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Lemma V.9.3

Lemma V.9.3

Lemma V.9.3. If F is a radical extension of K and N is a normal closure
of F over K (see Theorem V.3.16 on page 265), then N is a radical
extension of K .

Proof. The proof is based on two claims.

Claim 1. If F is any finite dimensional extension of K (not necessarily a
radical extension) and N is the normal closure of F over K , then N is the
composite field E1E2 · · ·Er (that is, the subfield of N generated by
E1 ∪ E2 ∪ · · · ∪ Er ) where each Ei is a subfield of N generated by
E1 ∪ E2 ∪ · · · ∪ Er ) where each Ei is a subfield of N which is K -isomorphic
to F .
Proof 1. Since we hypothesize that F is a finite dimensional extension of
K , let {w1,w2, . . . ,wn} be a basis of F over K and let fi be the irreducible
polynomial of wi over K (finite dimensional extensions are algebraic
extensions by Theorem V.1.11).
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Lemma V.9.3

Lemma V.9.3 (continued 1)

Proof (continued). Since N is the normal closure of F over K then as
shown in the proof of Theorem V.3.16(i) N is a splitting field of
{f1, f2, . . . , fn} over K . For a given fj , let v be any root of fj ∈ K [x ] in N.
By Theorem V.1.8(ii), since wi is also a root of fj ∈ K [x ], then the
identity ι : K → K extends to an isomorphism σ : K (wj) → K (v) such
that σ(wj) = v (here we let L = K in Theorem V.1.8(ii); that is, σ is a
K -isomorphism mapping K (wj) → K (v) where σ(wj) = v . By Theorem
V.3.8 (with L = K , S = {fi}, S ′ = {σfi} = {fi}, and F = M = N) σ
extends to a K -automorphism τ of N.

Since F is a subfield of N which is
isomorphic to F (i.e., τ(F ) ∼= F ) and wj ∈ F then
τ(wj) = σ(wj) = v ∈ τ(F ). In this way we can find for every root v of
every fi a subfield E of N such that v ∈ E and E is K -isomorphic to F
(the K -isomorphism if τ , as constructed above).
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Lemma V.9.3

Lemma V.9.3 (continued 2)

Proof (continued). If E1,E2, . . . ,Er are the subfields so obtained, then
the subfield of N generated by E1 ∪ E2 ∪ · · · ∪ Er (that is, the “composite
field” E1E2 · · ·Er ) contains all the roots of f1, f2, . . . , fn. That is,
E1E2 · · ·Er is a splitting field for {f1, f2, . . . , fn} and so by Theorem V.3.14
(the (ii)⇒(i) part) field E1E2 · · ·Er ⊂ N is normal over K . When we have
the case v = wj then the K -isomorphism τ : N → N is then identity (since
the corresponding σ : K (wj) → K (v) is the identity) and in this case
τ(F ) = F and F is a subfield of the corresponding Ej . So F is a subfield
of the composite field E1E2 · · ·Er ⊂ N. But by Theorem V.3.16(ii), no
proper subfield of N containing F is normal over K , so it must be that
N = E1E2 · · ·Er , proving Claim 1.
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Lemma V.9.3

Lemma V.9.3 (continued 3)

Proof (continued).
Claim 2. If E1,E2, . . . ,Er are each radical extensions of K , then the
composite field E1E2 · · ·Er is a radical extension of K .
Proof 2. If Ek is a radical extension of K then (by definition)
Ek = K (uk

1 , uk
2 , . . . , uk

nk
) where some power of uk

i lies in K and for each

i ≥ 2, some power of uk
i lies in K (uk

1 , uk
2 , . . . , uk

i−1). Then
E1E2 · · ·Er = K (u1

1 , 2
1
2, . . . , u

1
n1

, u2
1 , u

2
2 , . . . , u

2
n2

, u3
1 , u

3
2 , . . . , u

r
nr

) is “clearly”
a radical extension of K , proving Claim 2.

Proof of Lemma. Since by definition, a radical extension is a finite
extension, Claim 1 implies that N = E1E2 · · ·Er where each Ei is a subfield
of N which is K -isomorphic to F . Since F is hypothesized to be a radical
extension of K , then each Ei is a radical extension of K . By Claim 2,
N = E1E2 · · ·Er is a radical extension of K .
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Theorem V.9.4

Theorem V.9.4

Theorem V.9.4. If F is a radical extension field of K and E is an
intermediate field, then AutK (E ) is a solvable group.

