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Chapter 0. Introduction: Prerequisites

and Preliminaries

Note. The content of Sections 0.1 through 0.6 should be very familiar to you.

However, in order to keep these notes complete, we include a synopsis of this

material.

Section 0.1. Logic

Note. Sometimes it is helpful when proving a claim (or “conditional statement”)

of the form “if P then Q” to instead prove the logically equivalent “if not Q then

not P .” The second conditional statement is the contrapositive of the first.

Section 0.2. Sets and Classes

Note. We will mostly deal with sets “naively.” Hungerford mentions the Gödel-

Bernays axiomatic set theory on page 2. This is based on the primitive (that is,

undefined) notions of class, membership (“∈”), and equality (“=”). A set is then a

special type of class. Formally:

Definition. A set A is a class such that there exists a class B with A ∈ B. A class

that is not a set is a proper class.

Note. A careful, axiomatic development of set theory is very tedious! However,

care must be taken in the development of set theory because a purely naive ap-

proach can lead to paradoxes, such as Russell’s Paradox. Russell’s Paradox is often

explained as: “Imagine a town in which a barber cuts the hair of all of those in the
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town who do not cut their own hair. Who cuts the barber’s hair?” For more details,

see my Analysis 1 (MATH 4217/5217) online notes on 1.1. Sets and Functions. The

following example is Russell’s Paradox, but spelled out in terms of classes and sets

instead of towns and barbers.

Example. Consider the class M = {X | X is a set and X /∈ X}. If M is a set,

then it is possible to determine the elements which are in it. So the statement

M /∈ M makes sense and there are two choices: (1) M ∈ M , or (2) M /∈ M . But

by the definition of M , M ∈ M implies that X = M is a set and M /∈ M , a

contradiction. If M /∈ M then M satisfies the conditions of the definition of M

(set M is defined using the “Axiom of Class Formation”) and so M ∈ M , again a

contradiction. So M is not a set, but it is a class. Therefore it is a proper class.

Definition/Axiom. The power axiom states that for every set A the class P(A)

of all subsets of A is itself a set. Set P(A) is the power set of A, sometimes denoted

2A.

Definition. A family of sets indexed by the nonempty class I is a collection of sets

Ai, one for each i, denoted {Ai | i ∈ I}. Indexing class I may not be finite and may

not even be countable! The union and intersection of the family is respectively the

classes

∪i∈IAi = {x | x ∈ Ai for some i ∈ I},

∩i∈IAi = {x | Ai for all i ∈ I}.

Note. As Hungerford states “suitable axioms” insure that ∪i∈IAi and ∩i∈IAi are

actually sets.

http://faculty.etsu.edu/gardnerr/4217/notes/1-1.pdf
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Definition. If A and B are classes, the relative complement of A in B is B −A =

{x | x ∈ B and x /∈ A}. If all classes under discussion are subsets of some fixed set

U , called the universe of discussion, then U − A is the complement of A, denoted

A′.

Theorem 0.2.A. The following properties of sets are easily proved:

A ∩ (∪i∈IBi) = ∪i∈I (A ∩Bi) and A ∪ (∩i∈IBi) = ∩i∈I (A ∪Bi)

(∪i∈IAi)
′ = ∩i∈IA

′
i and (∩i∈IAi)

′ = ∪i∈IA
′
i (DeMorgan’s Laws)

A ∪B = B ⇐⇒ A ⊂ B ⇐⇒ A ∩B = A.

Section 0.3. Functions

Note. When we use the notation f : A → B (where A and B are sets) then we

mean that set A is the domain of f . Set B is the codomain of f . the range of f is

the image of A under f , denoted Im(f). In general, it may not be that B = Im(f)

(though Hungerford on page 3 says that B is the range, but we will not use the

notation in this way).

