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Theorem V.8.1

Theorem V.8.1

Theorem V.8.1. Let n ∈ N, let K be a field such that char(K ) does not
divide n, and let F be a cyclotomic extension of K of order n. Then the
following hold.

(i) F = K (ζ) where ζ ∈ F is a primitive nth root of unity.

(ii) F is an abelian extension of dimension d where d | φ(n); if n
is prime then F is actually a cyclic extension.

(iii) AutK (F ) is isomorphic to a subgroup of order d of the
multiplicative group of units of Zn.

Proof. (i) Since char(K ) - n then nxn−1 6= 0 (i.e., is not the 0 polynomial
in K [x ]). With f (x) = xn − 1K we have the formal derivative
f ′(x) = nxn−1.

So if f (c) = 0 then f ′(x)(c) 6= 0 (because f ′(x) = 0 only
for x = 0). So by Theorem III.6.10(i), xn − 1K has only roots of
multiplicity one and so xn − 1K has n distinct roots in any splitting field of
xn − 1K .
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Theorem V.8.1

Theorem V.8.1 (continued 1)

Theorem V.8.1. Let n ∈ N, let K be a field such that char(K ) does not
divide n, and let F be a cyclotomic extension of K of order n. Then the
following hold.

(i) F = K (ζ) where ζ ∈ F is a primitive nth root of unity.

(ii) F is an abelian extension of dimension d where d | φ(n); if n
is prime then F is actually a cyclic extension.

Proof (continued). (i) Thus the cyclic group of nth roots of unity in F
has order n (and so is isomorphic to Zn) and contains a generator of this
cyclic group, which is (by definition) a primitive nth root of unity, say
ζ ∈ F . So the nth roots of unity are 1K , ζ, ζ2, . . . , ζn−1 and these are all in
K (ζ). Therefore F = K (ζ).

(ii) and (iii) Since xn − 1K has n distinct roots in F , then the irreducible
factors of xn − 1K are separable. By Exercise V.3.13 (the (iii)⇒(ii) part),
F = K (ζ) is separable and a splitting field of a polynomial in K [x ]. By
Theorem V.3.11 (the (ii)⇒(i) part), F = K (ζ) is algebraic and Galois over
K .
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Theorem V.8.1

Theorem V.8.1 (continued 2)

Proof (continued). (ii) and (iii) If σ ∈ AutKF , then since F = K (ζ), σ
is completely determined by σ(ζ). By Theorem V.2.2, σ(ζ) is also a root
of xn − 1K , so for some i with 1 ≤ i ≤ n− 1 we have σ(ζ) = ζ i . Similarly,
since σ−1 ∈ AutKF , then σ−1(ζ)ζ j for some j with 1 ≤ j ≤ n − 1. So
ζ = σ−1(σ(ζ)) = ζ ij .

By Theorem I.3.4(v), we have ij ≡ 1 (mod n) and
hence i ∈ Zn as θ(σ) = i where σ(ζ) = ζ i . For σ1, σ2 ∈ AutFK with
σ1(ζ) = ζ i1 and σ2(ζ) = ζ i2 we have

θ(σ1 ◦ σ2) = i1i2 since (σ1 ◦ σ2)(ζ) = ζ i1i2

= i1 i2 = θ(σ1)θ(σ2)

and so θ is a group homomorphism. Also, if σ1 6= σ2 (and so i1 6= i2 since
the σ’s are determined based on their values on ζ) then
θ(σ1) = i1 6= i2 = θ(σ2) and θ is one to one. That is, θ is a group
monomorphism. As commented above, if σ(ζ) = ζ i then i is a unit in Zn,
so Im(θ) is a subgroup of the group of units in Zn.
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Theorem V.8.1

Theorem V.8.1 (continued 3)

Proof (continued). (ii) and (iii) By Exercise V.8.1, the order of the
group of units in Zn is ϕ(n), so be Lagrange’s Theorem (Corollary I.4.6),
with d as the order of Im(θ), d | ϕ(n). Also AutKF ∼= Im(θ), so AutKF is
an abelian group with order d where d | ϕ(n). So (iii) follows. As
commented above, F is Galois over K and since AutKF is abelian, then F
is an abelian extension of K . By the Fundamental Theorem of Galois
Theory (Theorem V.2.5(ii)), [F : K ] = |AutKF | = d . If n is prime then Zn

is a field and all nonzero elements of Zn are units and by Theorem V.5.3
form a cyclic group. So AutKF ∼= Im(θ) is a cyclic group and so F is a
cyclic extension of K and (ii) follows.
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Theorem V.8.2

Theorem V.8.2

Theorem V.8.2. Let n ∈ N, let K be a field such that char(K ) does not
divide n, and let gn(x) be the nth cyclotomic polynomial over K . Then
the following hold.

(i) xn − 1K =
∏

d |n gd(x).

(ii) The coefficients of gn(x) lie in the prime subfield P of K . If
char(K ) = 0 and P is identified with the field Q of rationals,
then the coefficients are actually integers.

(iii) Deg(gn(x)) = ϕ(n) where ϕ is the Euler phi function.

Proof. (i) Let F be the splitting field of xn − 1K . Then F is a cyclotomic
extension of K or order n. Let ζ ∈ F be a primitive nth root of unity.

By
Lemma V.7.10(i) applied to F , the cyclic group G = 〈ζ〉 of all nth roots of
unity contains all dth roots of unity for every divisor d of n. Now η ∈ G is
a primitive dth root of unity (where d | n) if and only if the order of η
satisfies |η| = d .