Proof. Let K0 be the fixed subfield of E relative to AutKE (so
K ⊂ K0 ⊂ E ). Then AutK0E = AutKE and the fixed field of AutK0E is K0

so E is Galois over K0.

By Exercise V.9.1, F is a radical extension of K0

(since K ⊂ K0 ⊂ E ⊂ F ; F is radical over K and so is radical over
intermediate fields by the Exercise). By the definition of radical extension,
F is then algebraic over K0 and so E is algebraic over K . Our goal is to
show that AutKE is a solvable group. However, AutKE = AutK0E where
E is algebraic and Galois over K0; so WLOG we can assume that E is
algebraic and Galois over K to begin with.
Let N be a normal closure of F over K . By Lemma V.9.3, N is a radical
extension of K . Since K ⊂ E ⊂ F where E is algebraic and Galois over K
(WLOG as above), then by Lemma V.2.13, E is stable (relative to F and
K ). That is, every K -automorphism in AutKF maps E to itself.

() Modern Algebra May 2, 2016 7 / 25



Theorem V.9.4

Theorem V.9.4

Theorem V.9.4. If F is a radical extension field of K and E is an
intermediate field, then AutK (E ) is a solvable group.

Proof. Let K0 be the fixed subfield of E relative to AutKE (so
K ⊂ K0 ⊂ E ). Then AutK0E = AutKE and the fixed field of AutK0E is K0

so E is Galois over K0. By Exercise V.9.1, F is a radical extension of K0

(since K ⊂ K0 ⊂ E ⊂ F ; F is radical over K and so is radical over
intermediate fields by the Exercise). By the definition of radical extension,
F is then algebraic over K0 and so E is algebraic over K . Our goal is to
show that AutKE is a solvable group.

However, AutKE = AutK0E where
E is algebraic and Galois over K0; so WLOG we can assume that E is
algebraic and Galois over K to begin with.
Let N be a normal closure of F over K . By Lemma V.9.3, N is a radical
extension of K . Since K ⊂ E ⊂ F where E is algebraic and Galois over K
(WLOG as above), then by Lemma V.2.13, E is stable (relative to F and
K ). That is, every K -automorphism in AutKF maps E to itself.

() Modern Algebra May 2, 2016 7 / 25



Theorem V.9.4

Theorem V.9.4

Theorem V.9.4. If F is a radical extension field of K and E is an
intermediate field, then AutK (E ) is a solvable group.

Proof. Let K0 be the fixed subfield of E relative to AutKE (so
K ⊂ K0 ⊂ E ). Then AutK0E = AutKE and the fixed field of AutK0E is K0

so E is Galois over K0. By Exercise V.9.1, F is a radical extension of K0

(since K ⊂ K0 ⊂ E ⊂ F ; F is radical over K and so is radical over
intermediate fields by the Exercise). By the definition of radical extension,
F is then algebraic over K0 and so E is algebraic over K . Our goal is to
show that AutKE is a solvable group. However, AutKE = AutK0E where
E is algebraic and Galois over K0; so WLOG we can assume that E is
algebraic and Galois over K to begin with.

Let N be a normal closure of F over K . By Lemma V.9.3, N is a radical
extension of K . Since K ⊂ E ⊂ F where E is algebraic and Galois over K
(WLOG as above), then by Lemma V.2.13, E is stable (relative to F and
K ). That is, every K -automorphism in AutKF maps E to itself.

() Modern Algebra May 2, 2016 7 / 25



Theorem V.9.4

Theorem V.9.4

Theorem V.9.4. If F is a radical extension field of K and E is an
intermediate field, then AutK (E ) is a solvable group.

