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Theorem VIII.1.4

Theorem VIII.1.4

Theorem VIII.1.4. A module A satisfies the ascending (respectively,
descending) chain condition on submodules if and only if A satisfies the
maximal (respectively, minimal) condition on submodules.

Proof. Suppose A satisfies the minimal condition on submodules and let
A1 ⊃ A2 ⊃ A3 ⊃ · · · be an arbitrary descending chain of submodules.
Then by the minimal condition hypothesis, the set {Ai | i ≥ 1} has a
minimal element, say An.

Then for i ≥ n we have An ⊃ Ai by this
minimality, but An ⊂ Ai by the descending nature of the chain. Whence
Ai = An for i ≥ n and A satisfies the descending chain condition.

Conversely, suppose A satisfies the descending chain condition, and let S
be a nonempty set of submodules of A. Then there is B0 ∈ S . ASSUME
set S has no minimal element. Then for each submodule B in S there
exists at least one submodule B ′ in S such that B ′ ⊂ B and B ′ 6= B. We
use the Axiom of Choice to choose for each B ∈ S one such B ′.
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Theorem VIII.1.4

Theorem VIII.1.4 (condition)

Proof (continued). Define f : S → S by f (B) = B ′ in this notation
(notice that f is then a choice function). By Theorem 0.6.2, The
Recursion Theorem, with fn = f for all n ∈ N there is a function
ϕ : N ∪ {0} → S such that ϕ(0) = B0 and ϕ(n + 1) = f (ϕ(n)) = ϕ(n)′

(The Recursion Theorem allows us to create a chain of modules). Denote
ϕ(n) = Bn so that ϕ(n + 1) = Bn+1 = f (ϕ(n)) = f (Bn) = B ′

n. Then we
have the descending chain B0 ⊃ B ′

0 = B1 ⊃ B ′
1 = B2 ⊃ · · · where

Bi 6= Bi+1 for all i ∈ N∪ {0}.

But this is a descending chain that does not
satisfy the descending chain condition, CONTRADICTING the hypothesis
that A satisfies the descending chain condition. So the assumption that
set S has no minimal element is false, and so module A satisfies the
minimal condition on submodules.

The proof for ascending chains and the maximum condition is similar and
is left as Exercise VIII.1.A.
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Theorem VIII.1.5

Theorem VIII.1.5

Theorem VIII.1.5. Let {0} → A
f→ B

g→ C → {0} be a short exact
sequence of modules. Then B satisfies the ascending (respectively,
descending) chain condition on submodules if and only if A and C satisfy
it.

Proof. Suppose B satisfies the ascending chain condition. Since f (A) is a
submodule of B (the homomorphic image of a module is a module; see the
example after Definition IV.1.3) then f (A) also satisfies the ascending
chain condition (any ascending chain of submodules of f (A) is also an
ascending chain of submodules of B). Since f is one to one then A is
isomorphic to f (A), so A also satisfies the ACC.

If C1 ⊂ C2 ⊂ C3 ⊂ · · · is
a chain of submodules of B. Then g−1(C1) ⊂ g−1(C2) ⊂ g−1(C3) ⊂ · · ·
is a chain of submodules of B (again, see the example after Definition
IV.1.3). Since B has the ACC then there is n ∈ N such that
g−1(Ci ) = g−1(Cn) for all i ≥ n. Since g is onto then g−1(Ci ) = g−1(Cn)
implies C1 = Cn and so C satisfies the ACC.
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Theorem VIII.1.5

Theorem VIII.1.5 (continued 1)

Proof (continued). Now suppose A and C satisfy the ACC. Let
B1 ⊂ B2 ⊂ B3 ⊂ · · · be an ascending chain of submodules of B. For each
i ∈ N let Ai = f −1(f (A)∩Bi ) and Ci = g(Bi ). Let fi = f |Ai

and gi = g |Bi

(restrictions of f and g).

