatorname{Aut}_{\mathcal{K}}(F)$ is isomorphic to a subgroup of order d of the multiplicative group of units of \mathbb{Z}_n .

Proof. (i) Since char(K) $\nmid n$ then $nx^{n-1} \neq 0$ (i.e., is not the 0 polynomial in K[x]). With $f(x) = x^n - 1_K$ we have the formal derivative $f'(x) = nx^{n-1}$.

Theorem V.8.1. Let $n \in \mathbb{N}$, let K be a field such that char(K) does not divide n, and let F be a cyclotomic extension of K of order n. Then the following hold.

- (i) $F = K(\zeta)$ where $\zeta \in F$ is a primitive *n*th root of unity.
- (ii) F is an abelian extension of dimension d where $d \mid \phi(n)$; if n is prime then F is actually a cyclic extension.

(iii) $\operatorname{Aut}_{\mathcal{K}}(F)$ is isomorphic to a subgroup of order d of the multiplicative group of units of \mathbb{Z}_n .

Proof. (i) Since char(K) $\nmid n$ then $nx^{n-1} \neq 0$ (i.e., is not the 0 polynomial in K[x]). With $f(x) = x^n - 1_K$ we have the formal derivative $f'(x) = nx^{n-1}$. So if f(c) = 0 then $f'(x)(c) \neq 0$ (because f'(x) = 0 only for x = 0). So by Theorem III.6.10(i), $x^n - 1_K$ has only roots of multiplicity one and so $x^n - 1_K$ has n distinct roots in any splitting field of $x^n - 1_K$.

Theorem V.8.1. Let $n \in \mathbb{N}$, let K be a field such that char(K) does not divide n, and let F be a cyclotomic extension of K of order n. Then the following hold.

- (i) $F = K(\zeta)$ where $\zeta \in F$ is a primitive *n*th root of unity.
- (ii) F is an abelian extension of dimension d where $d \mid \phi(n)$; if n is prime then F is actually a cyclic extension.

(iii) $\operatorname{Aut}_{\mathcal{K}}(F)$ is isomorphic to a subgroup of order d of the multiplicative group of units of \mathbb{Z}_n .

Proof. (i) Since $\operatorname{char}(K) \nmid n$ then $nx^{n-1} \neq 0$ (i.e., is not the 0 polynomial in K[x]). With $f(x) = x^n - 1_K$ we have the formal derivative $f'(x) = nx^{n-1}$. So if f(c) = 0 then $f'(x)(c) \neq 0$ (because f'(x) = 0 only for x = 0). So by Theorem III.6.10(i), $x^n - 1_K$ has only roots of multiplicity one and so $x^n - 1_K$ has n distinct roots in any splitting field of $x^n - 1_K$.

Theorem V.8.1. Let $n \in \mathbb{N}$, let K be a field such that char(K) does not divide n, and let F be a cyclotomic extension of K of order n. Then the following hold.

- (i) $F = K(\zeta)$ where $\zeta \in F$ is a primitive *n*th root of unity.
- (ii) F is an abelian extension of dimension d where $d \mid \phi(n)$; if n is prime then F is actually a cyclic extension.

Proof (continued). (i) Thus the cyclic group of *n*th roots of unity in *F* has order *n* (and so is isomorphic to \mathbb{Z}_n) and contains a generator of this cyclic group, which is (by definition) a primitive *n*th root of unity, say $\zeta \in F$. So the *n*th roots of unity are $1_K, \zeta, \zeta^2, \ldots, \zeta^{n-1}$ and these are all in $K(\zeta)$. Therefore $F = K(\zeta)$.

Theorem V.8.1. Let $n \in \mathbb{N}$, let K be a field such that char(K) does not divide n, and let F be a cyclotomic extension of K of order n. Then the following hold.

- (i) $F = K(\zeta)$ where $\zeta \in F$ is a primitive *n*th root of unity.
- (ii) F is an abelian extension of dimension d where $d \mid \phi(n)$; if n is prime then F is actually a cyclic extension.

