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Proposition V.9.8

Proposition V.9.8. Abel’s Theorem. Let K be a field and n € N. The
general equation of degree n is solvable by radicals only if n < 4.
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Proposition V.9.8

Proposition V.9.8. Abel’s Theorem. Let K be a field and n € N. The
general equation of degree n is solvable by radicals only if n < 4.

Proof. Let p,(x) € K(t1,t2,...,t,) be the general polynomial of degree n
over K. Let u1, us,. .., u, be the roots of p,(x) is some splitting field

F= K(tl, to,..., t,,)(ul, Up, ..., Un). In F,

pn(x) = (x — u1)(x — up) - - - (x — up) and so the coefficients of p,(x)

satisfy
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Proposition V.9.8

Proposition V.9.8. Abel’s Theorem. Let K be a field and n € N. The
general equation of degree n is solvable by radicals only if n < 4.

Proof. Let p,(x) € K(t1,t2,...,t,) be the general polynomial of degree n
over K. Let u1, us,. .., u, be the roots of p,(x) is some splitting field

F= K(tl, to,..., t,,)(ul, Up, ..., Un). In F,

pn(x) = (x — u1)(x — up) - - - (x — up) and so the coefficients of p,(x)

satisfy N
1 = E uj
i=1
th = Z ujuj
1<i<j<n

t3 = E Ujljug

1<i<j<k<n
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Proposition V.9.8 (continued 1)

Proof (continued).

tk = § bj uj - - - Ui
1<h << <ix<n

th, = uiuz---Up.

(this is why the powers of —1 are included in the definition of the general
polynomial). That is, t; = fj(u1, u2, ..., up) where f; is the ith elementary
symmetric function in n indeterminates (see the appendix to Section V.2).
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Proposition V.9.8 (continued 1)

Proof (continued).

ty = E Uj Ujy =+ - Uj,

1<ii<h<--<ik<n

th, = uiuz---Up.

(this is why the powers of —1 are included in the definition of the general

polynomial). That is, t; = fj(u1, u2, ..., up) where f; is the ith elementary
symmetric function in n indeterminates (see the appendix to Section V.2).
So a field containing each root uy, u2, ..., up of py(x) must also contain
each t1, to,...,t,. Thatis, F = K(u1, u2,...,up). Now consider the
indeterminates {xi, x2,...,x,} and the field of rational functions

K(x1, X2, .., Xn)-
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Proposition V.9.8. Abel’s Theorem

Proposition V.9.8 (continued 2)

Proof (continued). Let E be the subfield of K(xi,x2,...,x,) consisting
of all symmetric rational functions in K(xi,x2,...,x,) (that is, the
rational functions fixed by any permutation of the indeterminates).
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Proposition V.9.8 (continued 2)

Proof (continued). Let E be the subfield of K(xi,x2,...,x,) consisting
of all symmetric rational functions in K(xi,x2,...,x,) (that is, the
rational functions fixed by any permutation of the indeterminates).

The basic idea of the proof is to construct an isomorphism 6 mapping F to
K(x1,x2,...,xn) such that K(t1, to,...,t,) is mapped onto E. Then the
Galois group of p,(x), Autk(s t,,..,t,)F would be isomorphic to

Aute K(x1,x2, ..., Xn).
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Proposition V.9.8 (continued 2)

Proof (continued). Let E be the subfield of K(xi,x2,...,x,) consisting
of all symmetric rational functions in K(xi,x2,...,x,) (that is, the
rational functions fixed by any permutation of the indeterminates).

The basic idea of the proof is to construct an isomorphism 6 mapping F to
K(x1,x2,...,xn) such that K(t1, to,...,t,) is mapped onto E. Then the
Galois group of p,(x), Autk(s t,,..,t,)F would be isomorphic to
AuteK(x1,x2,...,xn). By the "Observation” in the notes on the
Appendix to Section V.2 (see page 253 of Hungerford) K(x1,x2,...,Xn) is
a Galois extension of E with Galois group S,,. S, is solvable if and only if
n < 4 by Corollary 11.7.12 and Exercise 11.7.10.
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Proposition V.9.8 (continued 2)

Proof (continued). Let E be the subfield of K(xi,x2,...,x,) consisting
of all symmetric rational functions in K(xi,x2,...,x,) (that is, the
rational functions fixed by any permutation of the indeterminates).

