Modern Algebra

Chapter V. Fields and Galois Theory

V.9. Radical Extensions—Proofs of Theorems

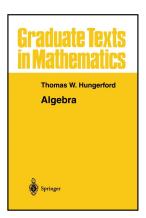


Table of contents

- 1 Lemma V.9.3
- 2 Theorem V.9.4
- 3 Corollary V.9.5
- 4 Proposition V.9.6
- 5 Corollary V.9.7. Galois' Theorem

Lemma V.9.3. If F is a radical extension of K and N is a normal closure of F over K (see Theorem V.3.16 on page 265), then N is a radical extension of K.

Proof. The proof is based on two claims.

Lemma V.9.3. If F is a radical extension of K and N is a normal closure of F over K (see Theorem V.3.16 on page 265), then N is a radical extension of K.

Proof. The proof is based on two claims.

Claim 1. If F is any finite dimensional extension of K (not necessarily a radical extension) and N is the normal closure of F over K, then N is the composite field $E_1E_2\cdots E_r$ (that is, the subfield of N generated by $E_1\cup E_2\cup\cdots\cup E_r$) where each E_i is a subfield of N which is K-isomorphic to F.

Modern Algebra May 2, 2016 3 / 25

Lemma V.9.3. If F is a radical extension of K and N is a normal closure of F over K (see Theorem V.3.16 on page 265), then N is a radical extension of K.

Proof. The proof is based on two claims.

Claim 1. If F is any finite dimensional extension of K (not necessarily a radical extension) and N is the normal closure of F over K, then N is the composite field $E_1E_2\cdots E_r$ (that is, the subfield of N generated by $E_1\cup E_2\cup\cdots\cup E_r$) where each E_i is a subfield of N generated by $E_1\cup E_2\cup\cdots\cup E_r$) where each E_i is a subfield of N which is K-isomorphic to F.

<u>Proof 1.</u> Since we hypothesize that F is a finite dimensional extension of K, let $\{w_1, w_2, \ldots, w_n\}$ be a basis of F over K and let f_i be the irreducible polynomial of w_i over K (finite dimensional extensions are algebraic extensions by Theorem V.1.11).

Lemma V.9.3. If F is a radical extension of K and N is a normal closure of F over K (see Theorem V.3.16 on page 265), then N is a radical extension of K.

Proof. The proof is based on two claims.

Claim 1. If F is any finite dimensional extension of K (not necessarily a radical extension) and N is the normal closure of F over K, then N is the composite field $E_1E_2\cdots E_r$ (that is, the subfield of N generated by $E_1\cup E_2\cup\cdots\cup E_r$) where each E_i is a subfield of N generated by $E_1\cup E_2\cup\cdots\cup E_r$) where each E_i is a subfield of N which is K-isomorphic to F.

<u>Proof 1.</u> Since we hypothesize that F is a finite dimensional extension of K, let $\{w_1, w_2, \ldots, w_n\}$ be a basis of F over K and let f_i be the irreducible polynomial of w_i over K (finite dimensional extensions are algebraic extensions by Theorem V.1.11).

Proof (continued). Since N is the normal closure of F over K then as shown in the proof of Theorem V.3.16(i) N is a splitting field of $\{f_1, f_2, \ldots, f_n\}$ over K. For a given f_j , let v be any root of $f_j \in K[x]$ in N. By Theorem V.1.8(ii), since w_i is also a root of $f_j \in K[x]$, then the identity $\iota: K \to K$ extends to an isomorphism $\sigma: K(w_j) \to K(v)$ such that $\sigma(w_j) = v$ (here we let L = K in Theorem V.1.8(ii); that is, σ is a K-isomorphism mapping $K(w_j) \to K(v)$ where $\sigma(w_j) = v$. By Theorem V.3.8 (with L = K, $S = \{f_i\}$, $S' = \{\sigma f_i\} = \{f_i\}$, and F = M = N) σ extends to a K-automorphism τ of N.

Proof (continued). Since N is the normal closure of F over K then as shown in the proof of Theorem V.3.16(i) N is a splitting field of $\{f_1, f_2, \dots, f_n\}$ over K. For a given f_i , let v be any root of $f_i \in K[x]$ in N. By Theorem V.1.8(ii), since w_i is also a root of $f_i \in K[x]$, then the identity $\iota: K \to K$ extends to an isomorphism $\sigma: K(w_i) \to K(v)$ such that $\sigma(w_i) = v$ (here we let L = K in Theorem V.1.8(ii); that is, σ is a K-isomorphism mapping $K(w_i) \to K(v)$ where $\sigma(w_i) = v$. By Theorem V.3.8 (with L = K, $S = \{f_i\}$, $S' = \{\sigma f_i\} = \{f_i\}$, and F = M = N) σ extends to a K-automorphism τ of N. Since F is a subfield of N which is isomorphic to F (i.e., $\tau(F) \cong F$) and $w_i \in F$ then $\tau(w_i) = \sigma(w_i) = v \in \tau(F)$. In this way we can find for every root v of every f_i a subfield E of N such that $v \in E$ and E is K-isomorphic to F (the K-isomorphism if τ , as constructed above).

Proof (continued). Since N is the normal closure of F over K then as shown in the proof of Theorem V.3.16(i) N is a splitting field of $\{f_1, f_2, \dots, f_n\}$ over K. For a given f_i , let v be any root of $f_i \in K[x]$ in N. By Theorem V.1.8(ii), since w_i is also a root of $f_i \in K[x]$, then the identity $\iota: K \to K$ extends to an isomorphism $\sigma: K(w_i) \to K(v)$ such that $\sigma(w_i) = v$ (here we let L = K in Theorem V.1.8(ii); that is, σ is a K-isomorphism mapping $K(w_i) \to K(v)$ where $\sigma(w_i) = v$. By Theorem V.3.8 (with L = K, $S = \{f_i\}$, $S' = \{\sigma f_i\} = \{f_i\}$, and F = M = N) σ extends to a K-automorphism τ of N. Since F is a subfield of N which is isomorphic to F (i.e., $\tau(F) \cong F$) and $w_i \in F$ then $\tau(w_i) = \sigma(w_i) = v \in \tau(F)$. In this way we can find for every root v of every f_i a subfield E of N such that $v \in E$ and E is K-isomorphic to F (the K-isomorphism if τ , as constructed above).

Modern Algebra May 2, 2016 4 / 25

Proof (continued). If E_1, E_2, \ldots, E_r are the subfields so obtained, then the subfield of N generated by $E_1 \cup E_2 \cup \cdots \cup E_r$ (that is, the "composite field" $E_1 E_2 \cdots E_r$) contains all the roots of f_1, f_2, \dots, f_n . That is, $E_1 E_2 \cdots E_r$ is a splitting field for $\{f_1, f_2, \dots, f_n\}$ and so by Theorem V.3.14 (the (ii) \Rightarrow (i) part) field $E_1E_2\cdots E_r\subset N$ is normal over K. When we have the case $v = w_i$ then the K-isomorphism $\tau : N \to N$ is then identity (since the corresponding $\sigma: K(w_i) \to K(v)$ is the identity) and in this case $\tau(F) = F$ and F is a subfield of the corresponding E_i . So F is a subfield of the composite field $E_1E_2\cdots E_r\subset N$. But by Theorem V.3.16(ii), no proper subfield of N containing F is normal over K, so it must be that $N = E_1 E_2 \cdots E_r$, proving Claim 1.

Proof (continued). If E_1, E_2, \ldots, E_r are the subfields so obtained, then the subfield of N generated by $E_1 \cup E_2 \cup \cdots \cup E_r$ (that is, the "composite field" $E_1 E_2 \cdots E_r$) contains all the roots of f_1, f_2, \dots, f_n . That is, $E_1 E_2 \cdots E_r$ is a splitting field for $\{f_1, f_2, \dots, f_n\}$ and so by Theorem V.3.14 (the (ii) \Rightarrow (i) part) field $E_1E_2\cdots E_r\subset N$ is normal over K. When we have the case $v = w_i$ then the K-isomorphism $\tau : N \to N$ is then identity (since the corresponding $\sigma: K(w_i) \to K(v)$ is the identity) and in this case $\tau(F) = F$ and F is a subfield of the corresponding E_i . So F is a subfield of the composite field $E_1E_2\cdots E_r\subset N$. But by Theorem V.3.16(ii), no proper subfield of N containing F is normal over K, so it must be that $N = E_1 E_2 \cdots E_r$, proving Claim 1.

Proof (continued).

Claim 2. If E_1, E_2, \ldots, E_r are each radical extensions of K, then the composite field $E_1 E_2 \cdots E_r$ is a radical extension of K.

Proof 2. If E_k is a radical extension of K then (by definition) $E_k = K(u_1^k, u_2^k, \dots, u_{n_k}^k)$ where some power of u_i^k lies in K and for each $i \geq 2$, some power of u_i^k lies in $K(u_1^k, u_2^k, \dots, u_{i-1}^k)$. Then $E_1 E_2 \cdots E_r = K(u_1^1, 2_2^1, \dots, u_{n_1}^1, u_1^2, u_2^2, \dots, u_{n_2}^2, u_1^3, u_2^3, \dots, u_{n_r}^r)$ is "clearly" a radical extension of K, proving Claim 2.

May 2, 2016

Proof (continued).

Claim 2. If E_1, E_2, \ldots, E_r are each radical extensions of K, then the composite field $E_1 E_2 \cdots E_r$ is a radical extension of K.

Proof 2. If E_k is a radical extension of K then (by definition) $E_k = K(u_1^k, u_2^k, \dots, u_{n_k}^k)$ where some power of u_i^k lies in K and for each $i \geq 2$, some power of u_i^k lies in $K(u_1^k, u_2^k, \dots, u_{i-1}^k)$. Then $E_1E_2\cdots E_r=K(u_1^1,2_2^1,\ldots,u_{n_1}^1,u_1^2,u_2^2,\ldots,u_{n_2}^2,u_1^3,u_2^3,\ldots,u_{n_2}^r)$ is "clearly" a radical extension of K, proving Claim 2.