We now show that {0} → Ai
fi→ Bi

gi→ Ci → {0} is a short exact sequence
for each i ∈ N; that is, we show Ker(fi ) = {0}, Im(fi ) = Ker(gi ), and
Im(gi ) = Ci for i ∈ N.

Since f is one to one,

fi (Ai ) = f |Ai
(Ai ) = f (Ai ) = f (f −1(f (A) ∩ Bi )) = f (A) ∩ Bi .

Since Ker(f ) = {0} then Ker(fi ) = Ker(fi |Ai
) = {0} for each i ∈ N. Also,

we have Im(fi ) = f (A)∩Bi . Now gi (Bi ) = g |Bi
(Bi ) = g(Bi ) = Ci (so gi is

onto). In the given short exact sequence, Im(f ) = Ker(g), so

Ker(gi ) = Ker(g |Bi
) = Ker(g) ∩ Bi = Im(f ) ∩ Bi = f (A) ∩ Bi = Im(fi )

for all i ∈ N.
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Theorem VIII.1.5

Theorem VIII.1.5 (continued 2)

Proof (continued). Finally, Ci = g(Bi ) by the definition of Ci , so

Im(gi ) = Ci for i ∈ N. Therefore {0} → Ai
fi→ Bi

gi→ Ci → {0} is a short
exact sequence.

We now claim A1 ⊂ A2 ⊂ A3 ⊂ · · · and C1 ⊂ C2 ⊂ C3 ⊂ · · · . Since
B1 ⊂ B2 ⊂ B3 ⊂ · · · by hypothesis then f (A) ∩ Bi ⊂ f (A) ∩ Bi+1 and
Ai = f −1(f (A) ∩ Bi ) ⊂ f −1(f (A) ∩ Bi+1) = Ai+1 for i ∈ N. Also,
Bi ⊂ Bi+1 implies Ci = g(Bi ) ⊂ g(Bi+1) = Ci+1 for i ∈ N.

Since in this case we hypothesize that A and C satisfy the ACC, then
there is n ∈ N such that Ai = An and Ci = Cn for all i ≥ n. For each
i ≥ n consider the commutative diagram. . .
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Theorem VIII.1.5

Theorem VIII.1.5 (continued 3)

Proof (continued).

0 −→ Ai
fi−→ Bi

gi−→ Ci −→ 0

0 −→ An
fn−→ Bn

gn−→ Cn −→ 0

↓
α

↓
βi

↓
γ

where α and γ are identity maps (since Ai = An and Bi = Bn) and βi is
the inclusion map (since Bn ⊂ Bi for i ≥ n). By the Short Five Lemma,
Lemma IV.1.17, βi is a one to one and onto isomorphism (since α and γ
are). So Bn = Bi and this holds for all i ≥ n. Since Bi ⊂ B2 ⊂ B3 ⊂ · · · is
an arbitrary chain of submodules of B, then B satisfies the ACC, as
claimed.

The proof for the descending chain condition is similar and left as Exercise
VIII.1.B.
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Corollary VIII.1.6

Corollary VIII.1.6

Corollary VIII.1.6. If A is a submodule of a module B, then B satisfies
the ascending (respectively, descending) chain condition if and only if A
and B/A satisfy it.

Proof. Consider the sequence {0} → A
f→ B

g→ B/A → {0}, where f is
the inclusion map and g is the canonical epimorphism, so that
g(b) = b + A. Then Ker(f ) = {0}, Im(f ) = A = Ker(g), and
Im(g) = B/A so that this is a short exact sequence. By Theorem VIII.1.5,
B satisfies the ACC (respectively, DCC) if and only if both A and B/A
satisfy it.
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Corollary VIII.1.7

Corollary VIII.1.7

Corollary VIII.1.7. If A1,A2, . . . ,An are modules, then the direct sum
A1 ⊕ A2 ⊕ · · · ⊕ An satisfies the ascending (respectively, descending chain
condition on submodules if and only if each Ai satisfies it.

