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Proposition V.9.8

Proposition V.9.8. Abel’s Theorem. Let K be a field and n ∈ N. The
general equation of degree n is solvable by radicals only if n ≤ 4.

Proof. Let pn(x) ∈ K (t1, t2, . . . , tn) be the general polynomial of degree n
over K . Let u1, u2, . . . , un be the roots of pn(x) is some splitting field
F = K (t1, t2, . . . , tn)(u1, u2, . . . , un). In F ,
pn(x) = (x − u1)(x − u2) · · · (x − un) and so the coefficients of pn(x)
satisfy

t1 =
n∑

i=1

ui

t2 =
∑

1≤i≤j≤n

uiuj

t3 =
∑

1≤i≤j≤k≤n

uiujuk

...
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Proposition V.9.8. Abel’s Theorem

Proposition V.9.8 (continued 1)

Proof (continued).

...

tk =
∑

1≤i1≤i2≤···≤ik≤n

ui1ui2 · · · uik

...

tn = u1u2 · · · un.

(this is why the powers of −1 are included in the definition of the general
polynomial). That is, ti = fi (u1, u2, . . . , un) where fi is the ith elementary
symmetric function in n indeterminates (see the appendix to Section V.2).
So a field containing each root u1, u2, . . . , un of pn(x) must also contain
each t1, t2, . . . , tn. That is, F = K (u1, u2, . . . , un). Now consider the
indeterminates {x1, x2, . . . , xn} and the field of rational functions
K (x1, x2, . . . , xn).
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Proposition V.9.8. Abel’s Theorem

Proposition V.9.8 (continued 2)

Proof (continued). Let E be the subfield of K (x1, x2, . . . , xn) consisting
of all symmetric rational functions in K (x1, x2, . . . , xn) (that is, the
rational functions fixed by any permutation of the indeterminates).

The basic idea of the proof is to construct an isomorphism θ mapping F to
K (x1, x2, . . . , xn) such that K (t1, t2, . . . , tn) is mapped onto E . Then the
Galois group of pn(x), AutK(t1,t2,...,tn)F would be isomorphic to
AutEK (x1, x2, . . . , xn).

By the “Observation” in the notes on the
Appendix to Section V.2 (see page 253 of Hungerford) K (x1, x2, . . . , xn) is
a Galois extension of E with Galois group Sn. Sn is solvable if and only if
n ≤ 4 by Corollary II.7.12 and Exercise II.7.10. Therefore, if pn(x) = 0 is
solvable by radicals then n ≤ 4 by Corollary V.9.5.
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Proposition V.9.8. Abel’s Theorem

Proposition V.9.8 (continued 3)

Proof (continued). We now construct the isomorphism discussed in the
previous paragraph. By Theorem V.2.18, E = K (f1, f2, . . . , fn). Consider
the mapping of K [t1, t2, . . . , tn] to K [f1, f2, . . . , fn] based on the
assignment of g(t1, t2, . . . , tn) 7→ g(f1, f2, . . . , fn) for each polynomial
g ∈ K [x1, x2, . . . , xn]. By Theorem III.5.5 this mapping defines a ring
homomorphism. “Clearly” this homomorphism is onto (consider the
constant polynomials and the fact that ti 7→ fi when considering
polynomial g(x1, x2, . . . , xn) = xi ). So the homomorphism is an
epimorphism of rings, say θ mapping K [t1, t2, . . . , tn] to K [f1, f2, . . . , fn].
Suppose θ(g(t1, t2, . . . , tn)) = g(f1, f2, . . . , fn) = 0 for some polynomial g .

By definition fk = fk(x1, x2, . . . , xn) =
∑

1≤i1<i2<···<ik≤n xi1xi2 · · · xik and
hence 0 = g(f1, f2, . . . , fn) = g(g1(x1, x2, . . . , xn), . . . , fn(x1, x2, . . . , xn)).
Since g(f1, f2, . . . , fn) is a polynomial (since g is a polynomial and each fi
is a polynomial) in the indeterminates x1, x2, . . . , xn over K .
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Proposition V.9.8. Abel’s Theorem

Proposition V.9.8 (continued 4)

Proof (continued). Now F = K (u1, u2, . . . , un) is a field containing K so
if we substitute ui for xi then we get (in K (u1, u2, . . . , un)) that
0 = g(f1(u1, u2, . . . , un), f2(u1, u2, . . . , un), . . . , fn(u1, u2, . . . , un)) =
g(t1, t2, . . . , tn) (by the definition of ti ). So Ker(θ) = {0} and by Theorem
I.2.3(i), θ is one to one. Therefore θ is an isomorphism. Furthermore, by
Exercise III.4.7, θ extends to an isomorphism of fields of quotients
mapping K (t1, t2, . . . , tn) to K (f1, f2, . . . , fn) = E .

Now F = K (a1, u2, . . . , un) is a splitting field over K (t1, t2, . . . , tn) of
pn(x), and θ induces a mapping of pn(x) ∈ K (t1, t2, . . . , tn)[x ] to
pn(x) ∈ K (f1, f2, . . . , fn)[x ] = E [x ] acting as
pn(x) = xn − t1x

n−1 + t2x
n−2 − · · ·+ (−1)n−1tn−1x + (−1)ntn 7→

xn − f1x
n−1 + f2x

n−2 + · · ·+ (−1)n−1fn−1x + (−1)nfn = pn(x). Since the
fi are the elementary symmetric functions in x indeterminates (say
x1, x2, . . . , xn), then pn(x) factors as pn(x) = (x − x1)(x − x2) · · · (x − xn)
(multiply this expression out to confirm that it gives the elementary
symmetric functions defined in the Appendix to Section V.2).
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Proposition V.9.8. Abel’s Theorem

Proposition V.9.8 (continued 5)

Proposition V.9.8. Let K be a field and n ∈ N. The general equation of
degree n is solvable by radicals only if n ≤ 4.

Proof (continued). Therefore, K (x1, x2, . . . , xn) is a splitting field of
pn(x) over K (f1, f2, . . . , fn) = E . At this stage we have isomorphism
θ : K (t1, t2, . . . , tn) → K (f1, f2, . . . , fn) = E . By Theorem V.3.8, θ extends
to an isomorphism mapping
F = K (t1, t2, . . . , tn)(u1, u2, . . . , un) = K (u1, u2, . . . , un) onto
K (x1, x2, . . . , xn).

So this extension (which we still denote θ) maps F onto
K (x1, x2, . . . , xn) and maps K (t1, t2, . . . , tn) onto E ; θ is the desired
isomorphism and the result follows as explained above.
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