Proof (continued). (i) Thus the cyclic group of *n*th roots of unity in *F* has order *n* (and so is isomorphic to \mathbb{Z}_n) and contains a generator of this cyclic group, which is (by definition) a primitive *n*th root of unity, say $\zeta \in F$. So the *n*th roots of unity are $1_K, \zeta, \zeta^2, \ldots, \zeta^{n-1}$ and these are all in $K(\zeta)$. Therefore $F = K(\zeta)$.

(ii) and (iii) Since $x^n - 1_K$ has *n* distinct roots in *F*, then the irreducible factors of $x^n - 1_K$ are separable. By Exercise V.3.13 (the (iii) \Rightarrow (ii) part), $F = K(\zeta)$ is separable and a splitting field of a polynomial in K[x]. By Theorem V.3.11 (the (ii) \Rightarrow (i) part), $F = K(\zeta)$ is algebraic and Galois over *K*.

Theorem V.8.1. Let $n \in \mathbb{N}$, let K be a field such that char(K) does not divide n, and let F be a cyclotomic extension of K of order n. Then the following hold.

- (i) $F = K(\zeta)$ where $\zeta \in F$ is a primitive *n*th root of unity.
- (ii) F is an abelian extension of dimension d where $d \mid \phi(n)$; if n is prime then F is actually a cyclic extension.

Proof (continued). (i) Thus the cyclic group of *n*th roots of unity in *F* has order *n* (and so is isomorphic to \mathbb{Z}_n) and contains a generator of this cyclic group, which is (by definition) a primitive *n*th root of unity, say $\zeta \in F$. So the *n*th roots of unity are $1_K, \zeta, \zeta^2, \ldots, \zeta^{n-1}$ and these are all in $K(\zeta)$. Therefore $F = K(\zeta)$.

(ii) and (iii) Since $x^n - 1_K$ has *n* distinct roots in *F*, then the irreducible factors of $x^n - 1_K$ are separable. By Exercise V.3.13 (the (iii) \Rightarrow (ii) part), $F = K(\zeta)$ is separable and a splitting field of a polynomial in K[x]. By Theorem V.3.11 (the (ii) \Rightarrow (i) part), $F = K(\zeta)$ is algebraic and Galois over *K*.

Proof (continued). (ii) and (iii) If $\sigma \in \operatorname{Aut}_{K} F$, then since $F = K(\zeta)$, σ is completely determined by $\sigma(\zeta)$. By Theorem V.2.2, $\sigma(\zeta)$ is also a root of $x^{n} - 1_{K}$, so for some i with $1 \leq i \leq n - 1$ we have $\sigma(\zeta) = \zeta^{i}$. Similarly, since $\sigma^{-1} \in \operatorname{Aut}_{K} F$, then $\sigma^{-1}(\zeta)\zeta^{j}$ for some j with $1 \leq j \leq n - 1$. So $\zeta = \sigma^{-1}(\sigma(\zeta)) = \zeta^{ij}$.

Proof (continued). (ii) and (iii) If $\sigma \in \operatorname{Aut}_K F$, then since $F = K(\zeta)$, σ is completely determined by $\sigma(\zeta)$. By Theorem V.2.2, $\sigma(\zeta)$ is also a root of $x^n - 1_K$, so for some i with $1 \le i \le n - 1$ we have $\sigma(\zeta) = \zeta^i$. Similarly, since $\sigma^{-1} \in \operatorname{Aut}_K F$, then $\sigma^{-1}(\zeta)\zeta^j$ for some j with $1 \le j \le n - 1$. So $\zeta = \sigma^{-1}(\sigma(\zeta)) = \zeta^{ij}$. By Theorem I.3.4(v), we have $ij \equiv 1 \pmod{n}$ and hence $\overline{i} \in \mathbb{Z}_n$ as $\theta(\sigma) = \overline{i}$ where $\sigma(\zeta) = \zeta^i$. For $\sigma_1, \sigma_2 \in \operatorname{Aut}_F K$ with $\sigma_1(\zeta) = \zeta^{i_1}$ and $\sigma_2(\zeta) = \zeta^{i_2}$ we have

$$\begin{aligned} \theta(\sigma_1 \circ \sigma_2) &= \overline{i_1 i_2} \text{ since } (\sigma_1 \circ \sigma_2)(\zeta) = \zeta^{i_1 i_2} \\ &= \overline{i_1} \overline{i_2} = \theta(\sigma_1)\theta(\sigma_2) \end{aligned}$$

and so θ is a group homomorphism.