Proof of Lemma. Since by definition, a radical extension is a finite extension, Claim 1 implies that $N = E_1 E_2 \cdots E_r$ where each E_i is a subfield of N which is K-isomorphic to F. Since F is hypothesized to be a radical extension of K, then each E_i is a radical extension of K.

Proof (continued).

Claim 2. If E_1, E_2, \dots, E_r are each radical extensions of K, then the composite field $E_1E_2\cdots E_r$ is a radical extension of K.

<u>Proof 2.</u> If E_k is a radical extension of K then (by definition) $E_k = K(u_1^k, u_2^k, \ldots, u_{n_k}^k)$ where some power of u_i^k lies in K and for each $i \geq 2$, some power of u_i^k lies in $K(u_1^k, u_2^k, \ldots, u_{i-1}^k)$. Then $E_1E_2\cdots E_r = K(u_1^1, 2_2^1, \ldots, u_{n_1}^1, u_1^2, u_2^2, \ldots, u_{n_2}^2, u_1^3, u_2^3, \ldots, u_{n_r}^r)$ is "clearly" a radical extension of K, proving Claim 2.

Proof of Lemma. Since by definition, a radical extension is a finite extension, Claim 1 implies that $N = E_1 E_2 \cdots E_r$ where each E_i is a subfield of N which is K-isomorphic to F. Since F is hypothesized to be a radical extension of K, then each E_i is a radical extension of K. By Claim 2,

 $N = E_1 E_2 \cdots E_r$ is a radical extension of K.

Proof (continued).

Claim 2. If E_1, E_2, \dots, E_r are each radical extensions of K, then the composite field $E_1E_2\cdots E_r$ is a radical extension of K.

<u>Proof 2.</u> If E_k is a radical extension of K then (by definition) $E_k = K(u_1^k, u_2^k, \ldots, u_{n_k}^k)$ where some power of u_i^k lies in K and for each $i \geq 2$, some power of u_i^k lies in $K(u_1^k, u_2^k, \ldots, u_{i-1}^k)$. Then $E_1E_2\cdots E_r = K(u_1^1, 2_2^1, \ldots, u_{n_1}^1, u_1^2, u_2^2, \ldots, u_{n_2}^2, u_1^3, u_2^3, \ldots, u_{n_r}^r)$ is "clearly" a radical extension of K, proving Claim 2.

Proof of Lemma. Since by definition, a radical extension is a finite extension, Claim 1 implies that $N = E_1 E_2 \cdots E_r$ where each E_i is a subfield of N which is K-isomorphic to F. Since F is hypothesized to be a radical extension of K, then each E_i is a radical extension of K. By Claim 2, $N = E_1 E_2 \cdots E_r$ is a radical extension of K.

Modern Algebra May 2, 2016 6 / 25

Theorem V.9.4

Theorem V.9.4. If F is a radical extension field of K and E is an intermediate field, then $Aut_K(E)$ is a solvable group.

Proof. Let K_0 be the fixed subfield of E relative to $\operatorname{Aut}_K E$ (so $K \subset K_0 \subset E$). Then $\operatorname{Aut}_{K_0} E = \operatorname{Aut}_K E$ and the fixed field of $\operatorname{Aut}_{K_0} E$ is K_0 so E is Galois over K_0 .

Theorem V 9.4

Theorem V.9.4. If F is a radical extension field of K and F is an intermediate field, then $Aut_K(E)$ is a solvable group.

Proof. Let K_0 be the fixed subfield of E relative to Aut_KE (so $K \subset K_0 \subset E$). Then $Aut_{K_0}E = Aut_K E$ and the fixed field of $Aut_{K_0}E$ is K_0 so E is Galois over K_0 . By Exercise V.9.1, F is a radical extension of K_0 (since $K \subset K_0 \subset E \subset F$; F is radical over K and so is radical over intermediate fields by the Exercise). By the definition of radical extension, F is then algebraic over K_0 and so E is algebraic over K. Our goal is to show that $Aut_K E$ is a solvable group.

Theorem V 9 4

Theorem V.9.4. If F is a radical extension field of K and E is an intermediate field, then $Aut_K(E)$ is a solvable group.

Proof. Let K_0 be the fixed subfield of E relative to Aut_KE (so $K \subset K_0 \subset E$). Then $Aut_{K_0}E = Aut_K E$ and the fixed field of $Aut_{K_0}E$ is K_0 so E is Galois over K_0 . By Exercise V.9.1, F is a radical extension of K_0 (since $K \subset K_0 \subset E \subset F$; F is radical over K and so is radical over intermediate fields by the Exercise). By the definition of radical extension, F is then algebraic over K_0 and so E is algebraic over K. Our goal is to show that $Aut_K E$ is a solvable group. However, $Aut_K E = Aut_{K_0} E$ where E is algebraic and Galois over K_0 ; so WLOG we can assume that E is algebraic and Galois over K to begin with.

Theorem V 9 4

Theorem V.9.4. If F is a radical extension field of K and F is an intermediate field, then $Aut_K(E)$ is a solvable group.

Proof. Let K_0 be the fixed subfield of E relative to Aut_KE (so $K \subset K_0 \subset E$). Then $Aut_{K_0}E = Aut_K E$ and the fixed field of $Aut_{K_0}E$ is K_0 so E is Galois over K_0 . By Exercise V.9.1, F is a radical extension of K_0 (since $K \subset K_0 \subset E \subset F$; F is radical over K and so is radical over intermediate fields by the Exercise). By the definition of radical extension, F is then algebraic over K_0 and so E is algebraic over K. Our goal is to show that $Aut_K E$ is a solvable group. However, $Aut_K E = Aut_{K_0} E$ where E is algebraic and Galois over K_0 ; so WLOG we can assume that E is algebraic and Galois over K to begin with.

Let N be a normal closure of F over K. By Lemma V.9.3, N is a radical extension of K. Since $K \subset E \subset F$ where E is algebraic and Galois over K (WLOG as above), then by Lemma V.2.13, E is stable (relative to F and K). That is, every K-automorphism in $Aut_K F$ maps E to itself.

Theorem V.9.4

Theorem V.9.4. If F is a radical extension field of K and E is an intermediate field, then $Aut_K(E)$ is a solvable group.

Proof. Let K_0 be the fixed subfield of E relative to $\operatorname{Aut}_K E$ (so $K \subset K_0 \subset E$). Then $\operatorname{Aut}_{K_0} E = \operatorname{Aut}_K E$ and the fixed field of $\operatorname{Aut}_{K_0} E$ is K_0 so E is Galois over K_0 . By Exercise V.9.1, F is a radical extension of K_0 (since $K \subset K_0 \subset E \subset F$; F is radical over K and so is radical over intermediate fields by the Exercise). By the definition of radical extension, F is then algebraic over K_0 and so E is algebraic over K. Our goal is to show that $\operatorname{Aut}_K E$ is a solvable group. However, $\operatorname{Aut}_K E = \operatorname{Aut}_{K_0} E$ where E is algebraic and Galois over K_0 ; so WLOG we can assume that E is algebraic and Galois over K to begin with.

Let N be a normal closure of F over K. By Lemma V.9.3, N is a radical extension of K. Since $K \subset E \subset F$ where E is algebraic and Galois over K (WLOG as above), then by Lemma V.2.13, E is stable (relative to F and K). That is, every K-automorphism in $\operatorname{Aut}_K F$ maps E to itself.

Proof (continued). Consequently, for any $\sigma \in \operatorname{Aut}_K N$ we can restrict σ to E (i.e., $\sigma|_E$) to produce an element of $\operatorname{Aut}_K E$. Let $\theta: \operatorname{Aut}_K N \to \operatorname{Aut}_K E$ be defined as $\theta(\sigma) = \sigma|_E$. Then θ is a homomorphism because $\theta(\sigma_1\sigma_2) = (\sigma_1\sigma_2)|_E = \sigma_1|_E\sigma_2|_E = \theta(\sigma_1)\theta(\sigma_2)$. Now since N is normal over K, then N is a splitting field over K by Theorem V.3.14 (the (i) \Rightarrow (ii) part), and so N is a splitting field over E. Now for $\sigma \in \operatorname{Aut}_K E$ we know that $\sigma: E \to E$ is an isomorphism and since N is a splitting field of E, then by Theorem V.3.8, σ can be extended to an isomorphism mapping $N \to N$. That is, σ extends to a K-automorphism of N.

Proof (continued). Consequently, for any $\sigma \in Aut_K N$ we can restrict σ to E (i.e., $\sigma|_{F}$) to produce an element of Aut_KE. Let $\theta: \operatorname{Aut}_{\kappa} N \to \operatorname{Aut}_{\kappa} E$ be defined as $\theta(\sigma) = \sigma|_{F}$. Then θ is a homomorphism because $\theta(\sigma_1\sigma_2) = (\sigma_1\sigma_2)|_F = \sigma_1|_F\sigma_2|_F = \theta(\sigma_1)\theta(\sigma_2)$. Now since N is normal over K, then N is a splitting field over K by Theorem V.3.14 (the (i) \Rightarrow (ii) part), and so N is a splitting field over E. Now for $\sigma \in Aut_K E$ we know that $\sigma : E \to E$ is an isomorphism and since N is a splitting field of E, then by Theorem V.3.8, σ can be extended to an isomorphism mapping $N \to N$. That is, σ extends to a K-automorphism of N. Applying homomorphism θ to the extension of σ produces $\sigma \in Aut_K E$. Since σ was an arbitrary element of $Aut_K E$, then θ is onto (i.e., an epimorphism). Since the homomorphic image of a solvable group is solvable by Theorem II.7.11(i), if we show that $Aut_K N$ is solvable then the solvability of $Aut_K E$ would follow.