Proof. Let K0 be the fixed subfield of E relative to AutKE (so
K ⊂ K0 ⊂ E ). Then AutK0E = AutKE and the fixed field of AutK0E is K0

so E is Galois over K0. By Exercise V.9.1, F is a radical extension of K0

(since K ⊂ K0 ⊂ E ⊂ F ; F is radical over K and so is radical over
intermediate fields by the Exercise). By the definition of radical extension,
F is then algebraic over K0 and so E is algebraic over K . Our goal is to
show that AutKE is a solvable group. However, AutKE = AutK0E where
E is algebraic and Galois over K0; so WLOG we can assume that E is
algebraic and Galois over K to begin with.
Let N be a normal closure of F over K . By Lemma V.9.3, N is a radical
extension of K . Since K ⊂ E ⊂ F where E is algebraic and Galois over K
(WLOG as above), then by Lemma V.2.13, E is stable (relative to F and
K ). That is, every K -automorphism in AutKF maps E to itself.

() Modern Algebra May 2, 2016 7 / 25



Theorem V.9.4

Theorem V.9.4

Theorem V.9.4. If F is a radical extension field of K and E is an
intermediate field, then AutK (E ) is a solvable group.

Proof. Let K0 be the fixed subfield of E relative to AutKE (so
K ⊂ K0 ⊂ E ). Then AutK0E = AutKE and the fixed field of AutK0E is K0

so E is Galois over K0. By Exercise V.9.1, F is a radical extension of K0

(since K ⊂ K0 ⊂ E ⊂ F ; F is radical over K and so is radical over
intermediate fields by the Exercise). By the definition of radical extension,
F is then algebraic over K0 and so E is algebraic over K . Our goal is to
show that AutKE is a solvable group. However, AutKE = AutK0E where
E is algebraic and Galois over K0; so WLOG we can assume that E is
algebraic and Galois over K to begin with.
Let N be a normal closure of F over K . By Lemma V.9.3, N is a radical
extension of K . Since K ⊂ E ⊂ F where E is algebraic and Galois over K
(WLOG as above), then by Lemma V.2.13, E is stable (relative to F and
K ). That is, every K -automorphism in AutKF maps E to itself.

() Modern Algebra May 2, 2016 7 / 25



Theorem V.9.4

Theorem V.9.4 (continued 1)

Proof (continued). Consequently, for any σ ∈ AutKN we can restrict σ
to E (i.e., σ|E ) to produce an element of AutKE . Let
θ : AutKN → AutKE be defined as θ(σ) = σ|E . Then θ is a
homomorphism because θ(σ1σ2) = (σ1σ2)|E = σ1|Eσ2|E = θ(σ1)θ(σ2).
Now since N is normal over K , then N is a splitting field over K by
Theorem V.3.14 (the (i)⇒(ii) part), and so N is a splitting field over E .
Now for σ ∈ AutKE we know that σ : E → E is an isomorphism and since
N is a splitting field of E , then by Theorem V.3.8, σ can be extended to
an isomorphism mapping N → N. That is, σ extends to a
K -automorphism of N.

Applying homomorphism θ to the extension of σ
produces σ ∈ AutKE . Since σ was an arbitrary element of AutKE , then θ
is onto (i.e., an epimorphism). Since the homomorphic image of a solvable
group is solvable by Theorem II.7.11(i), if we show that AutKN is solvable
then the solvability of AutKE would follow.
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Theorem V.9.4

Theorem V.9.4 (continued 2)

Proof (continued). Let K1 be the fixed subfield of N relative to
AutKN = AutK1N. Then (by definition) N is a Galois extension of K1 and
by Exercise V.9.1, N is a radical extension of K1 since N is a radical
extension of K and K ⊂ K1 ⊂ N. Hence proving that AutKE is solvable
can be accomplished by proving that AutK1N is solvable where N is a
radical extension of K1 and N is Galois over K1. So WLOG we may
assume that F is a Galois radical extension of K .

With F = K (u1, u2, . . . , un) with um1
1 ∈ K and umi

i ∈ K (u1, u2, . . . , ui−1)
for i ≥ 2, where m1 and mi are chosen to be the smallest power of u1 and
ui in K (u1, u2, . . . , ui−1). We now establish that char(K ) does not divide
mi . This is obvious if char(K ) = 0. If char(K ) = p 6= 0 and mi = rpt

where gcd(r , p) = (r , p) = 1. Then um−i
i = urpt

i ∈ K (u1, u2, . . . , ui−1)
and, as remarked after Definition V.9.1, ui is a root of
xm1 − um1

i = x rpt

i − urpt

i ∈ K (u1, u2, . . . , ui−1)[x ].
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Theorem V.9.4