Definition. For set A, the identity function on A, denoted 1A, is the function

given by a 7→ a (read “a maps to a”). If S ⊂ A, the function 1A|S : S → A (1A

restricted to set S) is the inclusion map of A into A. The inclusion map is usually

denoted with an iota, ι.
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Note. We will represent functions with diagrams. If f : A → B, g : B → C, and

h : A → C, then the diagram

C

?

A -

B
�

�
�

�
���

f

h

g

is commutative if g ◦ f = h (or in a more concise notation, gf = h).

Definition. Let f : A → B. If S ⊂ A, the image of S under f (denoted f(S);

Fraleigh would denote this as f [S]) is

f(S) = {b ∈ B | b = f(a) for some a ∈ S}.

If T ⊂ B, the inverse image of T under f (denoted f−1(T )) is

f−1(T ) = {a ∈ A | f(a) ∈ T}.

Example. If f : R → R, then f(R) = [0,∞) and f−1({9}) = {−3, 3}.

Theorem 0.3.A. Let f : A → B with S ⊂ A and T ⊂ B. Then the following

hold:

for S ⊂ A, f−1(f(S)) ⊃ S;

for T ⊂ B, f(f−1(T )) ⊂ T.

For any family {Ti | i ∈ I} of subsets of B,

f−1 (∪i∈ITi) = ∪i∈If
−1(Ti);

f−1 (∩i∈ITi) = ∩i∈If
−1(Ti).
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Definition. A function f : A → B is one-to-one (or injective) if

for all a, a′ ∈ A, a 6= a′ =⇒ f(a) 6= f(a′).

f is onto (or surjective) if f(A) = B. f is a bijection if it is one to one and onto

(Fraleigh, confusingly I think, called a bijection a “one-to-one correspondence”).

Note. By the contrapositive of the definition, f is one to one if and only if

for all a, a′ ∈ A, f(a) = f(a′) =⇒ a = a′.

f is onto if and only if

for all b ∈ B, b = f(a) for some a ∈ A.

Theorem 0.3.A. If f : A → B and g : B → C then

f and g one to one =⇒ gf is one to one;

f and g onto =⇒ gf is onto;

gf one to one =⇒ f is one to one;

gf onto =⇒ g is onto.

Theorem 0.3.1. Let f : A → B be a function, with A nonempty.

(i) f is injective (one to one) if there is a map g : B → A such that gf = 1A.

(ii) If A is a set (as opposed to a class), then f is surjective (onto) if and only if

there is a map h : B → A such that fh = 1B.
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Definition. The function g in Theorem 0.3.1 for which gf = 1A is a left inverse

of f . The function h in Theorem 0.3.1 for which fh = 1B is a right inverse of f .

If f : A → B and g : B → A such that fg = 1B and gf = 1A then g is a two-sided

inverse of f .

Corollary 0.3.A. If f : A → B, g : B → A, and h : B → A where g is a left

inverse of f and h is a right inverse of f . Then g = h. So a two-sided inverse of a

function is unique.

Corollary 0.3.B. If A is a set and f : A → B then

f is bijective ⇐⇒ f has a two-sided inverse.

Section 0.4. Relations and Partitions

Definition. The Cartesian product of sets (or classes) A and B is the set (class)

A×B = {(a, b) | a ∈ A, b ∈ B}.

A subset (subclass) of R is a relation on A×B.

Definition. A relation R on A× A is an equivalence relation on A provided R is

(i) reflexive: (a, a) ∈ R for all a ∈ A;

(ii) symmetric: (a, b) ∈ R implies (b, a) ∈ R;

(iii) transitive: (a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R.

If (a, b) ∈ R for equivalence relation R then we denote this as a ∼ b. For a ∈ A,

the equivalence class if a is the class a of all elements of A which are equivalent
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to a. The class of all equivalence classes in A is denoted A/R (called the quotient

class of A by R).

Lemma 0.4.A. For a, b ∈ A and R an equivalence relation on A × A, we have

either (1) a ∩ b = ∅, or (2) a = b.