() Modern Algebra January 2, 2016 7 / 11



Theorem V.8.2

Theorem V.8.2

Theorem V.8.2. Let n ∈ N, let K be a field such that char(K ) does not
divide n, and let gn(x) be the nth cyclotomic polynomial over K . Then
the following hold.

(i) xn − 1K =
∏

d |n gd(x).

(ii) The coefficients of gn(x) lie in the prime subfield P of K . If
char(K ) = 0 and P is identified with the field Q of rationals,
then the coefficients are actually integers.

(iii) Deg(gn(x)) = ϕ(n) where ϕ is the Euler phi function.

Proof. (i) Let F be the splitting field of xn − 1K . Then F is a cyclotomic
extension of K or order n. Let ζ ∈ F be a primitive nth root of unity. By
Lemma V.7.10(i) applied to F , the cyclic group G = 〈ζ〉 of all nth roots of
unity contains all dth roots of unity for every divisor d of n. Now η ∈ G is
a primitive dth root of unity (where d | n) if and only if the order of η
satisfies |η| = d .

() Modern Algebra January 2, 2016 7 / 11



Theorem V.8.2

Theorem V.8.2

Theorem V.8.2. Let n ∈ N, let K be a field such that char(K ) does not
divide n, and let gn(x) be the nth cyclotomic polynomial over K . Then
the following hold.

(i) xn − 1K =
∏

d |n gd(x).

(ii) The coefficients of gn(x) lie in the prime subfield P of K . If
char(K ) = 0 and P is identified with the field Q of rationals,
then the coefficients are actually integers.

(iii) Deg(gn(x)) = ϕ(n) where ϕ is the Euler phi function.

Proof. (i) Let F be the splitting field of xn − 1K . Then F is a cyclotomic
extension of K or order n. Let ζ ∈ F be a primitive nth root of unity. By
Lemma V.7.10(i) applied to F , the cyclic group G = 〈ζ〉 of all nth roots of
unity contains all dth roots of unity for every divisor d of n. Now η ∈ G is
a primitive dth root of unity (where d | n) if and only if the order of η
satisfies |η| = d .

() Modern Algebra January 2, 2016 7 / 11



Theorem V.8.2

Theorem V.8.2 (continued 1)

Theorem V.8.2. Let n ∈ N, let K be a field such that char(K ) does not
divide n, and let gn(x) be the nth cyclotomic polynomial over K . Then
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d |n gd(x).

(ii) The coefficients of gn(x) lie in the prime subfield P of K . If
char(K ) = 0 and P is identified with the field Q of rationals,
then the coefficients are actually integers.

Proof (continued). (i) Therefore for each divisor d of n (by the
definition of gd(x)), gd(x) =

∏
η∈G ,|η|=d(x − η) and

xn − 1K =
∏
η∈G

(x − η) =
∏
d |n

 ∏
η∈G ,|η|=d

(x − η)

 =
∏
d |n

gd(x).

(ii) We prove the first statement by (the Strong Principle of) Induction.
Clearly q1(x) ∈ x − 1K ∈ P[x ].
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Theorem V.8.2

Theorem V.8.2 (continued 2)

Proof (continued). (ii) Assume that (ii) is true for all k < n and let
f (x) =

∏
d |n,d<n gd(x). Then f ∈ P[x ] by the induction hypothesis. In

F [x ] (F a cyclotomic extension of K of order n, as in the proof of (i))

xn − 1K =
∏

d |n,d≤n

gd(x) = gn(x)
∏

d |n,d<n

gd(x) = gn(x)f (x).

On the other hand, xn − 1K ∈ P[x ] and f is monic (since each gd(x) is
monic).

Consequently, by the Division Algorithm in P[x ] (Theorem III.6.2)
we have that xn − 1K − fh + r for unique h, r ∈ P[x ] ⊂ F [x ] where
deg(r) < deg(f ). Since xn − 1K = fgn from above, the uniqueness of h
and r implies that r = 0 and h = gn. Since h(x) ∈ P[x ] then
gn(x) = h(x) ∈ P[x ]. So the first statement in (ii) is true for n and so
holds for all n ∈ N.
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Theorem V.8.2

Theorem V.8.2 (continued 3)
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Theorem V.5.1. As argued above, g1(x) = x − 1 ∈ Z[x ] and by (i),
xn − 1 = f (x)gn(x) in Q[x ] (with the above notation). By the Division
Algorithm in Z[x ], xn − 1 = fh + r were deg(r) < deg(f ), and r , h ∈ Z[x ].
But (as above) this implies r(x) = 0 and h(x) = gn(x). Since h(x) ∈ Z[x ]
then gn(x) ∈ Z[x ] and the second statement in (ii) is true for all n ∈ N.
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Theorem V.8.2 (continued 3)
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Theorem V.8.2

Theorem V.8.2 (continued 4)

Theorem V.8.2. Let n ∈ N, let K be a field such that char(K ) does not
divide n, and let gn(x) be the nth cyclotomic polynomial over K . Then
the following hold.

(iii) Deg(gn(x)) = ϕ(n) where ϕ is the Euler phi function.

Proof (continued). (iii) By the definition of gn(x), deg(gn) is the
number of primitive nth roots of unity. Let ζ be such a primitive root so
that every other primitive root is a power of ζ (since ζ generates all nth
roots of unity). By Theorem I.3.6, ζ i where 1 ≤ i ≤ n is a primitive nth
root of unity (i.e., a generator of G ) if and only if gcd(i , n) = (i , n) = 1.
But the number of such i is by definition precisely ϕ(n).
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