Theorem V.9.4 (continued 3)

Proof (continued). But by the Freshman’s Dream (Exercise III.1.11),

x rpt

i − urpt

i = (x r
i − ur

i )
pt

. So the irreducible polynomial of ur ∈ F over

K (u1, u2, . . . , ui−1) is (x − ur
i )

pt
= xpt − i rp

t

i = xmi − umi
i (notice that

urpt

i = umi
i ∈ K (u1, u2, . . . , ui−1)) and since mi is the smallest power of ui

in K (u1, u2, . . . , ui−1) then (x − ur
i )

pt
is irreducible over

K (u1, u2, . . . , ui−1); the “constant term” of this polynomial is ± a power
of ui ). Therefore, by definition, ur

i is purely inseparable over
K (u1, u2, . . . , ui−1). But F is Galois over K (by the WLOG argument
above) and so F is separable over K by Theorem V.3.11 (the (i)⇒(ii)
part). Whence F is separable over the intermediate field
K (u1, u2, . . . , ui−1) by Exercise V.3.12.

So ur
i is both separable and purely

inseparable over K , and by Theorem V.6.2, ur
i ∈ K (u1.u2, . . . , ui−1). So

we have that char(K ) = p does not divide mi , as claimed.
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Theorem V.9.4

Theorem V.9.4 (continued 4)

Proof (continued). If m = m1m2 · · ·mn (where the mi are minimal as
required in the previous paragraph) then char(K ) (which equals char(F ) by
considering 1k = 1F in Theorem III.1.9(ii) for n > 0, and the fact that
there is no n ∈ N such that all na = 0 for all a ∈ K and the fact that
K ⊂ F ) does not divide m. Consider xm − 1 ∈ K [x ] and let ζ be a
primitive mth root of unity (which exists in the algebraic closure of K ).
Then F (ζ) contains all roots of xm − 1 and hence is a cyclotomic
extension of K . We have:

F (ζ)

�
�

�

@
@
@

K

F

@
@
@

K (ζ)

�
�

�
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Theorem V.9.4

Theorem V.9.4 (continued 5)

Proof (continued). By Theorem V.8.1(ii), F (ζ) is an abelian extension
of F and so (by definition of “abelian extension”) is Galois over F . By
Exercise V.3.15(b), F (ζ) is Galois over K (F is Galois over K WLOG as
argued above, and F (ζ) is a splitting field of xm − 1 over F ). By the
Fundamental Theorem of Galois Theory (Theorem V.2.5(ii)) we have that
AutKF ∼= AutKF (ζ)/AutFF (ζ) (in Theorem V.2.5 we take F = F (ζ),
E = F , K = K ). This shows that AutKF is the homomorphic image of
AutKF (ζ) under canonical epimorphism (see page 43 on Section I.5). So
to show that AutKF is solvable, it is sufficient by Theorem II.7.11(i) to
show that AutKF (ζ) is solvable.

Observe that K (ζ) is an abelian (and so
by the definition of Galois) extension of K by Theorem V.8.1(ii). Whence
by the Fundamental Theorem of Galois Theory (Theorem V.2.5(ii) with
F = F (ζ), E = K (ζ), K = K ) we have
AutKK (ζ) ∼= AutKF (ζ)/AutK(ζ)F (ζ). Since AutKK (ζ) is abelian then it
is solvable trivially (see page 102).
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Theorem V.9.4

Theorem V.9.4 (continued 6)

Proof (continued). By Theorem II.7.11(ii), if we knew that AutK(ζ)F (ζ)
were solvable, then we would know that AutKF (ζ) is solvable and the
proof would be complete. Thus we need only prove that AutK(ζ)F (ζ) is
solvable.

As shown above, F (ζ) is Galois over K and hence, by the Fundamental
Theorem of Galois Theory (Theorem V.2.5(ii)), over any intermediate
field. Let E0 = K (ζ) and define Ei = K (ζ, u1, u2, . . . , ui ) for
i = 1, 2, . . . , n so that En = K (ζ, u1, u2, . . . , un) = F (ζ).