Proof (continued). (ii) and (iii) If $\sigma \in \operatorname{Aut}_{K} F$, then since $F = K(\zeta)$, σ is completely determined by $\sigma(\zeta)$. By Theorem V.2.2, $\sigma(\zeta)$ is also a root of $x^{n} - 1_{K}$, so for some i with $1 \leq i \leq n - 1$ we have $\sigma(\zeta) = \zeta^{i}$. Similarly, since $\sigma^{-1} \in \operatorname{Aut}_{K} F$, then $\sigma^{-1}(\zeta)\zeta^{j}$ for some j with $1 \leq j \leq n - 1$. So $\zeta = \sigma^{-1}(\sigma(\zeta)) = \zeta^{ij}$. By Theorem I.3.4(v), we have $ij \equiv 1 \pmod{n}$ and hence $\overline{i} \in \mathbb{Z}_{n}$ as $\theta(\sigma) = \overline{i}$ where $\sigma(\zeta) = \zeta^{i}$. For $\sigma_{1}, \sigma_{2} \in \operatorname{Aut}_{F} K$ with $\sigma_{1}(\zeta) = \zeta^{i_{1}}$ and $\sigma_{2}(\zeta) = \zeta^{i_{2}}$ we have

$$\begin{array}{ll} \theta(\sigma_1 \circ \sigma_2) &=& \overline{i_1 i_2} \text{ since } (\sigma_1 \circ \sigma_2)(\zeta) = \zeta^{i_1 i_2} \\ &=& \overline{i_1} \, \overline{i_2} = \theta(\sigma_1) \theta(\sigma_2) \end{array}$$

and so θ is a group homomorphism. Also, if $\sigma_1 \neq \sigma_2$ (and so $i_1 \neq i_2$ since the σ 's are determined based on their values on ζ) then $\theta(\sigma_1) = \overline{i_1} \neq \overline{i_2} = \theta(\sigma_2)$ and θ is one to one. That is, θ is a group monomorphism.

Proof (continued). (ii) and (iii) If $\sigma \in \operatorname{Aut}_{K} F$, then since $F = K(\zeta)$, σ is completely determined by $\sigma(\zeta)$. By Theorem V.2.2, $\sigma(\zeta)$ is also a root of $x^{n} - 1_{K}$, so for some i with $1 \leq i \leq n - 1$ we have $\sigma(\zeta) = \zeta^{i}$. Similarly, since $\sigma^{-1} \in \operatorname{Aut}_{K} F$, then $\sigma^{-1}(\zeta)\zeta^{j}$ for some j with $1 \leq j \leq n - 1$. So $\zeta = \sigma^{-1}(\sigma(\zeta)) = \zeta^{ij}$. By Theorem I.3.4(v), we have $ij \equiv 1 \pmod{n}$ and hence $\overline{i} \in \mathbb{Z}_{n}$ as $\theta(\sigma) = \overline{i}$ where $\sigma(\zeta) = \zeta^{i}$. For $\sigma_{1}, \sigma_{2} \in \operatorname{Aut}_{F} K$ with $\sigma_{1}(\zeta) = \zeta^{i_{1}}$ and $\sigma_{2}(\zeta) = \zeta^{i_{2}}$ we have

$$\begin{aligned} \theta(\sigma_1 \circ \sigma_2) &= \overline{i_1 i_2} \text{ since } (\sigma_1 \circ \sigma_2)(\zeta) = \zeta^{i_1 i_2} \\ &= \overline{i_1} \overline{i_2} = \theta(\sigma_1)\theta(\sigma_2) \end{aligned}$$

and so θ is a group homomorphism. Also, if $\sigma_1 \neq \sigma_2$ (and so $i_1 \neq i_2$ since the σ 's are determined based on their values on ζ) then $\theta(\sigma_1) = \overline{i_1} \neq \overline{i_2} = \theta(\sigma_2)$ and θ is one to one. That is, θ is a group monomorphism. As commented above, if $\sigma(\zeta) = \zeta^i$ then \overline{i} is a unit in \mathbb{Z}_n , so $\operatorname{Im}(\theta)$ is a subgroup of the group of units in \mathbb{Z}_n .

