Modern Algebra

Chapter VIII. Commutative Rings and Modules
VIII.1. Chain Conditions—Proofs of Theorems

Thomas W. Hungerford
Algebra

@ Springer

Modern Algebra August 29, 2018 1/22

Theorem VIII.1.4 (condition)

Proof (continued). Define f : S — S by f(B) = B’ in this notation
(notice that f is then a choice function). By Theorem 0.6.2, The
Recursion Theorem, with f, = f for all n € N there is a function

¢ : NU{0} — S such that ¢(0) = By and ¢(n+ 1) = f(¢(n)) = ¢(n)’
(The Recursion Theorem allows us to create a chain of modules). Denote
@w(n) = B, so that ¢(n+ 1) = Bpy1 = f(¢(n)) = f(B,) = B),. Then we
have the descending chain By D By = B; D B} = B> D -+ where

B; # Bj1 for all i € NU {0}. But this is a descending chain that does not
satisfy the descending chain condition, CONTRADICTING the hypothesis
that A satisfies the descending chain condition. So the assumption that
set S has no minimal element is false, and so module A satisfies the
minimal condition on submodules.

The proof for ascending chains and the maximum condition is similar and
is left as Exercise VIII.1.A. O
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Theorem VIII.1.4

Theorem VIII.1.4. A module A satisfies the ascending (respectively,
descending) chain condition on submodules if and only if A satisfies the
maximal (respectively, minimal) condition on submodules.

Proof. Suppose A satisfies the minimal condition on submodules and let
A1 D A2 D A3 D --- be an arbitrary descending chain of submodules.
Then by the minimal condition hypothesis, the set {A; | i > 1} has a
minimal element, say A,. Then for i > n we have A, D A; by this
minimality, but A, C A; by the descending nature of the chain. Whence
A; = A, for i > n and A satisfies the descending chain condition.

Conversely, suppose A satisfies the descending chain condition, and let S
be a nonempty set of submodules of A. Then there is By € S. ASSUME
set S has no minimal element. Then for each submodule B in S there
exists at least one submodule B’ in S such that B’ € B and B’ # B. We
use the Axiom of Choice to choose for each B € S one such B’.
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Theorem VIII.1.5

Theorem VIII.1L5. Let {0} — A > B £ C — {0} be a short exact
sequence of modules. Then B satisfies the ascending (respectively,
descending) chain condition on submodules if and only if A and C satisfy
it.

Proof. Suppose B satisfies the ascending chain condition. Since f(A) is a
submodule of B (the homomorphic image of a module is a module; see the
example after Definition 1V.1.3) then f(A) also satisfies the ascending
chain condition (any ascending chain of submodules of f(A) is also an
ascending chain of submodules of B). Since f is one to one then A is
isomorphic to f(A), so A also satisfies the ACC. If G C G C GG C--- is
a chain of submodules of B. Then g7 1(C1) Cc g H(&) c g HG) C ---
is a chain of submodules of B (again, see the example after Definition
IV.1.3). Since B has the ACC then there is n € N such that

g 1(GC) =g YC,) for all i > n. Since g is onto then g71(C) = g~ 1(C,)
implies C; = C, and so C satisfies the ACC.
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Theorem VIII.1.5 (continued 1) Theorem VIII.1.5 (continued 2)

Proof (continued). Now suppose A and C satisfy the ACC. Let
By € B> C B3 C -+ be an ascending chain of submodules of B. For each

i€Nlet A= fYf(A)NB;) and C; = g(B;). Let f; = f|4, and gi = g|s. Proof (continued). Finally, C; = g(B;) by the definition of C;, so
(restrictions of f and g). Im(g;) = C; for i € N. Therefore {0} — A; 5 B; £ C; — {0} is a short
fi &i . exact sequence.

We now show that {0} — A; = B; => C; — {0} is a short exact sequence

for each i € N; that is, we show Ker(f;) = {0}, Im(f;) = Ker(g;), and We now claim Ay CAy CA3C---and G C G C GC---. Since

Im(g;) = C; for i € N. Since f is one to one, By C B, C B3 C -+ by hypothesis then f(A) N B; C f(A) N Biy1 and
i Ai = FYf(A) N B;) C FY(f(A) N Biy1) = Aiy1 for i € N. Also,

fi(Ai) = fla,(Ai) = £(Aj) = F(F(F(A) N Bi)) = f(A) N B;. B; C Bjy1 implies C; = g(B;) C g(Bjy+1) = Cj41 for i € N.

Since Ker(f) = {0} then Ker(f;) = Ker(fj4,) = {0} for each i € N. Also, Since in this case we hypothesize that A and C satisfy the ACC, then

we have Im(f;) = f(A) N B;. Now gi(B;) = glg,(B;) = g(Bi) = Ci (so gi is there is n € N such that A; = A, and C; = G, for all i > n. For each

onto). In the given short exact sequence, Im(f) = Ker(g), so i > n consider the commutative diagram. ..