Proof. We prove by induction. For n = 2, consider the sequence
{0} → A1

ι1→ A1 ⊕ A2
π2→ A2 → {0} where ι1 is a canonical injection and

π2 is a canonical projection. Then Kerιi ) = {0},
Im(ι1) = A1 ⊕ {0} = Ker(π2), and Im(π2) = A2 so that this is a short
exact sequence.

By Theorem VIII.1.5, A1 ⊕ A2 satisfies the ACC
(respectively, DCC) if and only if A1 and A2 satisfy it. The result holds for
n = 2.

Now suppose the result holds for n = k and consider

{0} → A1 ⊕ A2 ⊕ · · · ⊕ Ak
ι→ A1 ⊕ A2 ⊕ · · · ⊕ Ak ⊕ Ak+1

πk+1→ {0} where ι
is the canonical injection of A1 ⊕ A2 ⊕ · · · ⊕ Ak into
A1 ⊕ A2 ⊕ · · · ⊕ Ak ⊕ Ak+1 and πk+1 is the canonical projection.
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Theorem VIII.1.8

Theorem VIII.1.8

Theorem VIII.1.8. If R is a left Noetherian (respectively, Artinian) ring
with identity, then every finitely generated unitary left R-module A
satisfies the ascending (respectively, descending) chain condition on the
submodules. This also holds if “left” is replaced with “right.”

Proof. Suppose A is a finitely generated unitary left R-module where R is
left Noetherian. Then by Corollary IV.2.2 there is a finitely generated free
R-module F and an onto homomorphism (i.e., an epimorphism)
π : F → A.

Since F is finitely generated then it has a finite basis. By by
Theorem IV.2.1, f is a direct sum of a finite number of copies of R. Then
by Corollary VIII.1.7, F is left Noetherian (respectively, left Artinian) since
R is. By Theorem IV.1.7 (the “in particular” part), A ∼= F/Ker(π). Since
F is left Noetherian and Ker(π) is a submodule of F then F is left
Noetherian. So by Corollary VIII.1.6 (with the notation of Corollary
VIII.1.6 translated to here as B = F , A = Ker(π), and
B/Q = F/Ker(π) ∼= A), A ∼= F/Ker(π) is Noetherian.
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Theorem VIII.1.9

Theorem VIII.1.9

Theorem VIII.1.9. A module A satisfies the ascending chain condition on
submodules if and only if every submodule of A is finitely generated. In
particular, a commutative ring R is Noetherian if and only if every ideal of
R is finitely generated.

Proof. Suppose A satisfies the ACC on submodules. Let B be a
submodule of A. Let S be the set of all finitely generated submodules of
B.

Now {0} ∈ S so S is nonempty and so by Theorem VIII.1.4 S satisfies
the maximum condition. Hence there is a maximal element C . Since
C ∈ S then C is finitely generated by c1, c2, . . . , cn. For each b ∈ B let Db

be the submodule of B generated by b, c1, c2, . . . , cn. Then Db ∈ S and
C ⊂ Db for every b ∈ B. Since C is maximal, Db = C for every b ∈ B and
so B ⊂ C . Since C ⊂ B by construction (C ∈ S and S only contains
submodules of B) then B = C and so B is finitely generated and the first
claim holds.
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Theorem VIII.1.9

Theorem VIII.1.9 (continued)

Theorem VIII.1.9. A module A satisfies the ascending chain condition on
submodules if and only if every submodule of A is finitely generated. In
particular, a commutative ring R is Noetherian if and only if every ideal of
R is finitely generated.