Proof (continued). (ii) and (iii) If $\sigma \in \operatorname{Aut}_{K} F$, then since $F = K(\zeta)$, σ is completely determined by $\sigma(\zeta)$. By Theorem V.2.2, $\sigma(\zeta)$ is also a root of $x^{n} - 1_{K}$, so for some i with $1 \leq i \leq n - 1$ we have $\sigma(\zeta) = \zeta^{i}$. Similarly, since $\sigma^{-1} \in \operatorname{Aut}_{K} F$, then $\sigma^{-1}(\zeta)\zeta^{j}$ for some j with $1 \leq j \leq n - 1$. So $\zeta = \sigma^{-1}(\sigma(\zeta)) = \zeta^{ij}$. By Theorem I.3.4(v), we have $ij \equiv 1 \pmod{n}$ and hence $\overline{i} \in \mathbb{Z}_{n}$ as $\theta(\sigma) = \overline{i}$ where $\sigma(\zeta) = \zeta^{i}$. For $\sigma_{1}, \sigma_{2} \in \operatorname{Aut}_{F} K$ with $\sigma_{1}(\zeta) = \zeta^{i_{1}}$ and $\sigma_{2}(\zeta) = \zeta^{i_{2}}$ we have

$$\begin{aligned} \theta(\sigma_1 \circ \sigma_2) &= \overline{i_1 i_2} \text{ since } (\sigma_1 \circ \sigma_2)(\zeta) = \zeta^{i_1 i_2} \\ &= \overline{i_1} \overline{i_2} = \theta(\sigma_1)\theta(\sigma_2) \end{aligned}$$

and so θ is a group homomorphism. Also, if $\sigma_1 \neq \sigma_2$ (and so $i_1 \neq i_2$ since the σ 's are determined based on their values on ζ) then $\theta(\sigma_1) = \overline{i_1} \neq \overline{i_2} = \theta(\sigma_2)$ and θ is one to one. That is, θ is a group monomorphism. As commented above, if $\sigma(\zeta) = \zeta^i$ then \overline{i} is a unit in \mathbb{Z}_n , so $\operatorname{Im}(\theta)$ is a subgroup of the group of units in \mathbb{Z}_n .

Proof (continued). (ii) and (iii) By Exercise V.8.1, the order of the group of units in \mathbb{Z}_n is $\varphi(n)$, so be Lagrange's Theorem (Corollary I.4.6), with *d* as the order of $\operatorname{Im}(\theta)$, $d \mid \varphi(n)$. Also $\operatorname{Aut}_K F \cong \operatorname{Im}(\theta)$, so $\operatorname{Aut}_K F$ is an abelian group with order *d* where $d \mid \varphi(n)$. So (iii) follows. As commented above, *F* is Galois over *K* and since $\operatorname{Aut}_K F$ is abelian, then *F* is an abelian extension of *K*. By the Fundamental Theorem of Galois Theory (Theorem V.2.5(ii)), $[F : K] = |\operatorname{Aut}_K F| = d$. If *n* is prime then \mathbb{Z}_n is a field and all nonzero elements of \mathbb{Z}_n are units and by Theorem V.5.3 form a cyclic group. So $\operatorname{Aut}_K F \cong \operatorname{Im}(\theta)$ is a cyclic group and so *F* is a cyclic extension of *K* and (ii) follows.

Proof (continued). (ii) and (iii) By Exercise V.8.1, the order of the group of units in \mathbb{Z}_n is $\varphi(n)$, so be Lagrange's Theorem (Corollary I.4.6), with d as the order of $\operatorname{Im}(\theta)$, $d \mid \varphi(n)$. Also $\operatorname{Aut}_K F \cong \operatorname{Im}(\theta)$, so $\operatorname{Aut}_K F$ is an abelian group with order d where $d \mid \varphi(n)$. So (iii) follows. As commented above, F is Galois over K and since $\operatorname{Aut}_K F$ is abelian, then F is an abelian extension of K. By the Fundamental Theorem of Galois Theory (Theorem V.2.5(ii)), $[F : K] = |\operatorname{Aut}_K F| = d$. If n is prime then \mathbb{Z}_n is a field and all nonzero elements of \mathbb{Z}_n are units and by Theorem V.5.3 form a cyclic group. So $\operatorname{Aut}_K F \cong \operatorname{Im}(\theta)$ is a cyclic group and so F is a cyclic extension of K and (ii) follows.

