Proposition V 9.8

Modern Algebra

Chapter V. Fields and Galois Theory

V.9.Appendix. The General Equation of Degree n—Proofs of Theorems

over K. Let u_1, u_2, \ldots, u_n be the roots of $p_n(x)$ is some splitting field **Proof.** Let $p_n(x) \in \mathcal{K}(t_1, t_2, \dots, t_n)$ be the general polynomial of degree n general equation of degree n is solvable by radicals only if $n \leq 4$.

Proposition V.9.8. Abel's Theorem. Let K be a field and $n \in \mathbb{N}$. The

 $F = K(t_1, t_2, ..., t_n)(u_1, u_2, ..., u_n)$. In F, $p_n(x) = (x - u_1)(x - u_2) \cdots (x - u_n)$ and so the coefficients of $p_n(x)$ \mathcal{C}_3

Modern Algebra

Proposition V.9.8 (continued 1)

Proof (continued).

 $1 \le i_1 \le i_2 \le \dots \le i_k \le n$ $u_{i_1}u_{i_2}\cdots u_{i_k}$

$$t_n = u_1 u_2 \cdots u_n.$$

indeterminates $\{x_1, x_2, \dots, x_n\}$ and the field of rational functions each t_1, t_2, \ldots, t_n . That is, $F = K(u_1, u_2, \ldots, u_n)$. Now consider the So a field containing each root u_1, u_2, \ldots, u_n of $p_n(x)$ must also contain symmetric function in n indeterminates (see the appendix to Section V.2) polynomial). That is, $t_i = f_i(u_1, u_2, \dots, u_n)$ where f_i is the ith elementary $K(x_1, x_2, \ldots, x_n)$. (this is why the powers of -1 are included in the definition of the general

Proposition V.9.8 (continued 2)

of all symmetric rational functions in $K(x_1, x_2, \ldots, x_n)$ (that is, the rational functions fixed by any permutation of the indeterminates) **Proof (continued).** Let E be the subfield of $K(x_1, x_2, ..., x_n)$ consisting

solvable by radicals then $n \le 4$ by Corollary V.9.5. a Galois extension of E with Galois group S_n . S_n is solvable if and only if $n \leq 4$ by Corollary II.7.12 and Exercise II.7.10. Therefore, if $p_n(x) = 0$ is Appendix to Section V.2 (see page 253 of Hungerford) $K(x_1, x_2, ..., x_n)$ is $\operatorname{Aut}_E K(x_1, x_2, \dots, x_n)$. By the "Observation" in the notes on the Galois group of $p_n(x)$, $Aut_{K(t_1,t_2,...,t_n)}F$ would be isomorphic to $K(x_1,x_2,\ldots,x_n)$ such that $K(t_1,t_2,\ldots,t_n)$ is mapped onto E. Then the The basic idea of the proof is to construct an isomorphism heta mapping F to

Modern Algebra

December 29, 2015 4 / 8

Modern Algebra December 29, 2015 5 / 8

Proposition V.9.8 (continued 4)

Proposition V.9.8 (continued 3)

Since $g(f_1, f_2, \ldots, f_n)$ is a polynomial (since g is a polynomial and each f_i polynomial $g(x_1, x_2, \dots, x_n) = x_i$). So the homomorphism is an $g \in \mathcal{K}[x_1, x_2, \dots, x_n].$ By Theorem III.5.5 this mapping defines a ring the mapping of $K[t_1,t_2,\ldots,t_n]$ to $K[f_1,f_2,\ldots,f_n]$ based on the assignment of $g(t_1,t_2,\ldots,t_n)\mapsto g(f_1,f_2,\ldots,f_n)$ for each polynomial is a polynomial) in the indeterminates x_1, x_2, \ldots, x_n over K. hence $0 = g(f_1, f_2, ..., f_n) = g(g_1(x_1, x_2, ..., x_n), ..., f_n(x_1, x_2, ..., x_n)).$ By definition $f_k = f_k(x_1, x_2, \dots, x_n) = \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} x_{i_1} x_{i_2} \cdots x_{i_k}$ and Suppose $\theta(g(t_1, t_2, \dots, t_n)) = g(f_1, f_2, \dots, f_n) = 0$ for some polynomial g. epimorphism of rings, say θ mapping $K[t_1, t_2, \ldots, t_n]$ to $K[f_1, f_2, \ldots, f_n]$. constant polynomials and the fact that $t_i \mapsto f_i$ when considering homomorphism. "Clearly" this homomorphism is onto (consider the previous paragraph. By Theorem V.2.18, $E=\mathcal{K}(f_1,f_2,\ldots,f_n)$. Consider **Proof (continued).** We now construct the isomorphism discussed in the