Ker(gi) = Ker(g|g,) = Ker(g) N B; = Im(f) N B; = f(A) N B; = Im(f)

for all i € N.
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Theorem VIII.1.5 (continued 3) Corollary VII1.1.6
Proof (continued).
0 — Ay B, &% Cp— 0
Corollary VIII.1.6. If A is a submodule of a module B, then B satisfies
Q B ¥ the ascending (respectively, descending) chain condition if and only if A
and B/A satisfy it.
ﬁ’ &i
0— A — B — G — 0 Proof. Consider the sequence {0} — A LAY A B/A — {0}, where f is

where «v and 7 are identity maps (since A; = A, and B; = B,) and f3; is the inclusion map and g is the canonical epimorphism, so that

the inclusion map (since B, C B; for i > n). By the Short Five Lemma, g(b) = b+ A. Then Ker.(f.) = {0}, Im(f) = A = Ker(g), and
Lemma IV.1.17, 3; is a one to one and onto isomorphism (since a and Im(g)_ = B/A so that this s a short exact sequence. By Theorem VIIL1.5,
are). So B, = B; and this holds for all i > n. Since B; C Bp C B3 C --- is B satisfies the ACC (respectively, DCC) if and only if both A and B/A

an arbitrary chain of submodules of B, then B satisfies the ACC, as satisfy it. O

claimed.

The proof for the descending chain condition is similar and left as Exercise
VIIIL1.B. O
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Corollary VIII.1.7

Corollary VIII.1.7. If A1, Az, ..., A, are modules, then the direct sum
A1 © Ay @& --- @ A, satisfies the ascending (respectively, descending chain

condition on submodules if and only if each A; satisfies it.

Proof. We prove by induction. For n = 2, consider the sequence

0} = A1 2 A 8 A RA— {0} where 11 is a canonical injection and
2 is a canonical projection. Then Keri;) = {0},

Im(11) = A1 & {0} = Ker(m2), and Im(m2) = A; so that this is a short
exact sequence. By Theorem VIII.1.5, A; & A; satisfies the ACC
(respectively, DCC) if and only if A; and A; satisfy it. The result holds for
n=2.

Now suppose the result holds for n = k and consider

(0} 5 A G AD DA S ADAD B A® A 5 {0} where
is the canonical injection of Ay & Ay & -+ - @ Ak into

Al & Ay B --- B Ag @ Agyq and g1 is the canonical projection.
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Theorem VIII.1.8

Theorem VIIL.1.8. If R is a left Noetherian (respectively, Artinian) ring
with identity, then every finitely generated unitary left R-module A
satisfies the ascending (respectively, descending) chain condition on the
submodules. This also holds if “left” is replaced with “right.”

Proof. Suppose A is a finitely generated unitary left R-module where R is
left Noetherian. Then by Corollary 1V.2.2 there is a finitely generated free
R-module F and an onto homomorphism (i.e., an epimorphism)

m: F — A. Since F is finitely generated then it has a finite basis. By by
Theorem IV.2.1, f is a direct sum of a finite number of copies of R. Then
by Corollary VIII.1.7, F is left Noetherian (respectively, left Artinian) since
R is. By Theorem IV.1.7 (the “in particular” part), A= F /Ker(w). Since
F is left Noetherian and Ker() is a submodule of F then F is left
Noetherian. So by Corollary VIII.1.6 (with the notation of Corollary
VIII.1.6 translated to here as B = F, A = Ker(r), and

B/Q = F/Ker(r) = A), A= F/Ker(w) is Noetherian. O
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Corollary VII1.1.7 (continued)

Corollary VIIL1.7. If A1, As, ..., A, are modules, then the direct sum

A1 D Ay @ --- @ A, satisfies the ascending (respectively, descending chain
condition on submodules if and only if each A; satisfies it.

Proof (continued). As argued above, this is a short exact sequence.
Applying Theorem VIII.1.5, Ay ® Ay & --- @ Ak @ Ay satisfies the ACC
(respectively, DCC) if and only if Ay & Ay @ -- - @ A (and, by the
induction hypothesis, A1, Az, ..., Ax) and Ak satisfy it. So the result
holds for n = k + 1. The general result now follows by induction. O
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Theorem VIII.1.9

Theorem VII1.1.9. A module A satisfies the ascending chain condition on
submodules if and only if every submodule of A is finitely generated. In
particular, a commutative ring R is Noetherian if and only if every ideal of
R is finitely generated.