Proof (continued). Consequently, for any $\sigma \in Aut_K N$ we can restrict σ to E (i.e., $\sigma|_{F}$) to produce an element of Aut_KE. Let $\theta: \operatorname{Aut}_{\kappa} N \to \operatorname{Aut}_{\kappa} E$ be defined as $\theta(\sigma) = \sigma|_{F}$. Then θ is a homomorphism because $\theta(\sigma_1\sigma_2) = (\sigma_1\sigma_2)|_F = \sigma_1|_F\sigma_2|_F = \theta(\sigma_1)\theta(\sigma_2)$. Now since N is normal over K, then N is a splitting field over K by Theorem V.3.14 (the (i) \Rightarrow (ii) part), and so N is a splitting field over E. Now for $\sigma \in Aut_K E$ we know that $\sigma : E \to E$ is an isomorphism and since N is a splitting field of E, then by Theorem V.3.8, σ can be extended to an isomorphism mapping $N \to N$. That is, σ extends to a K-automorphism of N. Applying homomorphism θ to the extension of σ produces $\sigma \in Aut_K E$. Since σ was an arbitrary element of $Aut_K E$, then θ is onto (i.e., an epimorphism). Since the homomorphic image of a solvable group is solvable by Theorem II.7.11(i), if we show that $Aut_K N$ is solvable then the solvability of $Aut_K E$ would follow.

Proof (continued). Let K_1 be the fixed subfield of N relative to $Aut_K N = Aut_{K_1} N$. Then (by definition) N is a Galois extension of K_1 and by Exercise V.9.1, N is a radical extension of K_1 since N is a radical extension of K and $K \subset K_1 \subset N$. Hence proving that $Aut_K E$ is solvable can be accomplished by proving that $Aut_{K_1}N$ is solvable where N is a radical extension of K_1 and N is Galois over K_1 . So WLOG we may assume that E is a Galois radical extension of K.

Proof (continued). Let K_1 be the fixed subfield of N relative to $Aut_K N = Aut_{K_1} N$. Then (by definition) N is a Galois extension of K_1 and by Exercise V.9.1, N is a radical extension of K_1 since N is a radical extension of K and $K \subset K_1 \subset N$. Hence proving that $Aut_K E$ is solvable can be accomplished by proving that $Aut_{K_1}N$ is solvable where N is a radical extension of K_1 and N is Galois over K_1 . So WLOG we may assume that F is a Galois radical extension of K.

With $F = K(u_1, u_2, ..., u_n)$ with $u_1^{m_1} \in K$ and $u_i^{m_i} \in K(u_1, u_2, ..., u_{i-1})$ for $i \geq 2$, where m_1 and m_i are chosen to be the smallest power of u_1 and u_i in $K(u_1, u_2, \ldots, u_{i-1})$.

Proof (continued). Let K_1 be the fixed subfield of N relative to $Aut_K N = Aut_{K_1} N$. Then (by definition) N is a Galois extension of K_1 and by Exercise V.9.1, N is a radical extension of K_1 since N is a radical extension of K and $K \subset K_1 \subset N$. Hence proving that $Aut_K E$ is solvable can be accomplished by proving that $Aut_{K_1}N$ is solvable where N is a radical extension of K_1 and N is Galois over K_1 . So WLOG we may assume that F is a Galois radical extension of K. With $F = K(u_1, u_2, ..., u_n)$ with $u_1^{m_1} \in K$ and $u_i^{m_i} \in K(u_1, u_2, ..., u_{i-1})$ for $i \geq 2$, where m_1 and m_i are chosen to be the smallest power of u_1 and u_i in $K(u_1, u_2, \dots, u_{i-1})$. We now establish that char(K) does not divide m_i . This is obvious if char(K) = 0. If char $(K) = p \neq 0$ and $m_i = rp^t$ where gcd(r, p) = (r, p) = 1.

Proof (continued). Let K_1 be the fixed subfield of N relative to $Aut_K N = Aut_{K_1} N$. Then (by definition) N is a Galois extension of K_1 and by Exercise V.9.1, N is a radical extension of K_1 since N is a radical extension of K and $K \subset K_1 \subset N$. Hence proving that $Aut_K E$ is solvable can be accomplished by proving that $Aut_{K_1}N$ is solvable where N is a radical extension of K_1 and N is Galois over K_1 . So WLOG we may assume that F is a Galois radical extension of K. With $F = K(u_1, u_2, ..., u_n)$ with $u_1^{m_1} \in K$ and $u_i^{m_i} \in K(u_1, u_2, ..., u_{i-1})$ for $i \geq 2$, where m_1 and m_i are chosen to be the smallest power of u_1 and u_i in $K(u_1, u_2, \dots, u_{i-1})$. We now establish that char(K) does not divide m_i . This is obvious if char(K) = 0. If char $(K) = p \neq 0$ and $m_i = rp^t$ where gcd(r, p) = (r, p) = 1. Then $u_i^{m-i} = u_i^{rp^t} \in K(u_1, u_2, \dots, u_{i-1})$ and, as remarked after Definition V.9.1, u_i is a root of $x^{m_1} - u_i^{m_1} = x_i^{rp^r} - u_i^{rp^r} \in K(u_1, u_2, \dots, u_{i-1})[x].$

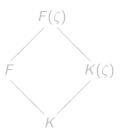
Proof (continued). Let K_1 be the fixed subfield of N relative to $Aut_K N = Aut_{K_1} N$. Then (by definition) N is a Galois extension of K_1 and by Exercise V.9.1, N is a radical extension of K_1 since N is a radical extension of K and $K \subset K_1 \subset N$. Hence proving that $Aut_K E$ is solvable can be accomplished by proving that $Aut_{K_1}N$ is solvable where N is a radical extension of K_1 and N is Galois over K_1 . So WLOG we may assume that F is a Galois radical extension of K. With $F = K(u_1, u_2, ..., u_n)$ with $u_1^{m_1} \in K$ and $u_i^{m_i} \in K(u_1, u_2, ..., u_{i-1})$ for $i \geq 2$, where m_1 and m_i are chosen to be the smallest power of u_1 and u_i in $K(u_1, u_2, \dots, u_{i-1})$. We now establish that char(K) does not divide m_i . This is obvious if char(K) = 0. If char $(K) = p \neq 0$ and $m_i = rp^t$ where gcd(r, p) = (r, p) = 1. Then $u_i^{m-i} = u_i^{rp^t} \in K(u_1, u_2, \dots, u_{i-1})$ and, as remarked after Definition V.9.1, u_i is a root of $x^{m_1} - u_i^{m_1} = x_i^{rp^t} - u_i^{rp^t} \in K(u_1, u_2, \dots, u_{i-1})[x].$

Proof (continued). But by the Freshman's Dream (Exercise III.1.11), $x_i^{rp^t} - u_i^{rp^t} = (x_i^r - u_i^r)^{p^t}$. So the irreducible polynomial of $u^r \in F$ over $K(u_1, u_2, \dots, u_{i-1})$ is $(x - u_i^r)^{p^t} = x^{p^t} - i_i^{rp^t} = x^{m_i} - u_i^{m_i}$ (notice that $u_i^{rp^t} = u_i^{m_i} \in K(u_1, u_2, \dots, u_{i-1})$ and since m_i is the smallest power of u_i in $K(u_1, u_2, \dots, u_{i-1})$ then $(x - u_i^r)^{p^t}$ is irreducible over $K(u_1, u_2, \dots, u_{i-1})$; the "constant term" of this polynomial is \pm a power of u_i). Therefore, by definition, u_i^r is purely inseparable over $K(u_1, u_2, \ldots, u_{i-1})$. But F is Galois over K (by the WLOG argument above) and so F is separable over K by Theorem V.3.11 (the (i) \Rightarrow (ii) part). Whence F is separable over the intermediate field $K(u_1, u_2, \dots, u_{i-1})$ by Exercise V.3.12.

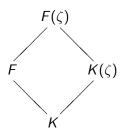
Proof (continued). But by the Freshman's Dream (Exercise III.1.11), $x_i^{rp^t} - u_i^{rp^t} = (x_i^r - u_i^r)^{p^t}$. So the irreducible polynomial of $u^r \in F$ over $K(u_1, u_2, \dots, u_{i-1})$ is $(x - u_i^r)^{p^t} = x^{p^t} - i_i^{rp^t} = x^{m_i} - u_i^{m_i}$ (notice that $u_i^{rp^t} = u_i^{m_i} \in K(u_1, u_2, \dots, u_{i-1})$ and since m_i is the smallest power of u_i in $K(u_1, u_2, \dots, u_{i-1})$ then $(x - u_i^r)^{p^t}$ is irreducible over $K(u_1, u_2, \dots, u_{i-1})$; the "constant term" of this polynomial is \pm a power of u_i). Therefore, by definition, u_i^r is purely inseparable over $K(u_1, u_2, \dots, u_{i-1})$. But F is Galois over K (by the WLOG argument above) and so F is separable over K by Theorem V.3.11 (the (i) \Rightarrow (ii) part). Whence F is separable over the intermediate field $K(u_1, u_2, \dots, u_{i-1})$ by Exercise V.3.12. So u_i^r is both separable and purely inseparable over K, and by Theorem V.6.2, $u_i^r \in K(u_1, u_2, \dots, u_{i-1})$. So we have that char(K) = p does not divide m_i , as claimed.