Let
Hi = AutEi

F (ζ) be the subgroup of AutK(ζ)F (ζ)) corresponding to field Ei

under Galois correspondence in the Fundamental Theorem of Galois
Theory (Theorem V.2.5).
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Theorem V.9.4

Theorem V.9.4 (continued 7)

Proof (continued). Schematically we have:

Hn < Hn−1 < · · · < Hi < · · · < H0

‖ ‖ ‖ ‖
{e} < AutEn−1F (ζ) < · · · < AutEi

F (ζ) < · · · < AutK(ζ)F (ζ)
l l l l

F (ζ) = En ⊂ En−1 ⊂ · · · ⊂ Ei ⊂ · · · ⊂ E0 = K (ζ)

Now ζ is an mth root of unity where m = m1m2 · · ·mn, so by Lemma
V.7.10(i), K (ζ) contains a primitive mi th root of unity for each i . Since
umi
i ∈ Ei−1 and Ei = Ei−1(ui ), then by Lemma V.7.10(ii) (with d = mi ),

Ei is a splitting field of xmi − 1 over Ei−1.

By Theorem V.7.11 (the
(ii)⇒(i) part), Ei is a cyclic extension of Ei−1; that is, AutEi−1

Ei is a cyclic
group. By definition of “cyclic extension,” Ei is Galois over Ei−1.
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Theorem V.9.4

Theorem V.9.4 (continued 8)

Theorem V.9.4. If F is a radical extension field of K and E is an
intermediate field, then AutK (E ) is a solvable group.

Proof (continued). So by the Fundamental Theorem of Galois Theory
(Theorem V.2.5(ii)) we have the normal subgroups Ji / Hi−1 (or
equivalently, AutEi

F (ζ) / AutEi−1
F (ζ)) and

Hi−1/Hi = AutEi−1
F (ζ)/AutEi

F (ζ) ∼= AutEi−1
Ei (with F = F (ζ), E = Ei ,

K = Ei−1 in Theorem V.2.5(ii)). So Hi−1/Hi
∼= AutEi−1

Ei is cyclic (and so
abelian). Consequently,
{e} = Hn < Hn−1 < · · · < J1 < H0 = AutK(ζ)F (ζ) is a solvable series by
definition (see Definition II.8.3). By Theorem II.8.5, AutK(ζ)F (ζ) is
solvable.

Therefore, this result cascades back through the line of
implications and WLOG’s to imply that AutKE is solvable.
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Corollary V.9.5

Corollary V.9.5

Corollary V.9.5. Let K be a field and f ∈ K [x ]. If the equation f (x) = 0
is solvable by radicals, then the Galois group of f is a solvable group.

Proof. If f (x) = 0 is solvable by radicals, then by Definition V.9.2, there
is a radical extension F of K and a splitting field E of f over K such that
F ⊃ E ⊃ K .

The Galois group of f is AutKE by Definition V.4.1. By
Theorem V.9.4, AutKE is a solvable group.
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Proposition V.9.6

Proposition V.9.6

Proposition V.9.6. Let E be a finite dimensional Galois extension field of
K with solvable Galois group AutK (F ). Assume that char(K ) does not
divide [E : K ]. Then there exists a radical extension F of K such that
F ⊃ E ⊃ K .

Proof. By the Fundamental Theorem of Galois Theory (theorem V.2.5(i)),
|AutKE | = [E : K ], so AutKE is a finite solvable group. By Proposition
II.8.6, AutKE has a composition series whose factors are cyclic of prime
order.

So there is a normal subgroup H of AutKE of some prime index p;
that is, p = |(AutKE )/H| = |AutKE |/|H| = [E : K ]/|H| and so
[E : K ] = p|H|. Since char(K ) - [E : K ] then char(K ) - p. Let N = E (ζ)
be a cyclotomic extension of E where ζ is a primitive pth root of unity
(which can be done by Theorem V.8.1(i)). Define M = K (ζ).
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Proposition V.9.6 (continued 1)

Proof (continued). Then we have:

N = E (ζ)

�
��

@
@@

K

E

@
@@

M = K (ζ)

�
��

By Theorem V.8.1(ii), N is a finite dimensional abelian extension of E and
so, by the definition of “abelian extension,” N is Galois over E and, by
Exercise V.3.15(b), N is Galois over K .