Proof. Suppose A satisfies the ACC on submodules. Let B be a
submodule of A. Let S be the set of all finitely generated submodules of
B. Now {0} € S so S is nonempty and so by Theorem VIII.1.4 S satisfies
the maximum condition. Hence there is a maximal element C. Since

C € S then C is finitely generated by ¢1, ¢,..., c,. Foreach b € B let Dy
be the submodule of B generated by b, ¢1,¢,...,¢,. Then Dy € S and

C C Dy, for every b € B. Since C is maximal, Dy = C for every b € B and
so B C C. Since C C B by construction (C € S and S only contains
submodules of B) then B = C and so B is finitely generated and the first
claim holds.
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Theorem VII11.1.9 (continued)

Theorem VIII.1.9. A module A satisfies the ascending chain condition on
submodules if and only if every submodule of A is finitely generated. In
particular, a commutative ring R is Noetherian if and only if every ideal of
R is finitely generated.

Proof (continued). Now suppose every submodule of A is finitely
generated. Let A; C Ay C A3 C --- be an ascending chain of submodules
of A. "It is easy to verify” that U2, A; is a submodule of A (Hungerford
claims on page 375) and so finitely generated by hypothesis. Say U2, A; is
generated by a;, as,...,ax. Since each a; is in some A;, there is an index

n such that a; € A, for i =1,2,..., k. So {a1,a2,...,ak} C A, and
U2 Ai C Ay, Whence A; = A, for i > n and, since Ay C Ay C A3 C -+
is an arbitrary ascending chain of submodules, then A satisfies the ACC on

submodules and the converse claim holds. |
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Theorem VIII.1.11 (continued 1)

Proof (continued). So the assumption that at least one of the chain
conditions does not hold is false and hence both chain conditions must
hold, as claimed.

Now suppose both chain conditions hold. Let B be a nonzero submodule
of A and let S(B) be the set of all submodules C of B such that C # B.
So if B has no proper submodules then S(B) # {0}. Also define

5({0}) = {0}. Since the chain conditions hold on A, and B is a submodule
of A, then the chain conditions hold for B. So by Theorem VIII.1.4, the
maximum condition on submodules holds and so there is a maximal
element B’ of S(B). Let S be the set of all submodules of A. Define
f:S— S by f(B) = B’; since there may be more than one B’ a maximal
element of S(B), for given B, so the Axiom of Choice is needed to give
the existence of f. By Theorem 0,6,2, “The Recursion Theorem,” with

fo = f for n € N there is a function ¢ : NU {0} — S such that p(0) = A
and o(n+1) = f(p(n)) = ¢(n)’ for n € NU {0}. Denote ¢(i) as A;.
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Theorem VIII.1.11

Theorem VIII.1.11. A nonzero module A has a composition series if and
only if A satisfies both the ascending and descending chain conditions on
submodules.

Proof. First, suppose A has a composition series S of length n. ASSUME
at least one of the chain conditions fails to hold. Then there are
submodules A= Ag D A1 D A2 D -+ D Ay D App1, where A; # A4 for
i=0,1,2,...,n, which form a normal series T of length n+ 1 (since the
chain could not “end” at A,). By Theorem VIII.1.10(a), normal series S
and T have refinements that are equivalent. A refinement of S must have
the same length as S (namely, n) since S is a composition series and a
refinement of normal series T has length at least n+ 1. But equivalent
normal series have the same nontrivial factors (by the definition of
“equivalent”) and so must be of the same length. But the equivalent
refinements of S and T cannot be of the same length (since n < n+1), a
CONTRADICTION.

Modern Algebra August 29, 2018 15 f 22

Theorem VIII.1.11 (continued 2)

Theorem VIIIL.1.11. A nonzero module A has a composition series if and
only if A satisfies both the ascending and descending chain conditions on
submodules.

Proof (continued). Notice that ¢(n+ 1) is a maximal (submodule of
@(n)) element of S((n)) (this is what the prime notation represents), so
¢(n+1) C ¢(n) and AD A; D Ay D --- is a descending chain of
submodules of A. Since A satisfies the DCC then there is n € N such that
Aj = A, for i > n. Since ¢(n+ 1) is a submodule of ¢(n) but

@o(n+ 1) # ¢(n) (though we allow p(n+ 1) = {0}), then the only way
that ¢p(n+ 1) = ¢(n) is when ¢(n) = {0}. Thatis, A,+1 = A, if and only
if A, = An41 = {0}. Let m be the smallest index such that A,, = {0}.
Then m < n and Ag # {0} for all kK < m. Furthermore, for each k < m,
Ak+1 is a maximal submodule of Ay such that Axyq # Ak.
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Theorem VII1.1.11 (continued 3)

Theorem VIII.1.11. A nonzero module A has a composition series if and
only if A satisfies both the ascending and descending chain conditions on
submodules.