The basic idea of the proof is to construct an isomorphism 6 mapping F to
K(x1,x2,...,xn) such that K(t1, to,...,t,) is mapped onto E. Then the
Galois group of p,(x), Autk(s t,,..,t,)F would be isomorphic to
AuteK(x1,x2,...,xn). By the "Observation” in the notes on the
Appendix to Section V.2 (see page 253 of Hungerford) K(x1,x2,...,Xn) is
a Galois extension of E with Galois group S,,. S, is solvable if and only if
n < 4 by Corollary 11.7.12 and Exercise 11.7.10. Therefore, if p,(x) =0 is
solvable by radicals then n < 4 by Corollary V.9.5.
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Proposition V.9.8 (continued 3)

Proof (continued). We now construct the isomorphism discussed in the
previous paragraph. By Theorem V.2.18, E = K(f, f2,...,f,). Consider
the mapping of K|[t1, ta, ..., ty] to K[f1, f2,..., ;] based on the
assignment of g(t1, to,...,t,) — g(f1, 2, ..., f,) for each polynomial

g € K[x1,x2,...,xn|. By Theorem I11.5.5 this mapping defines a ring
homomorphism.
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Proposition V.9.8 (continued 3)

Proof (continued). We now construct the isomorphism discussed in the
previous paragraph. By Theorem V.2.18, E = K(f, f2,...,f,). Consider
the mapping of K|[t1, ta, ..., ty] to K[f1, f2,..., ;] based on the
assignment of g(t1, to,...,t,) — g(f1, 2, ..., f,) for each polynomial

g € K[x1,x2,...,xn|. By Theorem I11.5.5 this mapping defines a ring
homomorphism. “Clearly” this homomorphism is onto (consider the
constant polynomials and the fact that t; — f; when considering
polynomial g(x1, X2, ...,Xn) = Xx;). So the homomorphism is an
epimorphism of rings, say 6 mapping K[t1, t2, ..., ta] to K[f,f, ..., f].
Suppose 0(g(t1, ta,...,ty)) = g(f, f2, ..., f) = 0 for some polynomial g.
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Proposition V.9.8 (continued 3)

Proof (continued). We now construct the isomorphism discussed in the
previous paragraph. By Theorem V.2.18, E = K(f, f2,...,f,). Consider
the mapping of K|[t1, ta, ..., ty] to K[f1, f2,..., ;] based on the
assignment of g(t1, to,...,t,) — g(f1, 2, ..., f,) for each polynomial

g € K[x1,x2,...,xn|. By Theorem I11.5.5 this mapping defines a ring
homomorphism. “Clearly” this homomorphism is onto (consider the
constant polynomials and the fact that t; — f; when considering
polynomial g(x1, X2, ...,Xn) = Xx;). So the homomorphism is an
epimorphism of rings, say 6 mapping K[t1, t2, ..., ta] to K[f,f, ..., f].
Suppose 0(g(t1, ta,...,ty)) = g(f, f2, ..., f) = 0 for some polynomial g.

By definition fx = fi(x1, X2, ..., Xn) = z:1§1-1<,-2<m<,-k§nx,'lx;2 -+ Xj, and
hence 0 = g(f1, 2, ..., fn) = g(g1(x1, X2y - -y Xn)s -« s Fn(X1, X2, . .., Xn))-
Since g(f, f, ..., f,) is a polynomial (since g is a polynomial and each f;
is a polynomial) in the indeterminates x1, xa, ..., x, over K.
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Proposition V.9.8. Abel’s Theorem

Proposition V.9.8 (continued 4)

Proof (continued). Now F = K(uy, u2,. .., up) is a field containing K so
if we substitute u; for x; then we get (in K(uy, up, ..., u,)) that
0=g(fA(u1,u2y... upn), (U1, uy ... up), ... four, uay ... up)) =
g(t1, ta, ..., t,) (by the definition of t;).
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Proposition V.9.8. Abel’s Theorem

Proposition V.9.8 (continued 4)

Proof (continued). Now F = K(uy, u2,. .., up) is a field containing K so
if we substitute u; for x; then we get (in K(uy, up, ..., u,)) that
0=g(fA(u1,u2y... upn), (U1, uy ... up), ... four, uay ... up)) =
g(ti, to, ..., ty) (by the definition of t;). So Ker(#) = {0} and by Theorem
1.2.3(i), € is one to one. Therefore 6§ is an isomorphism. Furthermore, by
Exercise I11.4.7, 6 extends to an isomorphism of fields of quotients

mapping K(t1, to,...,ty) to K(f,fa,...,f,) = E.
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Proposition V.9.8 (continued 4)