Now M = K (ζ) is clearly a radical
extension of K . If we can find a radical extension of M that contains
N = E (ζ), then this extension will be radical over K by Exercise V.9.4
(since M is radical over K ) and this extension will be the desired extension
F .
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Proposition V.9.6 (continued 2)

Proof (continued). First, observe that E is a stable intermediate field
between N and K by Lemma V.2.13 (since E is Galois over K and
algebraic over K by Theorem V.1.11). That is, every K -automorphism in
AutKN maps E into itself. Consequently, for any σ ∈ AutKN we can
restrict σ to E (i.e., σ|E ) to produce an element of AutKE . Now since
K ⊂ M = K (ζ) then AutMN < AutKE .

Let θ : AutMN → AutKE be
defined as θ(σ) = σ|E . Then θ is a homomorphism because
θ(σ1σ2) = (σ1σ2)|E = σ1|Eσ2|E = θ(σ1)θ(σ2). If σ ∈ AutMN then
σ(ζ) = ζ (since M = K (ζ)). If σ ∈ Ker(θ) then σ|E must be the identity
and since N = E (ζ) then σ must be the identity on N. So by Theorem
I.2.3(i), θ is one to one and so is a monomorphism.
We now prove the theorem by induction on n = [E : K ]. In the case
[E : K ] = 1 we have E = K and M = K (ζ) is the desired radical extension
F . Assume the theorem is true for all extensions of dimension k < n and
consider the two possibilities:
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Proposition V.9.6 (continued 3)

Proof (continued).

(i) AutMN is isomorphic under θ to a proper subgroup of
AutKE ;

(ii) AutMN ∼= AutKE and θ is an isomorphism.

Since AutKE is solvable, then by Theorem II.7.11(i) we have that AutMN
is solvable in either case. Since E is a finite dimensional extension of K by
hypothesis an dN = E (ζ) is a finite dimensional extension of E (by
Theorem V.1.6(iii)) then N is a finite dimensional extension of K by
Theorem V.1.2.

As shown above (after the diagram) N is Galois over K
and so by the Fundamental Theorem of Galois Theory (Theorem V.2.5(ii))
N is Galois over the intermediate field M = K (ζ). In case (i) we have
[N : M] = |AutMN| and [E : K ] = |AutKE | = n by Theorem V.2.15(i) and
so [N : M] < [E : K ] = n. Whence by the induction hypothesis there is a
radical extension of M that contains N. As remarked in the first
paragraph, this proves the theorem in case (i).
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Proposition V.9.6

Proposition V.9.6 (continued 4)

Proof. In case (ii), let J = θ−1(H). Notice that θ : AutMN → AutKE is
an isomorphism in this case, so θ−1 : AutKE → AutMN is an isomorphism
and since H is a normal subgroup of index p in AutKE , then J is a normal
subgroup of index p in AutMN. Since AutKE is solvable and
AutMN ∼= AutKE , then AutMN is solvable and by Theorem II.7.11(i),
J < AutMN is solvable. Let P be the fixed field of J relative to AutMN.

Then we have
{ι} / J = AutPN / AutMN
l l l
N ⊃ P ⊃ M

Notice that since P is the fixed field of J and P is Galois over M by
Theorem V.2.15(ii), so J = AutPN. Also be Theorem V.2.5(ii) (with
F = n, E = P, and K = M) we have
AutMP ∼= (AutMN)/(AutPN) = (AutMN)/J. But [AutMN : J] = p be
construction, whence AutMP ∼= Zp by Exercise I.4.3. Therefore P is a
cyclic extension of M = K (ζ).
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Proposition V.9.6

Proposition V.9.6 (continued 5)

Proposition V.9.6. Let E be a finite dimensional Galois extension field of
K with solvable Galois group AutK (F ). Assume that char(K ) does not
divide [E : K ]. Then there exists a radical extension F of K such that
F ⊃ E ⊃ K .

Proof (continued). By Theorem V.7.11(ii), P = M(u) where u is a root
of some irreducible xp − a ∈ M[x ]. Thus P is a radical extension of M
where [P : M] > 1 and, since [N : M] = [N : P][P : M] by Theorem V.1.2,
then [N : P] < [N : M] = [F : K ] = n (since AutMN ∼= AutKE in case
(ii)). Since AutPN = J is solvable and N is Galois over P by Theorem
V.2.5(ii), the induction hypothesis implies that there is a radical extension
F of P that contains N.