Proof (continued). So each Ay/Ak+1 is nonzero (since Axi1 # Ax) and
has no proper submodules by Theorem 1V.1.10 (since Cyx/Aks1 C Ak/Axs1
implies Ci is a submodule of Ay which contains Ax.1 by Theorem 1V.1.10,
but Ax,1 as a maximal submodule of A, not equal to Ay, so we must
have Cx = Ak and Cx/Ak+1 = Ak/Ak+1; hence no proper submodules of
Ak/Ak+1; this is whey we defined S(B) as the set of all submodules of B
not equal to B). Therefore, A=A1 DA D---DAn={0}isa
composition series of Aand the second claim follows. O
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Corollary VIII.1.12 (continued 1)

Proof (continued). Next, we claim Re; is a minimal nonzero left ideal
(that is, Re; has no proper submodules). If there is a nonzero submodule
of Re; then it contains an n x n matrix My € Re; with some nonzero entry
in position (J, 1), say rj # 0. Notice that the three elementary row
operations are defined in Definition VI1.2.7 and that over a ring with
identity (since D is a division ring so it has identity), each elementary row
operation can be performed by multiplication on the left by an elementary
matrix (see also Definition VI1.2.7) by Theorem VII.2.8 (and by common
knowledge from linear algebra). Since rj; # 0 then we can perform the
elementary row operation by multiplying row j of M; by unit r(rj,-)_l for
any nonzero r € D to produce entry r # 0 in the (j, /) position of a new
matrix M,. Notice that we are using the fact that D is an integral domain
here! This row operation can be performed by multiplication on the left by
the appropriate elementary matrix in Mat,(D), by Theorem VII.2.8, so M,
must be in Re; since it is an R-module.
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Corollary VIII.1.12

Corollary VIII1.1.12. If D is a division ring, then the ring Mat,(D) of all
n x n matrices over D is both Artinian and Noetherian.

Proof. To show ring Mat,(D) is both Artinian and Noetherian, we need
to show that it satisfies both the ACC and DCC on ideals, by Definition
VIII1.2. If we interpret R = Mat,(D) as a R-module (so that the ideals
are submodules), then by Theorem VII1.1.11 is suffices to show that
Mat,(D) has a composition series of left R-modules (to cover the
conditions of left Noetherian and left Artinian). For each i € {1,2,...,n}
let e; € R be the matrix with 1p in position (/,/) and O elsewhere.

We now claim that Re; = {Ae; | A € R} is a left ideal (and so a
submodule) of R consisting of all matrices in R with column j zero for all
j # i. Because of the row times column definition of matrix multiplication,
Ae;j is an n x n matrix with column i the same as the ith column of A and
all other columns of all 0's. So Re; consists of all such matrices as
described and only those matrices.
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Corollary VI11.1.12 (continued 2)

Proof (continued). Consider the entry ry; in position (k, i) of M,. We
can perform the elementary row operation of adding to row k unit

(s — rii)(rij)~! times row /i to produce an entry of S in position (k, i) for
any x € D is a new matrix Ms (notice that (s — rk;)(rj;)_l is a nonunit if
and only if x = ry;, in which case there is no need to perform this row
operation). Similarly, by Theorem VI1.2.8, Ms € Re;. So Re; must contain
a matrix with position (j, /) having entry r € D and with position (k, /)
having entry s € D, and this can be done for any r,s € D. Since k was
arbitrary, then we can make position (k, i) for 1 < k < n any entry we
desire through elementary row operations and so a nonzero submodule of
Re; must contain all matrices with all columns 0 except column /. That is,
Re; has no nonzero submodules and hence Re; is a maximal submodule of
Mat,(D).
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Corollary VII1.1.12 (continued 3)

Proof (continued). Let Mg = {0} and for i > 1 let

M; = R(ey + &2 + - -+ &). Then M; includes all n x n matrices with only
zeros in columns i+ 1,i+2,..., m. Similar to the argument above, M; is
a left ideal of R. Consider M;/M;_1. The elements of M;/M;_; are of the
form m+ M;_; where m € M;. So m+ M;_; = n+ M;_, if and only if the
ith column of m is the same as the ith column of n. Define

f: M;/M;_1 — Re; mapping m+ M;_1 to the matrix in Re; with ith
column the same as m. Then f is one to one, onto, and (since addition
and multiplication of cosets is performed by representatives) a ring
homomorphism. That is, M;/M;_1 = Re;. So

R=M,> M,_12---D M; D My= {0} is a composition series (since
M;/M;_1 = Re; has no proper submodules) of left R-modules. A similar
argument with right ideals ;R = {¢;A | A € R} (consisting of all matrices
in R = Mat,(D) with row j zero for all j # /). O
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