Definition. Let A be a nonempty class and {Ai | i ∈ I} a family of subsets of A

such that:

(i) Ai 6= ∅ for all i ∈ I;

(ii) ∪i∈IAi = A;

(iii) Ai ∩ Aj = ∅ for all i 6= j where i, j ∈ I.

Then {Ai | i ∈ I} is a partition of A.

Note. Lemma above implies that the equivalence classes of an equivalence relation

on a class (or set) is a partition of the class (or set). This is one of the most useful

properties of an equivalence relation! We will make big use of it when introducing

cosets in a group.

Theorem 0.4.1. Let A be a nonempty set and R an equivalence relation on A.

Then assignment R 7→ A/R (where A/R is the class of all equivalence classes off

R) defines a bijection from the set E(A) of all equivalence relations on A onto the

set Q(A) of all partitions of A.
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Section 0.5. Products

Note. In Section 0.5, we deal with sets (as opposed to classes).

Definition 0.5.1. Let {Ai | i ∈ I} be a family of sets indexed by a nonempty set

I. The Cartesian product of the sets Ai is the set of all functions f : I → ∪i∈IAi

such that f(i) ∈ Ai for all i ∈ I. The set of functions is denoted
∏

i∈I Ai.

Note. If I = {1, 2} and we have sets A1 and A2, then the Cartesian product

A1×A2 consists of all pairs {(a1, a2) | a1 ∈ A1, a2 ∈ A2}. We can associate this with

a function (as in the definition) f : I → A1 ∪ A2 where f(1) ∈ A1 and f(2) ∈ A2.

So function f is “associated” with pair (f(1), f(2)) (and conversely). You also

encounter then in Calculus II (MATH 1920) when you see a series defined as a

function mapping N → R (so the nth term of the series is this function evaluated

at n). This is good stuff to think about when dealing with
∏

i∈I Ai, but don’t

overuse these examples! You may think that for each i ∈ I, an element of
∏

i∈I Ai

has an “ith component,” but be careful—there may not be a first component, a

second component, and so forth (namely, in the event that set I is not countable).

Definition. Let
∏

i∈I Ai be a Cartesian product. For each k ∈ I define a map

πk :
∏

Ai → Ak by f 7→ f(k). This map is the canonical projection of the product

onto its kth component.

Example. Let I = R and Ai = C for all i ∈ I. Then an element of
∏

k∈I Ak =∏
k∈I C is a function f that maps R → C. Say f(x) = ix. Applying πk to f (where

k ∈ I = R) gives πk(f) = f(k) = ik.



Chapter 0. Sections 0.1 to 0.6 9

Note. We will use the following when we deal with “categories” (see pages 54 and

60).

Theorem 0.5.2. Let {Ai | i ∈ I} be a family of sets indexed by I. Then there

exists a set D, together with a family of maps {πi : D → Ai | i ∈ I} with the

following property: For any set C and family of maps {ϕi : C → Ai | i ∈ I}, there

exists a unique map ϕ : C → D such that πiϕ = ϕi for all i ∈ I. Furthermore, D

is uniquely determined up to a bijection.

Section 0.6. The Integers

Note. In Section 0.6, Hungerford avoids an axiomatic development of the natural

numbers. A classical axiomatic development of the natural numbers along with 0

(that is, N∪{0} = {0, 1, 2, 3, . . .}; in these developments, 0 is included for reason to

be explained soon and this is why Hungerford uses the notation N = {0, 1, 2, . . .}
for the “natural numbers” and N∗ = {1, 2, 3, . . .} for the “non-negative natural

numbers”—this is nonstandard, however, and so in these class notes we will use

the standard notation for the natural numbers, N = {1, 2, 3, . . .}, and when we

wish to include 0 then we simply add it).