Theorem V.8.2. Let $n \in \mathbb{N}$, let K be a field such that char(K) does not divide n, and let $g_n(x)$ be the *n*th cyclotomic polynomial over K. Then the following hold.

(i)
$$x^n - 1_K = \prod_{d|n} g_d(x)$$
.

(ii) The coefficients of $g_n(x)$ lie in the prime subfield P of K. If char(K) = 0 and P is identified with the field \mathbb{Q} of rationals, then the coefficients are actually integers.

(iii)
$$Deg(g_n(x)) = \varphi(n)$$
 where φ is the Euler phi function.

Proof. (i) Let F be the splitting field of $x^n - 1_K$. Then F is a cyclotomic extension of K or order n. Let $\zeta \in F$ be a primitive nth root of unity.

Theorem V.8.2. Let $n \in \mathbb{N}$, let K be a field such that char(K) does not divide n, and let $g_n(x)$ be the *n*th cyclotomic polynomial over K. Then the following hold.

(i)
$$x^n - 1_K = \prod_{d|n} g_d(x)$$
.

(ii) The coefficients of $g_n(x)$ lie in the prime subfield P of K. If char(K) = 0 and P is identified with the field \mathbb{Q} of rationals, then the coefficients are actually integers.

(iii) $Deg(g_n(x)) = \varphi(n)$ where φ is the Euler phi function.

Proof. (i) Let *F* be the splitting field of $x^n - 1_K$. Then *F* is a cyclotomic extension of *K* or order *n*. Let $\zeta \in F$ be a primitive *n*th root of unity. By Lemma V.7.10(i) applied to *F*, the cyclic group $G = \langle \zeta \rangle$ of all *n*th roots of unity contains all *d*th roots of unity for every divisor *d* of *n*. Now $\eta \in G$ is a primitive *d*th root of unity (where $d \mid n$) if and only if the order of η satisfies $|\eta| = d$.

Theorem V.8.2. Let $n \in \mathbb{N}$, let K be a field such that char(K) does not divide n, and let $g_n(x)$ be the *n*th cyclotomic polynomial over K. Then the following hold.

(i)
$$x^n - 1_K = \prod_{d|n} g_d(x)$$
.

(ii) The coefficients of $g_n(x)$ lie in the prime subfield P of K. If char(K) = 0 and P is identified with the field \mathbb{Q} of rationals, then the coefficients are actually integers.

(iii) $Deg(g_n(x)) = \varphi(n)$ where φ is the Euler phi function.

Proof. (i) Let *F* be the splitting field of $x^n - 1_K$. Then *F* is a cyclotomic extension of *K* or order *n*. Let $\zeta \in F$ be a primitive *n*th root of unity. By Lemma V.7.10(i) applied to *F*, the cyclic group $G = \langle \zeta \rangle$ of all *n*th roots of unity contains all *d*th roots of unity for every divisor *d* of *n*. Now $\eta \in G$ is a primitive *d*th root of unity (where $d \mid n$) if and only if the order of η satisfies $|\eta| = d$.

Theorem V.8.2. Let $n \in \mathbb{N}$, let K be a field such that char(K) does not divide n, and let $g_n(x)$ be the *n*th cyclotomic polynomial over K. Then the following hold.

Proof (continued). (i) Therefore for each divisor *d* of *n* (by the definition of $g_d(x)$), $g_d(x) = \prod_{\eta \in G, |\eta|=d} (x - \eta)$ and

$$x^n - 1_K = \prod_{\eta \in \mathcal{G}} (x - \eta) = \prod_{d \mid n} \left(\prod_{\eta \in \mathcal{G}, |\eta| = d} (x - \eta) \right) = \prod_{d \mid n} g_d(x).$$

(ii) We prove the first statement by (the Strong Principle of) Induction. Clearly $q_1(x) \in x - 1_K \in P[x]$.

Theorem V.8.2. Let $n \in \mathbb{N}$, let K be a field such that char(K) does not divide n, and let $g_n(x)$ be the *n*th cyclotomic polynomial over K. Then the following hold.