Proof (continued). But by the Freshman's Dream (Exercise III.1.11), $x_i^{rp^t} - u_i^{rp^t} = (x_i^r - u_i^r)^{p^t}$. So the irreducible polynomial of $u^r \in F$ over $K(u_1, u_2, \dots, u_{i-1})$ is $(x - u_i^r)^{p^t} = x^{p^t} - i_i^{rp^t} = x^{m_i} - u_i^{m_i}$ (notice that $u_i^{rp^t} = u_i^{m_i} \in K(u_1, u_2, \dots, u_{i-1})$ and since m_i is the smallest power of u_i in $K(u_1, u_2, \dots, u_{i-1})$ then $(x - u_i^r)^{p^t}$ is irreducible over $K(u_1, u_2, \dots, u_{i-1})$; the "constant term" of this polynomial is \pm a power of u_i). Therefore, by definition, u_i^r is purely inseparable over $K(u_1, u_2, \dots, u_{i-1})$. But F is Galois over K (by the WLOG argument above) and so F is separable over K by Theorem V.3.11 (the (i) \Rightarrow (ii) part). Whence F is separable over the intermediate field $K(u_1, u_2, \dots, u_{i-1})$ by Exercise V.3.12. So u_i^r is both separable and purely inseparable over K, and by Theorem V.6.2, $u_i^r \in K(u_1.u_2,...,u_{i-1})$. So we have that char(K) = p does not divide m_i , as claimed.

Proof (continued). If $m=m_1m_2\cdots m_n$ (where the m_i are minimal as required in the previous paragraph) then $\operatorname{char}(K)$ (which equals $\operatorname{char}(F)$ by considering $1_k=1_F$ in Theorem III.1.9(ii) for n>0, and the fact that there is no $n\in\mathbb{N}$ such that all na=0 for all $a\in K$ and the fact that $K\subset F$) does not divide m. Consider $x^m-1\in K[x]$ and let ζ be a primitive mth root of unity (which exists in the algebraic closure of K). Then $F(\zeta)$ contains all roots of x^m-1 and hence is a cyclotomic extension of K. We have:



Proof (continued). If $m=m_1m_2\cdots m_n$ (where the m_i are minimal as required in the previous paragraph) then $\mathrm{char}(K)$ (which equals $\mathrm{char}(F)$ by considering $1_k=1_F$ in Theorem III.1.9(ii) for n>0, and the fact that there is no $n\in\mathbb{N}$ such that all na=0 for all $a\in K$ and the fact that $K\subset F$) does not divide m. Consider $x^m-1\in K[x]$ and let ζ be a primitive mth root of unity (which exists in the algebraic closure of K). Then $F(\zeta)$ contains all roots of x^m-1 and hence is a cyclotomic extension of K. We have:



Proof (continued). By Theorem V.8.1(ii), $F(\zeta)$ is an abelian extension of F and so (by definition of "abelian extension") is Galois over F. By Exercise V.3.15(b), $F(\zeta)$ is Galois over K (F is Galois over K WLOG as argued above, and $F(\zeta)$ is a splitting field of x^m-1 over F). By the Fundamental Theorem of Galois Theory (Theorem V.2.5(ii)) we have that $\operatorname{Aut}_K F \cong \operatorname{Aut}_K F(\zeta)/\operatorname{Aut}_F F(\zeta)$ (in Theorem V.2.5 we take $F = F(\zeta)$, E = F, K = K). This shows that $\operatorname{Aut}_K F$ is the homomorphic image of $\operatorname{Aut}_K F(\zeta)$ under canonical epimorphism (see page 43 on Section I.5). So to show that $\operatorname{Aut}_K F$ is solvable, it is sufficient by Theorem II.7.11(i) to show that $\operatorname{Aut}_K F(\zeta)$ is solvable.

Proof (continued). By Theorem V.8.1(ii), $F(\zeta)$ is an abelian extension of F and so (by definition of "abelian extension") is Galois over F. By Exercise V.3.15(b), $F(\zeta)$ is Galois over K (F is Galois over K WLOG as argued above, and $F(\zeta)$ is a splitting field of x^m-1 over F). By the Fundamental Theorem of Galois Theory (Theorem V.2.5(ii)) we have that $\operatorname{Aut}_K F \cong \operatorname{Aut}_K F(\zeta)/\operatorname{Aut}_F F(\zeta)$ (in Theorem V.2.5 we take $F = F(\zeta)$, E = F, K = K). This shows that $Aut_K F$ is the homomorphic image of $Aut_K F(\zeta)$ under canonical epimorphism (see page 43 on Section I.5). So to show that $Aut_K F$ is solvable, it is sufficient by Theorem II.7.11(i) to show that $\operatorname{Aut}_K F(\zeta)$ is solvable. Observe that $K(\zeta)$ is an abelian (and so by the definition of Galois) extension of K by Theorem V.8.1(ii). Whence by the Fundamental Theorem of Galois Theory (Theorem V.2.5(ii) with $F = F(\zeta), E = K(\zeta), K = K$) we have $\operatorname{Aut}_K K(\zeta) \cong \operatorname{Aut}_K F(\zeta) / \operatorname{Aut}_{K(\zeta)} F(\zeta)$. Since $\operatorname{Aut}_K K(\zeta)$ is abelian then it is solvable trivially (see page 102).

Proof (continued). By Theorem V.8.1(ii), $F(\zeta)$ is an abelian extension of F and so (by definition of "abelian extension") is Galois over F. By Exercise V.3.15(b), $F(\zeta)$ is Galois over K (F is Galois over K WLOG as argued above, and $F(\zeta)$ is a splitting field of x^m-1 over F). By the Fundamental Theorem of Galois Theory (Theorem V.2.5(ii)) we have that $\operatorname{Aut}_K F \cong \operatorname{Aut}_K F(\zeta)/\operatorname{Aut}_F F(\zeta)$ (in Theorem V.2.5 we take $F = F(\zeta)$, E = F, K = K). This shows that $Aut_K F$ is the homomorphic image of $Aut_K F(\zeta)$ under canonical epimorphism (see page 43 on Section I.5). So to show that $Aut_K F$ is solvable, it is sufficient by Theorem II.7.11(i) to show that $\operatorname{Aut}_K F(\zeta)$ is solvable. Observe that $K(\zeta)$ is an abelian (and so by the definition of Galois) extension of K by Theorem V.8.1(ii). Whence by the Fundamental Theorem of Galois Theory (Theorem V.2.5(ii) with $F = F(\zeta), E = K(\zeta), K = K$) we have $\operatorname{Aut}_{K}K(\zeta) \cong \operatorname{Aut}_{K}F(\zeta)/\operatorname{Aut}_{K(\zeta)}F(\zeta)$. Since $\operatorname{Aut}_{K}K(\zeta)$ is abelian then it is solvable trivially (see page 102).

Theorem V.9.4 (continued 6)

Proof (continued). By Theorem II.7.11(ii), if we knew that $Aut_{K(\zeta)}F(\zeta)$ were solvable, then we would know that $Aut_K F(\zeta)$ is solvable and the proof would be complete. Thus we need only prove that $Aut_{K(\zeta)}F(\zeta)$ is solvable.

As shown above, $F(\zeta)$ is Galois over K and hence, by the Fundamental Theorem of Galois Theory (Theorem V.2.5(ii)), over any intermediate field. Let $E_0 = K(\zeta)$ and define $E_i = K(\zeta, u_1, u_2, \dots, u_i)$ for i = 1, 2, ..., n so that $E_n = K(\zeta, u_1, u_2, ..., u_n) = F(\zeta)$.

Theorem V.9.4 (continued 6)

Proof (continued). By Theorem II.7.11(ii), if we knew that $\operatorname{Aut}_{K(\zeta)}F(\zeta)$ were solvable, then we would know that $\operatorname{Aut}_KF(\zeta)$ is solvable and the proof would be complete. Thus we need only prove that $\operatorname{Aut}_{K(\zeta)}F(\zeta)$ is solvable.

As shown above, $F(\zeta)$ is Galois over K and hence, by the Fundamental Theorem of Galois Theory (Theorem V.2.5(ii)), over any intermediate field. Let $E_0 = K(\zeta)$ and define $E_i = K(\zeta, u_1, u_2, \ldots, u_i)$ for $i = 1, 2, \ldots, n$ so that $E_n = K(\zeta, u_1, u_2, \ldots, u_n) = F(\zeta)$. Let $H_i = \operatorname{Aut}_{E_i} F(\zeta)$ be the subgroup of $\operatorname{Aut}_{K(\zeta)} F(\zeta)$ corresponding to field E_i under Galois correspondence in the Fundamental Theorem of Galois Theory (Theorem V.2.5).

Modern Algebra May 2, 2016 13 / 25

Theorem V.9.4 (continued 6)

Proof (continued). By Theorem II.7.11(ii), if we knew that $\operatorname{Aut}_{K(\zeta)}F(\zeta)$ were solvable, then we would know that $\operatorname{Aut}_KF(\zeta)$ is solvable and the proof would be complete. Thus we need only prove that $\operatorname{Aut}_{K(\zeta)}F(\zeta)$ is solvable.

As shown above, $F(\zeta)$ is Galois over K and hence, by the Fundamental Theorem of Galois Theory (Theorem V.2.5(ii)), over any intermediate field. Let $E_0 = K(\zeta)$ and define $E_i = K(\zeta, u_1, u_2, \ldots, u_i)$ for $i = 1, 2, \ldots, n$ so that $E_n = K(\zeta, u_1, u_2, \ldots, u_n) = F(\zeta)$. Let $H_i = \operatorname{Aut}_{E_i} F(\zeta)$ be the subgroup of $\operatorname{Aut}_{K(\zeta)} F(\zeta)$ corresponding to field E_i under Galois correspondence in the Fundamental Theorem of Galois Theory (Theorem V.2.5).

Modern Algebra May 2, 2016 13 / 25

Theorem V.9.4 (continued 7)

Proof (continued). Schematically we have:

Now ζ is an mth root of unity where $m=m_1m_2\cdots m_n$, so by Lemma V.7.10(i), $K(\zeta)$ contains a primitive m_i th root of unity for each i. Since $u_i^{m_i} \in E_{i-1}$ and $E_i = E_{i-1}(u_i)$, then by Lemma V.7.10(ii) (with $d=m_i$), E_i is a splitting field of $x^{m_i}-1$ over E_{i-1} .