 $\overline{p}_n(x) \in K(f_1, f_2, \dots, f_n)[x] = E[x]$ acting as $p_n(x) = x^n - t_1 x^{n-1} + t_2 x^{n-2} - \dots + (-1)^{n-1} t_{n-1} x + (-1)^n t_n \mapsto 0$ $x^n - f_1 x^{n-1} + f_2 x^{n-2} + \dots + (-1)^{n-1} f_{n-1} x + (-1)^n f_n = \overline{p}_n(x)$. Since the mapping $K(t_1, t_2, \ldots, t_n)$ to $K(f_1, f_2, \ldots, f_n) = E$. $g(t_1,t_2,\ldots,t_n)$ (by the definition of t_i). So $\operatorname{\mathsf{Ker}}(heta)=\{0\}$ and by Theorem $0 = g(f_1(u_1, u_2, \ldots, u_n), f_2(u_1, u_2, \ldots, u_n), \ldots, f_n(u_1, u_2, \ldots, u_n)) =$ if we substitute u_i for x_i then we get (in $K(u_1, u_2, \ldots, u_n)$) that symmetric functions defined in the Appendix to Section V.2). (multiply this expression out to confirm that it gives the elementary x_1, x_2, \ldots, x_n), then $\overline{p}_n(x)$ factors as $\overline{p}_n(x) = (x - x_1)(x - x_2) \cdots (x - x_n)$ f_i are the elementary symmetric functions in x indeterminates (say $p_n(x)$, and heta induces a mapping of $p_n(x) \in \mathcal{K}(t_1,t_2,\ldots,t_n)[x]$ to Now $F = K(a_1, u_2, \ldots, u_n)$ is a splitting field over $K(t_1, t_2, \ldots, t_n)$ of Exercise III.4.7, θ extends to an isomorphism of fields of quotients 1.2.3(i), heta is one to one. Therefore heta is an isomorphism. Furthermore, by **Proof (continued).** Now $F = K(u_1, u_2, ..., u_n)$ is a field containing K so

Proposition V.9.8 (continued 5)

degree n is solvable by radicals only if $n \leq 4$. **Proposition V.9.8.** Let K be a field and $n \in \mathbb{N}$. The general equation of

to an isomorphism mapping $\overline{p}_n(x)$ over $K(f_1, f_2, \dots, f_n) = E$. At this stage we have isomorphism $\theta: \mathcal{K}(t_1, t_2, \ldots, t_n) \to \mathcal{K}(f_1, f_2, \ldots, f_n) = E$. By Theorem V.3.8, θ extends **Proof (continued).** Therefore, $K(x_1, x_2, ..., x_n)$ is a splitting field of

isomorphism and the result follows as explained above. $K(x_1, x_2, \ldots, x_n)$. So this extension (which we still denote θ) maps F onto $K(x_1,x_2,\ldots,x_n)$ and maps $K(t_1,t_2,\ldots,t_n)$ onto $E;\, heta$ is the desired $F = K(t_1, t_2, \dots, t_n)(u_1, u_2, \dots, u_n) = K(u_1, u_2, \dots, u_n)$ onto

December 29, 2015 8 / 8