Proof (continued). Now F = K(uy, u2,. .., up) is a field containing K so
if we substitute u; for x; then we get (in K(uy, up, ..., u,)) that
0=g(fA(u1,u2y... upn), (U1, uy ... up), ... four, uay ... up)) =

g(ti, to, ..., ty) (by the definition of t;). So Ker(#) = {0} and by Theorem
1.2.3(i), € is one to one. Therefore 6§ is an isomorphism. Furthermore, by
Exercise I11.4.7, 6 extends to an isomorphism of fields of quotients
mapping K(t1, to,...,ty) to K(f,fa,...,f,) = E.

Now F = K(a1, uz,...,up) is a splitting field over K(t1, ta, ..., t,) of
pn(x), and 6 induces a mapping of p,(x) € K(t1,t2,...,ts)[x] to

Pa(x) € K(f1, fa,. .., )[x] = E[x] acting as

pn(x) = x" — tix" L 4 tox"2 — o (1) x4 (—1) "ty

X" — X" Hx" 2 (1) x (1), = P,(X).
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Proposition V.9.8 (continued 4)

Proof (continued). Now F = K(uy, u2,. .., up) is a field containing K so
if we substitute u; for x; then we get (in K(uy, up, ..., u,)) that
0=g(fA(u1,u2y... upn), (U1, uy ... up), ... four, uay ... up)) =

g(ti, to, ..., ty) (by the definition of t;). So Ker(#) = {0} and by Theorem
1.2.3(i), € is one to one. Therefore 6§ is an isomorphism. Furthermore, by
Exercise I11.4.7, 6 extends to an isomorphism of fields of quotients
mapping K(t1, to,...,ty) to K(f,fa,...,f,) = E.

Now F = K(a1, uz,...,up) is a splitting field over K(t1, ta, ..., t,) of
pn(x), and 6 induces a mapping of p,(x) € K(t1,t2,...,ts)[x] to

Pa(x) € K(f1, fa,. .., )[x] = E[x] acting as

pn(x) = x" — tix" L 4 tox"2 — o (1) x4 (—1) "ty

X" — X" F Hx" 2 4 (1) i x + (—1)"f, = P, (x). Since the
f; are the elementary symmetric functions in x indeterminates (say
X1,X2,...,Xn), then p,(x) factors as p,(x) = (x — x1)(x — x2) - - - (x — xn)
(multiply this expression out to confirm that it gives the elementary
symmetric functions defined in the Appendix to Section V.2).
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Proposition V.9.8 (continued 5)

Proposition V.9.8. Let K be a field and n € N. The general equation of
degree n is solvable by radicals only if n < 4.

Proof (continued). Therefore, K(xi,x2,...,x,) is a splitting field of
Pn(x) over K(fi, fa,...,fn) = E. At this stage we have isomorphism

0:K(tr,to,...,tn) = K(f,f,...,f) =E.
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Proposition V.9.8 (continued 5)

Proposition V.9.8. Let K be a field and n € N. The general equation of
degree n is solvable by radicals only if n < 4.

Proof (continued). Therefore, K(xi,x2,...,x,) is a splitting field of
Pn(x) over K(fi, fa,...,fn) = E. At this stage we have isomorphism

0: K(t,to,...,ty) — K(f,f,...,fn) = E. By Theorem V.3.8, 6 extends
to an isomorphism mapping

F=K(ti,to,...,tn) (1, u2,...,un) = K(u1, Un,...,up) onto

K(x1, %2, ..., Xn).
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Proposition V.9.8 (continued 5)

Proposition V.9.8. Let K be a field and n € N. The general equation of
degree n is solvable by radicals only if n < 4.

Proof (continued). Therefore, K(xi,x2,...,x,) is a splitting field of
Pn(x) over K(fi, fa,...,fn) = E. At this stage we have isomorphism

0: K(t,to,...,ty) — K(f,f,...,fn) = E. By Theorem V.3.8, 6 extends
to an isomorphism mapping

F=K(ti,to,...,tn) (1, u2,...,un) = K(u1, Un,...,up) onto
K(x1,x2,...,Xn). So this extension (which we still denote #) maps F onto
K(x1,x2,...,xn) and maps K(t1, t,...,t,) onto E; 6 is the desired
isomorphism and the result follows as explained above. O
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