Modern Algebra May 2, 2016

14 / 25

Theorem V.9.4 (continued 7)

Proof (continued). Schematically we have:

Now ζ is an mth root of unity where $m = m_1 m_2 \cdots m_n$, so by Lemma V.7.10(i), $K(\zeta)$ contains a primitive m_i th root of unity for each i. Since $u_i^{m_i} \in E_{i-1}$ and $E_i = E_{i-1}(u_i)$, then by Lemma V.7.10(ii) (with $d = m_i$), E_i is a splitting field of $x^{m_i} - 1$ over E_{i-1} . By Theorem V.7.11 (the (ii) \Rightarrow (i) part), E_i is a cyclic extension of E_{i-1} ; that is, $Aut_{E_{i-1}}E_i$ is a cyclic group. By definition of "cyclic extension," E_i is Galois over E_{i-1} .

Theorem V.9.4 (continued 7)

Proof (continued). Schematically we have:

Now ζ is an mth root of unity where $m = m_1 m_2 \cdots m_n$, so by Lemma V.7.10(i), $K(\zeta)$ contains a primitive m_i th root of unity for each i. Since $u_i^{m_i} \in E_{i-1}$ and $E_i = E_{i-1}(u_i)$, then by Lemma V.7.10(ii) (with $d = m_i$), E_i is a splitting field of $x^{m_i} - 1$ over E_{i-1} . By Theorem V.7.11 (the (ii) \Rightarrow (i) part), E_i is a cyclic extension of E_{i-1} ; that is, $Aut_{E_{i-1}}E_i$ is a cyclic group. By definition of "cyclic extension," E_i is Galois over E_{i-1} .

Theorem V.9.4 (continued 8)

Theorem V.9.4. If F is a radical extension field of K and E is an intermediate field, then $Aut_K(E)$ is a solvable group.

Proof (continued). So by the Fundamental Theorem of Galois Theory (Theorem V.2.5(ii)) we have the normal subgroups $J_i \triangleleft H_{i-1}$ (or equivalently, $\operatorname{Aut}_{F_i} F(\zeta) \triangleleft \operatorname{Aut}_{F_{i-1}} F(\zeta)$) and $H_{i-1}/H_i = \operatorname{Aut}_{F_{i-1}} F(\zeta) / \operatorname{Aut}_{E_i} F(\zeta) \cong \operatorname{Aut}_{E_{i-1}} E_i$ (with $F = F(\zeta)$, $E = E_i$, $K = E_{i-1}$ in Theorem V.2.5(ii)). So $H_{i-1}/H_i \cong Aut_{E_{i-1}}E_i$ is cyclic (and so abelian). Consequently. $\{e\} = H_n < H_{n-1} < \cdots < J_1 < H_0 = \operatorname{Aut}_{K(\zeta)} F(\zeta)$ is a solvable series by

definition (see Definition II.8.3). By Theorem II.8.5, $Aut_{K(\zeta)}F(\zeta)$ is

Theorem V.9.4 (continued 8)

Theorem V.9.4. If F is a radical extension field of K and E is an intermediate field, then $Aut_K(E)$ is a solvable group.

Proof (continued). So by the Fundamental Theorem of Galois Theory (Theorem V.2.5(ii)) we have the normal subgroups $J_i \triangleleft H_{i-1}$ (or equivalently, $\operatorname{Aut}_{F_i} F(\zeta) \triangleleft \operatorname{Aut}_{F_{i-1}} F(\zeta)$) and $H_{i-1}/H_i = \operatorname{Aut}_{F_i}, F(\zeta)/\operatorname{Aut}_{F_i}F(\zeta) \cong \operatorname{Aut}_{F_i}, E_i \text{ (with } F = F(\zeta), E = E_i,$ $K = E_{i-1}$ in Theorem V.2.5(ii)). So $H_{i-1}/H_i \cong Aut_{E_i}$, E_i is cyclic (and so abelian). Consequently, $\{e\} = H_n < H_{n-1} < \cdots < J_1 < H_0 = \operatorname{Aut}_{K(\zeta)} F(\zeta)$ is a solvable series by

definition (see Definition II.8.3). By Theorem II.8.5, $Aut_{K(\zeta)}F(\zeta)$ is solvable. Therefore, this result cascades back through the line of implications and WLOG's to imply that $Aut_K E$ is solvable.

Theorem V.9.4 (continued 8)

Theorem V.9.4. If F is a radical extension field of K and E is an intermediate field, then $Aut_K(E)$ is a solvable group.

Proof (continued). So by the Fundamental Theorem of Galois Theory (Theorem V.2.5(ii)) we have the normal subgroups $J_i \triangleleft H_{i-1}$ (or equivalently, $\operatorname{Aut}_{E_i}F(\zeta) \triangleleft \operatorname{Aut}_{E_{i-1}}F(\zeta)$) and $H_{i-1}/H_i = \operatorname{Aut}_{E_{i-1}}F(\zeta)/\operatorname{Aut}_{E_i}F(\zeta) \cong \operatorname{Aut}_{E_{i-1}}E_i$ (with $F = F(\zeta)$, $E = E_i$, $K = E_{i-1}$ in Theorem V.2.5(ii)). So $H_{i-1}/H_i \cong \operatorname{Aut}_{E_{i-1}}E_i$ is cyclic (and so abelian). Consequently, $\{e\} = H_n < H_{n-1} < \cdots < J_1 < H_0 = \operatorname{Aut}_{K(\zeta)}F(\zeta)$ is a solvable series by definition (see Definition II.8.3). By Theorem II.8.5, $\operatorname{Aut}_{K(\zeta)}F(\zeta)$ is solvable. Therefore, this result cascades back through the line of

Modern Algebra May 2, 2016 15 / 25

implications and WLOG's to imply that $Aut_K E$ is solvable.

Corollary V.9.5

Corollary V.9.5. Let K be a field and $f \in K[x]$. If the equation f(x) = 0is solvable by radicals, then the Galois group of f is a solvable group.

Proof. If f(x) = 0 is solvable by radicals, then by Definition V.9.2, there is a radical extension F of K and a splitting field E of f over K such that $F \supset E \supset K$

Corollary V.9.5

Corollary V.9.5. Let K be a field and $f \in K[x]$. If the equation f(x) = 0is solvable by radicals, then the Galois group of f is a solvable group.

Proof. If f(x) = 0 is solvable by radicals, then by Definition V.9.2, there is a radical extension F of K and a splitting field E of f over K such that $F \supset E \supset K$. The Galois group of f is Aut_KE by Definition V.4.1. By Theorem V.9.4, Aut κE is a solvable group.

> May 2, 2016 16 / 25

Corollary V.9.5

Corollary V.9.5. Let K be a field and $f \in K[x]$. If the equation f(x) = 0is solvable by radicals, then the Galois group of f is a solvable group.

Proof. If f(x) = 0 is solvable by radicals, then by Definition V.9.2, there is a radical extension F of K and a splitting field E of f over K such that $F \supset E \supset K$. The Galois group of f is Aut_KE by Definition V.4.1. By Theorem V.9.4, Aut_KE is a solvable group.

> May 2, 2016 16 / 25

Proposition V.9.6. Let E be a finite dimensional Galois extension field of K with solvable Galois group $Aut_K(F)$. Assume that char(K) does not divide [E:K]. Then there exists a radical extension F of K such that $F \supset E \supset K$.

Proof. By the Fundamental Theorem of Galois Theory (theorem V.2.5(i)), $|Aut_K E| = [E : K]$, so $Aut_K E$ is a finite solvable group. By Proposition II.8.6, Aut_KE has a composition series whose factors are cyclic of prime order.

Proposition V.9.6. Let E be a finite dimensional Galois extension field of K with solvable Galois group $Aut_K(F)$. Assume that char(K) does not divide [E:K]. Then there exists a radical extension F of K such that $F \supset E \supset K$.

Proof. By the Fundamental Theorem of Galois Theory (theorem V.2.5(i)), $|Aut_K E| = [E : K]$, so $Aut_K E$ is a finite solvable group. By Proposition II.8.6, Aut_K E has a composition series whose factors are cyclic of prime order. So there is a normal subgroup H of Aut_KE of some prime index p; that is, $p = |(\operatorname{Aut}_K E)/H| = |\operatorname{Aut}_K E|/|H| = |E:K|/|H|$ and so [E:K] = p|H|. Since char $(K) \nmid [E:K]$ then char $(K) \nmid p$.

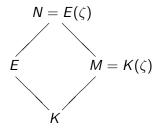
Proposition V.9.6. Let E be a finite dimensional Galois extension field of K with solvable Galois group $Aut_K(F)$. Assume that char(K) does not divide [E:K]. Then there exists a radical extension F of K such that $F \supset E \supset K$.

Proof. By the Fundamental Theorem of Galois Theory (theorem V.2.5(i)), $|Aut_K E| = [E : K]$, so $Aut_K E$ is a finite solvable group. By Proposition II.8.6, Aut_KE has a composition series whose factors are cyclic of prime order. So there is a normal subgroup H of $Aut_K E$ of some prime index p; that is, $p = |(Aut_K E)/H| = |Aut_K E|/|H| = [E : K]/|H|$ and so [E:K] = p|H|. Since char $(K) \nmid [E:K]$ then char $(K) \nmid p$. Let $N = E(\zeta)$ be a cyclotomic extension of E where ζ is a primitive pth root of unity (which can be done by Theorem V.8.1(i)). Define $M = K(\zeta)$.

Proposition V.9.6. Let E be a finite dimensional Galois extension field of K with solvable Galois group $Aut_K(F)$. Assume that char(K) does not divide [E:K]. Then there exists a radical extension F of K such that $F \supset E \supset K$.