Proof (continued). Now suppose every submodule of A is finitely
generated. Let A1 ⊂ A2 ⊂ A3 ⊂ · · · be an ascending chain of submodules
of A. “It is easy to verify” that ∪∞i=1Ai is a submodule of A (Hungerford
claims on page 375) and so finitely generated by hypothesis. Say ∪∞i=1Ai is
generated by a1, a2, . . . , ak . Since each ai is in some Aj , there is an index
n such that ai ∈ An for i = 1, 2, . . . , k. So {a1, a2, . . . , ak} ⊂ An and
∪∞i=1Ai ⊂ An. Whence Ai = An for i ≥ n and, since A1 ⊂ A2 ⊂ A3 ⊂ · · ·
is an arbitrary ascending chain of submodules, then A satisfies the ACC on
submodules and the converse claim holds.
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Theorem VIII.1.11

Theorem VIII.1.11

Theorem VIII.1.11. A nonzero module A has a composition series if and
only if A satisfies both the ascending and descending chain conditions on
submodules.

Proof. First, suppose A has a composition series S of length n. ASSUME
at least one of the chain conditions fails to hold. Then there are
submodules A = A0 ⊃ A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ An+1, where A1 6= Ai+1 for
i = 0, 1, 2, . . . , n, which form a normal series T of length n + 1 (since the
chain could not “end” at An). By Theorem VIII.1.10(a), normal series S
and T have refinements that are equivalent.

A refinement of S must have
the same length as S (namely, n) since S is a composition series and a
refinement of normal series T has length at least n + 1. But equivalent
normal series have the same nontrivial factors (by the definition of
“equivalent”) and so must be of the same length. But the equivalent
refinements of S and T cannot be of the same length (since n < n + 1), a
CONTRADICTION.
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Theorem VIII.1.11

Theorem VIII.1.11 (continued 1)

Proof (continued). So the assumption that at least one of the chain
conditions does not hold is false and hence both chain conditions must
hold, as claimed.

Now suppose both chain conditions hold. Let B be a nonzero submodule
of A and let S(B) be the set of all submodules C of B such that C 6= B.
So if B has no proper submodules then S(B) 6= {0}. Also define
S({0}) = {0}.

Since the chain conditions hold on A, and B is a submodule
of A, then the chain conditions hold for B. So by Theorem VIII.1.4, the
maximum condition on submodules holds and so there is a maximal
element B ′ of S(B). Let S be the set of all submodules of A. Define
f : S → S by f (B) = B ′; since there may be more than one B ′ a maximal
element of S(B), for given B, so the Axiom of Choice is needed to give
the existence of f . By Theorem 0,6,2, “The Recursion Theorem,” with
fn = f for n ∈ N there is a function ϕ : N ∪ {0} → S such that ϕ(0) = A
and ϕ(n + 1) = f (ϕ(n)) = ϕ(n)′ for n ∈ N ∪ {0}. Denote ϕ(i) as Ai .
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Theorem VIII.1.11

Theorem VIII.1.11 (continued 2)

Theorem VIII.1.11. A nonzero module A has a composition series if and
only if A satisfies both the ascending and descending chain conditions on
submodules.

Proof (continued). Notice that ϕ(n + 1) is a maximal (submodule of
ϕ(n)) element of S(ϕ(n)) (this is what the prime notation represents), so
ϕ(n + 1) ⊂ ϕ(n) and A ⊃ A1 ⊃ A2 ⊃ · · · is a descending chain of
submodules of A. Since A satisfies the DCC then there is n ∈ N such that
Ai = An for i ≥ n. Since ϕ(n + 1) is a submodule of ϕ(n) but
ϕ(n + 1) 6= ϕ(n) (though we allow ϕ(n + 1) = {0}), then the only way
that ϕ(n + 1) = ϕ(n) is when ϕ(n) = {0}. That is, An+1 = An if and only
if An = An+1 = {0}.

Let m be the smallest index such that Am = {0}.
Then m ≤ n and Ak 6= {0} for all k < m. Furthermore, for each k < m,
Ak+1 is a maximal submodule of Ak such that Ak+1 6= Ak .