Since F is a radical extension of P and P is a
radical extension of M = K (ζ) (and so K (ζ) is a radical extension of K ),
then F is a radical extension of K which contains N = E (ζ) and hence
contains K . So the result holds in case (iii).
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Corollary V.9.7. Galois’ Theorem

Corollary V.9.7. Galois’ Theorem

Corollary V.9.7. Galois’ Theorem. Let K be a field and f ∈ K [x ] a
polynomial of degree n > 0, where char(K ) does not divide n! (which is
always true when char(K ) = 0). Then the equation f (x) = 0 is solvable by
radicals if and only if the Galois group of f is solvable.

Proof. (1) Suppose f (x) = 0 is solvable by radicals. Then (by Definition
V.9.2) there is a radical extension E of K and a splitting field E of f over
K such that F ⊃ E ⊃ K .

By Definition V.4.1, the Galois group of f is
AutKE . By Theorem V.9.4, AutKF is solvable.
(2) Suppose the Galois group of f is solvable. So let E be a splitting field
of f over K (which exists since the algebraic closure of K exists by
Theorem V.3.6). Then this means that AutKE is solvable. Notice that E
can be chosen to be a finite dimensional extension by Theorem V.3.2, with
[E : K ] ≤ n!.
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Proof. (1) Suppose f (x) = 0 is solvable by radicals. Then (by Definition
V.9.2) there is a radical extension E of K and a splitting field E of f over
K such that F ⊃ E ⊃ K . By Definition V.4.1, the Galois group of f is
AutKE . By Theorem V.9.4, AutKF is solvable.
(2) Suppose the Galois group of f is solvable. So let E be a splitting field
of f over K (which exists since the algebraic closure of K exists by
Theorem V.3.6). Then this means that AutKE is solvable. Notice that E
can be chosen to be a finite dimensional extension by Theorem V.3.2, with
[E : K ] ≤ n!.
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Corollary V.9.7. Galois’ Theorem

Corollary V.9.7. Galois’ Theorem (continued 1)

Proof (continued). By Proposition V.9.6, it is sufficient to show that E
is Galois over K and char(K ) - [E : K ] (since Proposition V.9.6 then
implies the existence of radical extension F of K where F ⊃ E ⊃ K , and
then by Definition V.9.2, f (x) = 0 is solvable by radicals). We have
hypothesized that char(K ) - n! where n is the degree of polynomial f . By
Theorem III.6.10, an irreducible factor g of f has no multiple roots in E if
and only if g ′ 6= 0. Since g is a factor of f then the degree of g is between
1 and n.

If char(k) = 0 then g ′ 6= 0 by Exercise III.6.3(a). If
char(K ) = p 6= 0 (since char(K ) - n! then char(K ) > n) then by Exercise
III.6.3(b), g ′ = 0 if and only if g is a polynomial in xp. But if g is a
polynomial in xp then the degree of g is greater than n, so it must be that
g ′ 6= 0 in this case as well. So (by Theorem III.6.10), the irreducible
factors of f are separable (see Definition V.3.10).
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Corollary V.9.7. Galois’ Theorem

Corollary V.9.7. Galois’ Theorem (continued 2)

Corollary V.9.7. Galois’ Theorem. Let K be a field and f ∈ K [x ] a
polynomial of degree n > 0, where char(K ) does not divide n! (which is
always true when char(K ) = 0). Then the equation f (x) = 0 is solvable by
radicals if and only if the Galois group of f is solvable.

Proof (continued). By Exercise V.3.13 (the (iii)⇒(ii) part), E is
separable over K . Then by Theorem V.3.11 (the (ii)⇒(i) part), and the
fact that E is a splitting field of f ) E is Galois over K . Since [E : K ] ≤ n!
then every prime that divides [E : K ] must also divide n!. Since char(K ) is
either 0 or prime and char(K ) - n! then char(K ) - [E : K ].

As mentioned
above, Proposition V.9.6 now implies that the equation f (x) = 0 is
solvable by radicals.
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