Proof. By the Fundamental Theorem of Galois Theory (theorem V.2.5(i)), $|Aut_K E| = [E : K]$, so $Aut_K E$ is a finite solvable group. By Proposition II.8.6, Aut_KE has a composition series whose factors are cyclic of prime order. So there is a normal subgroup H of $Aut_K E$ of some prime index p; that is, $p = |(Aut_K E)/H| = |Aut_K E|/|H| = [E : K]/|H|$ and so [E:K]=p|H|. Since char $(K) \nmid [E:K]$ then char $(K) \nmid p$. Let $N=E(\zeta)$ be a cyclotomic extension of E where ζ is a primitive pth root of unity (which can be done by Theorem V.8.1(i)). Define $M = K(\zeta)$.

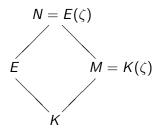
Proof (continued). Then we have:



By Theorem V.8.1(ii), N is a finite dimensional abelian extension of E and so, by the definition of "abelian extension," N is Galois over E and, by Exercise V.3.15(b), N is Galois over E.

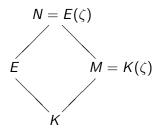
Modern Algebra May 2, 2016 18 / 25

Proof (continued). Then we have:



By Theorem V.8.1(ii), N is a finite dimensional abelian extension of E and so, by the definition of "abelian extension," N is Galois over E and, by Exercise V.3.15(b), N is Galois over E. Now $M = K(\zeta)$ is clearly a radical extension of E. If we can find a radical extension of E then this extension will be radical over E by Exercise V.9.4 (since E is radical over E and this extension will be the desired extension E

Proof (continued). Then we have:



By Theorem V.8.1(ii), N is a finite dimensional abelian extension of E and so, by the definition of "abelian extension," N is Galois over E and, by Exercise V.3.15(b), N is Galois over E. Now $M = K(\zeta)$ is clearly a radical extension of E. If we can find a radical extension of E that contains E (E), then this extension will be radical over E0 by Exercise V.9.4 (since E0 is radical over E1 and this extension will be the desired extension E1.

Proof (continued). First, observe that E is a stable intermediate field between N and K by Lemma V.2.13 (since E is Galois over K and algebraic over K by Theorem V.1.11). That is, every K-automorphism in $\operatorname{Aut}_K N$ maps E into itself. Consequently, for any $\sigma \in \operatorname{Aut}_K N$ we can restrict σ to E (i.e., $\sigma|_{F}$) to produce an element of Aut_K E. Now since $K \subset M = K(\zeta)$ then $Aut_M N < Aut_K E$.

Proof (continued). First, observe that E is a stable intermediate field between N and K by Lemma V.2.13 (since E is Galois over K and algebraic over K by Theorem V.1.11). That is, every K-automorphism in $\operatorname{Aut}_K N$ maps E into itself. Consequently, for any $\sigma \in \operatorname{Aut}_K N$ we can restrict σ to E (i.e., $\sigma|_{F}$) to produce an element of Aut_KE. Now since $K \subset M = K(\zeta)$ then $Aut_M N < Aut_K E$. Let $\theta : Aut_M N \to Aut_K E$ be defined as $\theta(\sigma) = \sigma|_F$. Then θ is a homomorphism because $\theta(\sigma_1\sigma_2) = (\sigma_1\sigma_2)|E = \sigma_1|E\sigma_2|E = \theta(\sigma_1)\theta(\sigma_2).$

Proof (continued). First, observe that E is a stable intermediate field between N and K by Lemma V.2.13 (since E is Galois over K and algebraic over K by Theorem V.1.11). That is, every K-automorphism in $\operatorname{Aut}_K N$ maps E into itself. Consequently, for any $\sigma \in \operatorname{Aut}_K N$ we can restrict σ to E (i.e., $\sigma|_{F}$) to produce an element of Aut_KE. Now since $K \subset M = K(\zeta)$ then $Aut_M N < Aut_K E$. Let $\theta : Aut_M N \to Aut_K E$ be defined as $\theta(\sigma) = \sigma|_{F}$. Then θ is a homomorphism because $\theta(\sigma_1\sigma_2) = (\sigma_1\sigma_2)|E = \sigma_1|E\sigma_2|E = \theta(\sigma_1)\theta(\sigma_2)$. If $\sigma \in Aut_M N$ then $\sigma(\zeta) = \zeta$ (since $M = K(\zeta)$). If $\sigma \in \text{Ker}(\theta)$ then $\sigma \mid E$ must be the identity and since $N = E(\zeta)$ then σ must be the identity on N. So by Theorem 1.2.3(i), θ is one to one and so is a monomorphism.

Proof (continued). First, observe that E is a stable intermediate field between N and K by Lemma V.2.13 (since E is Galois over K and algebraic over K by Theorem V.1.11). That is, every K-automorphism in $\operatorname{Aut}_K N$ maps E into itself. Consequently, for any $\sigma \in \operatorname{Aut}_K N$ we can restrict σ to E (i.e., $\sigma|_{F}$) to produce an element of $Aut_{K}E$. Now since $K \subset M = K(\zeta)$ then $Aut_M N < Aut_K E$. Let $\theta : Aut_M N \to Aut_K E$ be defined as $\theta(\sigma) = \sigma|_{F}$. Then θ is a homomorphism because $\theta(\sigma_1\sigma_2) = (\sigma_1\sigma_2)|E = \sigma_1|E\sigma_2|E = \theta(\sigma_1)\theta(\sigma_2)$. If $\sigma \in Aut_M N$ then $\sigma(\zeta) = \zeta$ (since $M = K(\zeta)$). If $\sigma \in \text{Ker}(\theta)$ then $\sigma \mid E$ must be the identity and since $N = E(\zeta)$ then σ must be the identity on N. So by Theorem 1.2.3(i), θ is one to one and so is a monomorphism.

We now prove the theorem by induction on n = [E : K]. In the case [E : K] = 1 we have E = K and $M = K(\zeta)$ is the desired radical extension F. Assume the theorem is true for all extensions of dimension k < n and consider the two possibilities:

Proof (continued). First, observe that E is a stable intermediate field between N and K by Lemma V.2.13 (since E is Galois over K and algebraic over K by Theorem V.1.11). That is, every K-automorphism in $\operatorname{Aut}_K N$ maps E into itself. Consequently, for any $\sigma \in \operatorname{Aut}_K N$ we can restrict σ to E (i.e., $\sigma|_{F}$) to produce an element of $Aut_{K}E$. Now since $K \subset M = K(\zeta)$ then $Aut_M N < Aut_K E$. Let $\theta : Aut_M N \to Aut_K E$ be defined as $\theta(\sigma) = \sigma|_{F}$. Then θ is a homomorphism because $\theta(\sigma_1\sigma_2) = (\sigma_1\sigma_2)|E = \sigma_1|E\sigma_2|E = \theta(\sigma_1)\theta(\sigma_2)$. If $\sigma \in Aut_M N$ then $\sigma(\zeta) = \zeta$ (since $M = K(\zeta)$). If $\sigma \in \text{Ker}(\theta)$ then $\sigma \mid E$ must be the identity and since $N = E(\zeta)$ then σ must be the identity on N. So by Theorem 1.2.3(i), θ is one to one and so is a monomorphism.

We now prove the theorem by induction on n = [E : K]. In the case [E:K]=1 we have E=K and $M=K(\zeta)$ is the desired radical extension F. Assume the theorem is true for all extensions of dimension k < n and consider the two possibilities:

Proof (continued).

- (i) $Aut_M N$ is isomorphic under θ to a proper subgroup of $Aut_K E$;
- (ii) $Aut_M N \cong Aut_K E$ and θ is an isomorphism.

Since $\operatorname{Aut}_K E$ is solvable, then by Theorem II.7.11(i) we have that $\operatorname{Aut}_M N$ is solvable in either case. Since E is a finite dimensional extension of K by hypothesis an $\operatorname{d} N = E(\zeta)$ is a finite dimensional extension of E (by Theorem V.1.6(iii)) then N is a finite dimensional extension of K by Theorem V.1.2.

Proof (continued).

- (i) Aut_MN is isomorphic under θ to a proper subgroup of $Aut_{\kappa}E$;
- (ii) $Aut_M N \cong Aut_K E$ and θ is an isomorphism.

Since $Aut_K E$ is solvable, then by Theorem II.7.11(i) we have that $Aut_M N$ is solvable in either case. Since E is a finite dimensional extension of K by hypothesis an $dN = E(\zeta)$ is a finite dimensional extension of E (by Theorem V.1.6(iii)) then N is a finite dimensional extension of K by Theorem V.1.2. As shown above (after the diagram) N is Galois over Kand so by the Fundamental Theorem of Galois Theory (Theorem V.2.5(ii)) N is Galois over the intermediate field $M = K(\zeta)$. In case (i) we have [N:M]=|AutMN| and $[E:K]=|Aut_KE|=n$ by Theorem V.2.15(i) and so [N : M] < [E : K] = n.

Proof (continued).

- (i) Aut_MN is isomorphic under θ to a proper subgroup of $Aut_{\kappa}E$;
- (ii) $\operatorname{Aut}_M N \cong \operatorname{Aut}_K E$ and θ is an isomorphism.

Since $Aut_K E$ is solvable, then by Theorem II.7.11(i) we have that $Aut_M N$ is solvable in either case. Since E is a finite dimensional extension of K by hypothesis an $dN = E(\zeta)$ is a finite dimensional extension of E (by Theorem V.1.6(iii)) then N is a finite dimensional extension of K by Theorem V.1.2. As shown above (after the diagram) N is Galois over Kand so by the Fundamental Theorem of Galois Theory (Theorem V.2.5(ii)) N is Galois over the intermediate field $M = K(\zeta)$. In case (i) we have [N:M] = |AutMN| and $[E:K] = |Aut_K E| = n$ by Theorem V.2.15(i) and so [N:M] < [E:K] = n. Whence by the induction hypothesis there is a radical extension of M that contains N. As remarked in the first paragraph, this proves the theorem in case (i).