() Modern Algebra August 29, 2018 17 / 22



Theorem VIII.1.11

Theorem VIII.1.11 (continued 2)

Theorem VIII.1.11. A nonzero module A has a composition series if and
only if A satisfies both the ascending and descending chain conditions on
submodules.

Proof (continued). Notice that ϕ(n + 1) is a maximal (submodule of
ϕ(n)) element of S(ϕ(n)) (this is what the prime notation represents), so
ϕ(n + 1) ⊂ ϕ(n) and A ⊃ A1 ⊃ A2 ⊃ · · · is a descending chain of
submodules of A. Since A satisfies the DCC then there is n ∈ N such that
Ai = An for i ≥ n. Since ϕ(n + 1) is a submodule of ϕ(n) but
ϕ(n + 1) 6= ϕ(n) (though we allow ϕ(n + 1) = {0}), then the only way
that ϕ(n + 1) = ϕ(n) is when ϕ(n) = {0}. That is, An+1 = An if and only
if An = An+1 = {0}. Let m be the smallest index such that Am = {0}.
Then m ≤ n and Ak 6= {0} for all k < m. Furthermore, for each k < m,
Ak+1 is a maximal submodule of Ak such that Ak+1 6= Ak .

() Modern Algebra August 29, 2018 17 / 22



Theorem VIII.1.11

Theorem VIII.1.11 (continued 2)

Theorem VIII.1.11. A nonzero module A has a composition series if and
only if A satisfies both the ascending and descending chain conditions on
submodules.

Proof (continued). Notice that ϕ(n + 1) is a maximal (submodule of
ϕ(n)) element of S(ϕ(n)) (this is what the prime notation represents), so
ϕ(n + 1) ⊂ ϕ(n) and A ⊃ A1 ⊃ A2 ⊃ · · · is a descending chain of
submodules of A. Since A satisfies the DCC then there is n ∈ N such that
Ai = An for i ≥ n. Since ϕ(n + 1) is a submodule of ϕ(n) but
ϕ(n + 1) 6= ϕ(n) (though we allow ϕ(n + 1) = {0}), then the only way
that ϕ(n + 1) = ϕ(n) is when ϕ(n) = {0}. That is, An+1 = An if and only
if An = An+1 = {0}. Let m be the smallest index such that Am = {0}.
Then m ≤ n and Ak 6= {0} for all k < m. Furthermore, for each k < m,
Ak+1 is a maximal submodule of Ak such that Ak+1 6= Ak .

() Modern Algebra August 29, 2018 17 / 22



Theorem VIII.1.11

Theorem VIII.1.11 (continued 3)

Theorem VIII.1.11. A nonzero module A has a composition series if and
only if A satisfies both the ascending and descending chain conditions on
submodules.

Proof (continued). So each Ak/Ak+1 is nonzero (since Ak+1 6= Ak) and
has no proper submodules by Theorem IV.1.10 (since Ck/Ak+1 ⊂ Ak/Ak+1

implies Ck is a submodule of Ak which contains Ak+1 by Theorem IV.1.10,
but Ak+1 as a maximal submodule of Ak not equal to Ak , so we must
have Ck = Ak and Ck/Ak+1 = Ak/Ak+1; hence no proper submodules of
Ak/Ak+1; this is whey we defined S(B) as the set of all submodules of B
not equal to B). Therefore, A = A1 ⊃ A2 ⊃ · · · ⊃ Am = {0} is a
composition series of Aand the second claim follows.
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Corollary VIII.1.12

Corollary VIII.1.12. If D is a division ring, then the ring Matn(D) of all
n × n matrices over D is both Artinian and Noetherian.

Proof. To show ring Matn(D) is both Artinian and Noetherian, we need
to show that it satisfies both the ACC and DCC on ideals, by Definition
VIII.1.2. If we interpret R = Matn(D) as a R-module (so that the ideals
are submodules), then by Theorem VIII.1.11 is suffices to show that
Matn(D) has a composition series of left R-modules (to cover the
conditions of left Noetherian and left Artinian). For each i ∈ {1, 2, . . . , n}
let ei ∈ R be the matrix with 1D in position (i , i) and 0 elsewhere.