Proof (continued). (i) Therefore for each divisor *d* of *n* (by the definition of $g_d(x)$), $g_d(x) = \prod_{\eta \in G, |\eta|=d} (x - \eta)$ and

$$x^n - 1_K = \prod_{\eta \in G} (x - \eta) = \prod_{d \mid n} \left(\prod_{\eta \in G, |\eta| = d} (x - \eta) \right) = \prod_{d \mid n} g_d(x).$$

(ii) We prove the first statement by (the Strong Principle of) Induction. Clearly $q_1(x) \in x - 1_K \in P[x]$.

Proof (continued). (ii) Assume that (ii) is true for all k < n and let $f(x) = \prod_{d|n,d < n} g_d(x)$. Then $f \in P[x]$ by the induction hypothesis. In F[x] (F a cyclotomic extension of K of order n, as in the proof of (i))

$$x^n - 1_K = \prod_{d \mid n, d \le n} g_d(x) = g_n(x) \prod_{d \mid n, d < n} g_d(x) = g_n(x) f(x).$$

On the other hand, $x^n - 1_K \in P[x]$ and f is monic (since each $g_d(x)$ is monic).

Modern Algebra

Proof (continued). (ii) Assume that (ii) is true for all k < n and let $f(x) = \prod_{d|n,d < n} g_d(x)$. Then $f \in P[x]$ by the induction hypothesis. In F[x] (*F* a cyclotomic extension of *K* of order *n*, as in the proof of (i))

$$x^n - 1_K = \prod_{d|n,d \le n} g_d(x) = g_n(x) \prod_{d|n,d < n} g_d(x) = g_n(x)f(x).$$

On the other hand, $x^n - 1_K \in P[x]$ and f is monic (since each $g_d(x)$ is monic). Consequently, by the Division Algorithm in P[x] (Theorem III.6.2) we have that $x^n - 1_K - fh + r$ for unique $h, r \in P[x] \subset F[x]$ where $\deg(r) < \deg(f)$. Since $x^n - 1_K = fg_n$ from above, the uniqueness of h and r implies that r = 0 and $h = g_n$.

Proof (continued). (ii) Assume that (ii) is true for all k < n and let $f(x) = \prod_{d|n,d < n} g_d(x)$. Then $f \in P[x]$ by the induction hypothesis. In F[x] (*F* a cyclotomic extension of *K* of order *n*, as in the proof of (i))

$$x^n - 1_K = \prod_{d \mid n, d \le n} g_d(x) = g_n(x) \prod_{d \mid n, d < n} g_d(x) = g_n(x) f(x).$$

On the other hand, $x^n - 1_K \in P[x]$ and f is monic (since each $g_d(x)$ is monic). Consequently, by the Division Algorithm in P[x] (Theorem III.6.2) we have that $x^n - 1_K - fh + r$ for unique $h, r \in P[x] \subset F[x]$ where $\deg(r) < \deg(f)$. Since $x^n - 1_K = fg_n$ from above, the uniqueness of h and r implies that r = 0 and $h = g_n$. Since $h(x) \in P[x]$ then $g_n(x) = h(x) \in P[x]$. So the first statement in (ii) is true for n and so holds for all $n \in \mathbb{N}$.

Proof (continued). (ii) Assume that (ii) is true for all k < n and let $f(x) = \prod_{d|n,d < n} g_d(x)$. Then $f \in P[x]$ by the induction hypothesis. In F[x] (*F* a cyclotomic extension of *K* of order *n*, as in the proof of (i))

$$x^n - 1_K = \prod_{d \mid n, d \le n} g_d(x) = g_n(x) \prod_{d \mid n, d < n} g_d(x) = g_n(x) f(x).$$

On the other hand, $x^n - 1_K \in P[x]$ and f is monic (since each $g_d(x)$ is monic). Consequently, by the Division Algorithm in P[x] (Theorem III.6.2) we have that $x^n - 1_K - fh + r$ for unique $h, r \in P[x] \subset F[x]$ where $\deg(r) < \deg(f)$. Since $x^n - 1_K = fg_n$ from above, the uniqueness of h and r implies that r = 0 and $h = g_n$. Since $h(x) \in P[x]$ then $g_n(x) = h(x) \in P[x]$. So the first statement in (ii) is true for n and so holds for all $n \in \mathbb{N}$.