Proof (continued).

- (i) $Aut_M N$ is isomorphic under θ to a proper subgroup of $Aut_K E$;
- (ii) $\operatorname{Aut}_M N \cong \operatorname{Aut}_K E$ and θ is an isomorphism.

Since $Aut_K E$ is solvable, then by Theorem II.7.11(i) we have that $Aut_M N$ is solvable in either case. Since E is a finite dimensional extension of K by hypothesis an $dN = E(\zeta)$ is a finite dimensional extension of E (by Theorem V.1.6(iii)) then N is a finite dimensional extension of K by Theorem V.1.2. As shown above (after the diagram) N is Galois over Kand so by the Fundamental Theorem of Galois Theory (Theorem V.2.5(ii)) N is Galois over the intermediate field $M = K(\zeta)$. In case (i) we have [N:M] = |AutMN| and $[E:K] = |Aut_K E| = n$ by Theorem V.2.15(i) and so [N:M] < [E:K] = n. Whence by the induction hypothesis there is a radical extension of M that contains N. As remarked in the first paragraph, this proves the theorem in case (i).

Proof. In case (ii), let $J = \theta^{-1}(H)$. Notice that $\theta : Aut_M N \to Aut_K E$ is an isomorphism in this case, so θ^{-1} : Aut_K $E \to Aut_M N$ is an isomorphism and since H is a normal subgroup of index p in $Aut_K E$, then J is a normal subgroup of index p in Aut_MN. Since Aut_KE is solvable and $Aut_M N \cong Aut_K E$, then $Aut_M N$ is solvable and by Theorem II.7.11(i), $J < Aut_M N$ is solvable. Let P be the fixed field of J relative to $Aut_M N$.

Proof. In case (ii), let $J = \theta^{-1}(H)$. Notice that $\theta : \operatorname{Aut}_M N \to \operatorname{Aut}_K E$ is an isomorphism in this case, so $\theta^{-1} : \operatorname{Aut}_K E \to \operatorname{Aut}_M N$ is an isomorphism and since H is a normal subgroup of index p in $\operatorname{Aut}_K E$, then J is a normal subgroup of index p in $\operatorname{Aut}_M N$. Since $\operatorname{Aut}_K E$ is solvable and $\operatorname{Aut}_M N \cong \operatorname{Aut}_K E$, then $\operatorname{Aut}_M N$ is solvable and by Theorem II.7.11(i), $J < \operatorname{Aut}_M N$ is solvable. Let P be the fixed field of J relative to $\operatorname{Aut}_M N$.

Then we have

$$\begin{cases} \iota \} & \triangleleft & J = \operatorname{Aut}_P N & \triangleleft & \operatorname{Aut}_M N \\ \updownarrow & & \updownarrow & & \updownarrow \\ N & \supset & P & \supset & M \\ \end{cases}$$

Proof. In case (ii), let $J = \theta^{-1}(H)$. Notice that $\theta : \operatorname{Aut}_M N \to \operatorname{Aut}_K E$ is an isomorphism in this case, so $\theta^{-1} : \operatorname{Aut}_K E \to \operatorname{Aut}_M N$ is an isomorphism and since H is a normal subgroup of index p in $\operatorname{Aut}_K E$, then J is a normal subgroup of index p in $\operatorname{Aut}_M N$. Since $\operatorname{Aut}_K E$ is solvable and $\operatorname{Aut}_M N \cong \operatorname{Aut}_K E$, then $\operatorname{Aut}_M N$ is solvable and by Theorem II.7.11(i), $J < \operatorname{Aut}_M N$ is solvable. Let P be the fixed field of J relative to $\operatorname{Aut}_M N$. Then we have

$$\begin{cases} \iota \} & \triangleleft & J = \operatorname{Aut}_{P} N & \triangleleft & \operatorname{Aut}_{M} N \\ \updownarrow & & \updownarrow & & \updownarrow \\ N & \supset & P & \supset & M \\ \end{cases}$$

Notice that since P is the fixed field of J and P is Galois over M by Theorem V.2.15(ii), so $J = \operatorname{Aut}_P N$. Also be Theorem V.2.5(ii) (with F = n, E = P, and K = M) we have $\operatorname{Aut}_M P \cong (\operatorname{Aut}_M N)/(\operatorname{Aut}_P N) = (\operatorname{Aut}_M N)/J$.

Proof. In case (ii), let $J = \theta^{-1}(H)$. Notice that $\theta : \operatorname{Aut}_M N \to \operatorname{Aut}_K E$ is an isomorphism in this case, so $\theta^{-1} : \operatorname{Aut}_K E \to \operatorname{Aut}_M N$ is an isomorphism and since H is a normal subgroup of index p in $\operatorname{Aut}_K E$, then J is a normal subgroup of index p in $\operatorname{Aut}_M N$. Since $\operatorname{Aut}_K E$ is solvable and $\operatorname{Aut}_M N \cong \operatorname{Aut}_K E$, then $\operatorname{Aut}_M N$ is solvable and by Theorem II.7.11(i), $J < \operatorname{Aut}_M N$ is solvable. Let P be the fixed field of J relative to $\operatorname{Aut}_M N$. Then we have

$$\begin{cases} \iota \} & \triangleleft & J = \operatorname{Aut}_{P} N & \triangleleft & \operatorname{Aut}_{M} N \\ \updownarrow & & \updownarrow & & \updownarrow \\ N & \supset & P & \supset & M \\ \end{cases}$$

Theorem V.2.15(ii), so $J = \operatorname{Aut}_P N$. Also be Theorem V.2.5(ii) (with F = n, E = P, and K = M) we have $\operatorname{Aut}_M P \cong (\operatorname{Aut}_M N)/(\operatorname{Aut}_P N) = (\operatorname{Aut}_M N)/J$. But $[\operatorname{Aut}_M N : J] = p$ be construction, whence $\operatorname{Aut}_M P \cong \mathbb{Z}_p$ by Exercise I.4.3. Therefore P is a cyclic extension of $M = K(\zeta)$.

Notice that since P is the fixed field of J and P is Galois over M by

Proof. In case (ii), let $J = \theta^{-1}(H)$. Notice that $\theta : \operatorname{Aut}_M N \to \operatorname{Aut}_K E$ is an isomorphism in this case, so $\theta^{-1} : \operatorname{Aut}_K E \to \operatorname{Aut}_M N$ is an isomorphism and since H is a normal subgroup of index p in $\operatorname{Aut}_K E$, then J is a normal subgroup of index p in $\operatorname{Aut}_M N$. Since $\operatorname{Aut}_K E$ is solvable and $\operatorname{Aut}_M N \cong \operatorname{Aut}_K E$, then $\operatorname{Aut}_M N$ is solvable and by Theorem II.7.11(i), $J < \operatorname{Aut}_M N$ is solvable. Let P be the fixed field of J relative to $\operatorname{Aut}_M N$. Then we have

$$\begin{cases} \iota \} & \triangleleft & J = \operatorname{Aut}_{P} N & \triangleleft & \operatorname{Aut}_{M} N \\ \updownarrow & & \updownarrow & & \updownarrow \\ N & \supset & P & \supset & M \\ \end{cases}$$

Notice that since P is the fixed field of J and P is Galois over M by Theorem V.2.15(ii), so $J = \operatorname{Aut}_P N$. Also be Theorem V.2.5(ii) (with F = n, E = P, and K = M) we have $\operatorname{Aut}_M P \cong (\operatorname{Aut}_M N)/(\operatorname{Aut}_P N) = (\operatorname{Aut}_M N)/J$. But $[\operatorname{Aut}_M N : J] = p$ be construction, whence $\operatorname{Aut}_M P \cong \mathbb{Z}_p$ by Exercise I.4.3. Therefore P is a cyclic extension of $M = K(\zeta)$.

Proposition V.9.6. Let E be a finite dimensional Galois extension field of K with solvable Galois group $Aut_K(F)$. Assume that char(K) does not divide [E:K]. Then there exists a radical extension F of K such that $F \supset E \supset K$.

Proof (continued). By Theorem V.7.11(ii), P = M(u) where u is a root of some irreducible $x^p - a \in M[x]$. Thus P is a radical extension of M where [P:M] > 1 and, since [N:M] = [N:P][P:M] by Theorem V.1.2, then [N:P] < [N:M] = [F:K] = n (since $Aut_M N \cong Aut_K E$ in case (ii)). Since Aut_P N = J is solvable and N is Galois over P by Theorem V.2.5(ii), the induction hypothesis implies that there is a radical extension F of P that contains N.

Proposition V.9.6. Let E be a finite dimensional Galois extension field of K with solvable Galois group $Aut_K(F)$. Assume that char(K) does not divide [E:K]. Then there exists a radical extension F of K such that $F \supset E \supset K$.

Proof (continued). By Theorem V.7.11(ii), P = M(u) where u is a root of some irreducible $x^p - a \in M[x]$. Thus P is a radical extension of M where [P:M] > 1 and, since [N:M] = [N:P][P:M] by Theorem V.1.2, then [N:P] < [N:M] = [F:K] = n (since $Aut_M N \cong Aut_K E$ in case (ii)). Since $Aut_P N = J$ is solvable and N is Galois over P by Theorem V.2.5(ii), the induction hypothesis implies that there is a radical extension F of P that contains N. Since F is a radical extension of P and P is a radical extension of $M = K(\zeta)$ (and so $K(\zeta)$ is a radical extension of K), then F is a radical extension of K which contains $N = E(\zeta)$ and hence contains K. So the result holds in case (iii).