We now claim that Rei = {Aei | A ∈ R} is a left ideal (and so a
submodule) of R consisting of all matrices in R with column j zero for all
j 6= i . Because of the row times column definition of matrix multiplication,
Aei is an n × n matrix with column i the same as the ith column of A and
all other columns of all 0’s. So Rei consists of all such matrices as
described and only those matrices.
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Corollary VIII.1.12

Corollary VIII.1.12 (continued 1)

Proof (continued). Next, we claim Rei is a minimal nonzero left ideal
(that is, Rei has no proper submodules). If there is a nonzero submodule
of Rei then it contains an n × n matrix M1 ∈ Rei with some nonzero entry
in position (j , i), say rji 6= 0. Notice that the three elementary row
operations are defined in Definition VII.2.7 and that over a ring with
identity (since D is a division ring so it has identity), each elementary row
operation can be performed by multiplication on the left by an elementary
matrix (see also Definition VII.2.7) by Theorem VII.2.8 (and by common
knowledge from linear algebra). Since rji 6= 0 then we can perform the
elementary row operation by multiplying row j of M1 by unit r(rji )

−1 for
any nonzero r ∈ D to produce entry r 6= 0 in the (j , i) position of a new
matrix Mr . Notice that we are using the fact that D is an integral domain
here! This row operation can be performed by multiplication on the left by
the appropriate elementary matrix in Matn(D), by Theorem VII.2.8, so Mr

must be in Rei since it is an R-module.
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Corollary VIII.1.12

Corollary VIII.1.12 (continued 2)

Proof (continued). Consider the entry rki in position (k, i) of Mr . We
can perform the elementary row operation of adding to row k unit
(s − rki )(rij)

−1 times row i to produce an entry of S in position (k, i) for
any x ∈ D is a new matrix Ms (notice that (s − rki )(rji )

−1 is a nonunit if
and only if x = rki , in which case there is no need to perform this row
operation). Similarly, by Theorem VII.2.8, Ms ∈ Rei . So Rei must contain
a matrix with position (j , i) having entry r ∈ D and with position (k, i)
having entry s ∈ D, and this can be done for any r , s ∈ D. Since k was
arbitrary, then we can make position (k, i) for 1 ≤ k ≤ n any entry we
desire through elementary row operations and so a nonzero submodule of
Rei must contain all matrices with all columns 0 except column i . That is,
Rei has no nonzero submodules and hence Rei is a maximal submodule of
Matn(D).
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Corollary VIII.1.12

Corollary VIII.1.12 (continued 3)

Proof (continued). Let M0 = {0} and for i ≥ 1 let
Mi = R(e1 + e2 + · · ·+ ei ). Then Mi includes all n × n matrices with only
zeros in columns i + 1, i + 2, . . . ,m. Similar to the argument above, Mi is
a left ideal of R. Consider Mi/Mi−1. The elements of Mi/Mi−1 are of the
form m + Mi−1 where m ∈ Mi . So m + Mi−1 = n + Mi−1 if and only if the
ith column of m is the same as the ith column of n. Define
f : Mi/Mi−1 → Rei mapping m + Mi−1 to the matrix in Rei with ith
column the same as m. Then f is one to one, onto, and (since addition
and multiplication of cosets is performed by representatives) a ring
homomorphism. That is, Mi/Mi−1

∼= Rei .

So
R = Mn ⊃ Mn−1 ⊃ · · · ⊃ M1 ⊃ M0 = {0} is a composition series (since
Mi/Mi−1

∼= Rei has no proper submodules) of left R-modules. A similar
argument with right ideals eiR = {eiA | A ∈ R} (consisting of all matrices
in R = Matn(D) with row j zero for all j 6= i).
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