Theorem V.8.2. Let $n \in \mathbb{N}$, let K be a field such that char(K) does not divide n, and let $g_n(x)$ be the *n*th cyclotomic polynomial over K. Then the following hold.

(ii) The coefficients of $g_n(x)$ lie in the prime subfield P of K. If char(K) = 0 and P is identified with the field \mathbb{Q} of rationals, then the coefficients are actually integers.

Proof (continued). (ii) If $\operatorname{char}(K) = 0$ then the prime field $P \cong \mathbb{Q}$ by Theorem V.5.1. As argued above, $g_1(x) = x - 1 \in \mathbb{Z}[x]$ and by (i), $x^n - 1 = f(x)g_n(x)$ in $\mathbb{Q}[x]$ (with the above notation). By the Division Algorithm in $\mathbb{Z}[x]$, $x^n - 1 = fh + r$ were $\deg(r) < \deg(f)$, and $r, h \in \mathbb{Z}[x]$. But (as above) this implies r(x) = 0 and $h(x) = g_n(x)$. Since $h(x) \in \mathbb{Z}[x]$ then $g_n(x) \in \mathbb{Z}[x]$ and the second statement in (ii) is true for all $n \in \mathbb{N}$.

Modern Algebra

Theorem V.8.2. Let $n \in \mathbb{N}$, let K be a field such that char(K) does not divide n, and let $g_n(x)$ be the *n*th cyclotomic polynomial over K. Then the following hold.

(ii) The coefficients of $g_n(x)$ lie in the prime subfield P of K. If char(K) = 0 and P is identified with the field \mathbb{Q} of rationals, then the coefficients are actually integers.

Proof (continued). (ii) If char(K) = 0 then the prime field $P \cong \mathbb{Q}$ by Theorem V.5.1. As argued above, $g_1(x) = x - 1 \in \mathbb{Z}[x]$ and by (i), $x^n - 1 = f(x)g_n(x)$ in $\mathbb{Q}[x]$ (with the above notation). By the Division Algorithm in $\mathbb{Z}[x]$, $x^n - 1 = fh + r$ were deg(r) < deg(f), and $r, h \in \mathbb{Z}[x]$. But (as above) this implies r(x) = 0 and $h(x) = g_n(x)$. Since $h(x) \in \mathbb{Z}[x]$ then $g_n(x) \in \mathbb{Z}[x]$ and the second statement in (ii) is true for all $n \in \mathbb{N}$.

Theorem V.8.2. Let $n \in \mathbb{N}$, let K be a field such that char(K) does not divide n, and let $g_n(x)$ be the *n*th cyclotomic polynomial over K. Then the following hold.

(iii) $Deg(g_n(x)) = \varphi(n)$ where φ is the Euler phi function.

Proof (continued). (iii) By the definition of $g_n(x)$, deg (g_n) is the number of primitive *n*th roots of unity. Let ζ be such a primitive root so that every other primitive root is a power of ζ (since ζ generates *all n*th roots of unity). By Theorem I.3.6, ζ^i where $1 \le i \le n$ is a primitive *n*th root of unity (i.e., a generator of *G*) if and only if gcd(i, n) = (i, n) = 1. But the number of such *i* is by definition precisely $\varphi(n)$.

Theorem V.8.2. Let $n \in \mathbb{N}$, let K be a field such that char(K) does not divide n, and let $g_n(x)$ be the *n*th cyclotomic polynomial over K. Then the following hold.

(iii) $Deg(g_n(x)) = \varphi(n)$ where φ is the Euler phi function.

Proof (continued). (iii) By the definition of $g_n(x)$, $\deg(g_n)$ is the number of primitive *n*th roots of unity. Let ζ be such a primitive root so that every other primitive root is a power of ζ (since ζ generates *all n*th roots of unity). By Theorem I.3.6, ζ^i where $1 \le i \le n$ is a primitive *n*th root of unity (i.e., a generator of G) if and only if gcd(i, n) = (i, n) = 1. But the number of such *i* is by definition precisely $\varphi(n)$.