Proposition V.9.6. Let E be a finite dimensional Galois extension field of K with solvable Galois group $Aut_K(F)$. Assume that char(K) does not divide [E:K]. Then there exists a radical extension F of K such that $F \supset E \supset K$.

Proof (continued). By Theorem V.7.11(ii), P = M(u) where u is a root of some irreducible $x^p - a \in M[x]$. Thus P is a radical extension of M where [P:M] > 1 and, since [N:M] = [N:P][P:M] by Theorem V.1.2, then [N:P] < [N:M] = [F:K] = n (since $Aut_M N \cong Aut_K E$ in case (ii)). Since $Aut_P N = J$ is solvable and N is Galois over P by Theorem V.2.5(ii), the induction hypothesis implies that there is a radical extension F of P that contains N. Since F is a radical extension of P and P is a radical extension of $M = K(\zeta)$ (and so $K(\zeta)$ is a radical extension of K), then F is a radical extension of K which contains $N = E(\zeta)$ and hence contains K. So the result holds in case (iii).

Corollary V.9.7. Galois' Theorem. Let K be a field and $f \in K[x]$ a polynomial of degree n > 0, where $\operatorname{char}(K)$ does not divide n! (which is always true when $\operatorname{char}(K) = 0$). Then the equation f(x) = 0 is solvable by radicals if and only if the Galois group of f is solvable.

Proof. (1) Suppose f(x) = 0 is solvable by radicals. Then (by Definition V.9.2) there is a radical extension E of K and a splitting field E of f over K such that $F \supset E \supset K$.

Corollary V.9.7. Galois' Theorem. Let K be a field and $f \in K[x]$ a polynomial of degree n > 0, where $\operatorname{char}(K)$ does not divide n! (which is always true when $\operatorname{char}(K) = 0$). Then the equation f(x) = 0 is solvable by radicals if and only if the Galois group of f is solvable.

Proof. (1) Suppose f(x) = 0 is solvable by radicals. Then (by Definition V.9.2) there is a radical extension E of K and a splitting field E of f over K such that $F \supset E \supset K$. By Definition V.4.1, the Galois group of f is $\operatorname{Aut}_K E$. By Theorem V.9.4, $\operatorname{Aut}_K F$ is solvable.

Corollary V.9.7. Galois' Theorem. Let K be a field and $f \in K[x]$ a polynomial of degree n > 0, where char(K) does not divide n! (which is always true when char(K) = 0). Then the equation f(x) = 0 is solvable by radicals if and only if the Galois group of f is solvable.

Proof. (1) Suppose f(x) = 0 is solvable by radicals. Then (by Definition V.9.2) there is a radical extension E of K and a splitting field E of f over K such that $F \supset E \supset K$. By Definition V.4.1, the Galois group of f is $Aut_K E$. By Theorem V.9.4, $Aut_K F$ is solvable.

(2) Suppose the Galois group of f is solvable. So let E be a splitting field of f over K (which exists since the algebraic closure of K exists by Theorem V.3.6). Then this means that $Aut_K E$ is solvable. Notice that E can be chosen to be a finite dimensional extension by Theorem V.3.2, with [E:K] < n!

Corollary V.9.7. Galois' Theorem. Let K be a field and $f \in K[x]$ a polynomial of degree n > 0, where char(K) does not divide n! (which is always true when char(K) = 0). Then the equation f(x) = 0 is solvable by radicals if and only if the Galois group of f is solvable.

- **Proof.** (1) Suppose f(x) = 0 is solvable by radicals. Then (by Definition V.9.2) there is a radical extension E of K and a splitting field E of f over K such that $F \supset E \supset K$. By Definition V.4.1, the Galois group of f is $Aut_K E$. By Theorem V.9.4, $Aut_K F$ is solvable.
- (2) Suppose the Galois group of f is solvable. So let E be a splitting field of f over K (which exists since the algebraic closure of K exists by Theorem V.3.6). Then this means that $Aut_K E$ is solvable. Notice that E can be chosen to be a finite dimensional extension by Theorem V.3.2, with [E:K] < n!

Proof (continued). By Proposition V.9.6, it is sufficient to show that E is Galois over K and $\operatorname{char}(K) \nmid [E:K]$ (since Proposition V.9.6 then implies the existence of radical extension F of K where $F \supset E \supset K$, and then by Definition V.9.2, f(x) = 0 is solvable by radicals). We have hypothesized that $\operatorname{char}(K) \nmid n!$ where n is the degree of polynomial f. By Theorem III.6.10, an irreducible factor g of f has no multiple roots in E if and only if $g' \neq 0$. Since g is a factor of f then the degree of g is between 1 and g.

Proof (continued). By Proposition V.9.6, it is sufficient to show that E is Galois over K and $\operatorname{char}(K) \nmid [E:K]$ (since Proposition V.9.6 then implies the existence of radical extension F of K where $F \supset E \supset K$, and then by Definition V.9.2, f(x) = 0 is solvable by radicals). We have hypothesized that $\operatorname{char}(K) \nmid n!$ where n is the degree of polynomial f. By Theorem III.6.10, an irreducible factor g of f has no multiple roots in E if and only if $g' \neq 0$. Since g is a factor of f then the degree of g is between 1 and f. If $\operatorname{char}(K) = 0$ then f is a polynomial in f then by Exercise III.6.3(a). If $\operatorname{char}(K) = f$ if and only if f is a polynomial in f in f then f in f then f in f then f in f then f is a polynomial in f in f then f in f in f in f then f in f in

Proof (continued). By Proposition V.9.6, it is sufficient to show that E is Galois over K and char(K) \nmid [E : K] (since Proposition V.9.6 then implies the existence of radical extension F of K where $F \supset E \supset K$, and then by Definition V.9.2, f(x) = 0 is solvable by radicals). We have hypothesized that char(K) $\nmid n!$ where n is the degree of polynomial f. By Theorem III.6.10, an irreducible factor g of f has no multiple roots in E if and only if $g' \neq 0$. Since g is a factor of f then the degree of g is between 1 and n. If char(k) = 0 then $g' \neq 0$ by Exercise III.6.3(a). If $char(K) = p \neq 0$ (since $char(K) \nmid n!$ then char(K) > n) then by Exercise III.6.3(b), g' = 0 if and only if g is a polynomial in x^p . But if g is a polynomial in x^p then the degree of g is greater than n, so it must be that $g' \neq 0$ in this case as well. So (by Theorem III.6.10), the irreducible factors of f are separable (see Definition V.3.10).

Proof (continued). By Proposition V.9.6, it is sufficient to show that E is Galois over K and char(K) \nmid [E : K] (since Proposition V.9.6 then implies the existence of radical extension F of K where $F \supset E \supset K$, and then by Definition V.9.2, f(x) = 0 is solvable by radicals). We have hypothesized that char(K) $\nmid n!$ where n is the degree of polynomial f. By Theorem III.6.10, an irreducible factor g of f has no multiple roots in E if and only if $g' \neq 0$. Since g is a factor of f then the degree of g is between 1 and n. If char(k) = 0 then $g' \neq 0$ by Exercise III.6.3(a). If $char(K) = p \neq 0$ (since $char(K) \nmid n!$ then char(K) > n) then by Exercise III.6.3(b), g' = 0 if and only if g is a polynomial in x^p . But if g is a polynomial in x^p then the degree of g is greater than n, so it must be that $g' \neq 0$ in this case as well. So (by Theorem III.6.10), the irreducible factors of f are separable (see Definition V.3.10).

Corollary V.9.7. Galois' Theorem. Let K be a field and $f \in K[x]$ a polynomial of degree n > 0, where char(K) does not divide n! (which is always true when char(K) = 0). Then the equation f(x) = 0 is solvable by radicals if and only if the Galois group of f is solvable.

Proof (continued). By Exercise V.3.13 (the (iii) \Rightarrow (ii) part), E is separable over K. Then by Theorem V.3.11 (the (ii) \Rightarrow (i) part), and the fact that E is a splitting field of f) E is Galois over K. Since [E:K] < n!then every prime that divides [E:K] must also divide n!. Since char(K) is either 0 or prime and char(K) $\nmid n!$ then char(K) $\nmid [E : K]$.

Corollary V.9.7. Galois' Theorem. Let K be a field and $f \in K[x]$ a polynomial of degree n > 0, where char(K) does not divide n! (which is always true when char(K) = 0). Then the equation f(x) = 0 is solvable by radicals if and only if the Galois group of f is solvable.

Proof (continued). By Exercise V.3.13 (the (iii) \Rightarrow (ii) part), E is separable over K. Then by Theorem V.3.11 (the (ii) \Rightarrow (i) part), and the fact that E is a splitting field of f) E is Galois over K. Since $[E:K] \leq n!$ then every prime that divides [E:K] must also divide n!. Since char(K) is either 0 or prime and char(K) $\nmid n!$ then char(K) $\nmid [E : K]$. As mentioned above, Proposition V.9.6 now implies that the equation f(x) = 0 is solvable by radicals.

> May 2, 2016 25 / 25

Corollary V.9.7. Galois' Theorem. Let K be a field and $f \in K[x]$ a polynomial of degree n > 0, where char(K) does not divide n! (which is always true when char(K) = 0). Then the equation f(x) = 0 is solvable by radicals if and only if the Galois group of f is solvable.

Proof (continued). By Exercise V.3.13 (the (iii) \Rightarrow (ii) part), E is separable over K. Then by Theorem V.3.11 (the (ii) \Rightarrow (i) part), and the fact that E is a splitting field of f) E is Galois over K. Since $[E:K] \leq n!$ then every prime that divides [E:K] must also divide n!. Since $\operatorname{char}(K)$ is either 0 or prime and $\operatorname{char}(K) \nmid n!$ then $\operatorname{char}(K) \nmid [E:K]$. As mentioned above, Proposition V.9.6 now implies that the equation f(x) = 0 is solvable by radicals.

n Algebra May 2, 2016 25 / 25