Note. A common axiomatic development of N∪{0} is the system of five axioms of

Italian mathematician Giuseppe Peano in 1899. The five axioms of Peano are (from

E. Nagel J. and Newman’s Gödel’s Proof, revised edition, New York University

Press, 2001; this is a nice semi-technical book on the ideas behind Gödel’s work on

incompleteness):

Axiom 1. 0 is a number.
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Axiom 2. The immediate successor of a number is a number.

Axiom 3. 0 is not the immediate successor of a number.

Axiom 4. No two numbers have the same immediate successor.

Axiom 5. Any property belonging to 0, and also to the immediate successor of

every number that has the property, belongs to all numbers.

Axiom 5 is called the Principle of Mathematical Induction.

Note. Set theoretic definitions of N∪{0} are very abstract and define all numbers

in terms of sets. In K. Hrbacek and T. Jech’s Introduction to Set Theory, 2nd

Edition Revised and Expanded, in Pure and Applied Mathematics, A Series of

Monographs and Textbooks, Marcel Dekker (1984), this approach is taken. It is

extremely tedious and off to a slow start. Numbers, being defined in terms of sets,

are given as follows:

• 0 = ∅.

• 1 = {0} = {∅}.

• 2 = {0, 1} = {∅, {∅}}.

• 3 = {0, 1, 2} = {∅, {∅}, {∅, {∅}}.

• 4 = {0, 1, 2, 3} = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}.

• And so forth.

The successor of a set x is then defined as S(x) = x ∪ {x}; the successor of

x is denoted x + 1. A set I is inductive if (a) 0 ∈ I, and (b) if n ∈ I then

(n + 1) ∈ I. The set of natural numbers (plus 0) is then defined as N ∪ {0} =

{x | x ∈ I for every inductive set I}. With this definition and the standard axioms
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of set theory (the “ZFC Axioms,” which are spelled out in detail in the notes

for Section 0.8), we can prove this usual properties of the natural numbers. In

particular, with a < b being defined as a ⊂ b, we can prove the following three

properties (the second of which is a restatement of Peano’s Axiom 5):

Law of Well Ordering. Every nonempty subset S of N ∪ {0} contains a least

element (that is, an element b ∈ S such that b ≤ c for all c ∈ S).

Theorem 0.6.1. Principle of Mathematical Induction.

If S is a subset of the set N ∪ {0} such that 0 ∈ S and either

(i) n ∈ S implies n + 1 ∈ S for all n ∈ N ∪ {0}, or

(ii) m ∈ S for all 0 ≤ m < n implies n ∈ S for all n ∈ N ∪ {0},

then S = N ∪ {0}.

Theorem 0.6.2. The Recursion Theorem.

If S is a set, a ∈ S and for each n ∈ N ∪ {0}, fn : S → Sis a function, then there

is a unique function ϕ : N ∪ {0} → S such that ϕ(0) = a and ϕ(n + 1) = fn(ϕ(n))

for every n ∈ N ∪ {0}.

Note. With N ∪ {0} defined, it is straightforward to define the integers Z by

introducing the “negatives” as additive inverses of the “positives.” This then gives

a positive set P = N = {1, 2, 3, . . .} in Z and allows us to define greater than and

less than in terms of the positive set: a < b or b > a if b − a ∈ P . Of course, it

must be confirmed that this “<” coincides with the “<” defined on N∪ {0} which

is given above (namely, for a, b ∈ N ∪ {0}, a < b means a ⊂ b).
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Note. We take the following, The Division Algorithm for Z, as given. A proof is

given in John Fraleigh’s A First Course in Abstract Algebra, 7th edition, based on

the integers as a cyclic group (see page 60, Theorem 6.3):

Theorem 0.6.3. Division Algorithm.

If a, b ∈ Z and a 6= 0, then there exist unique integers q and r such that b = aq + r,

and 0 ≤ r < |a|.

Definition. Integer a 6= 0 divides an integer b (written a | b) if there is an integer

k such that ak = b. If a does not divide b we write a - b.

Definition 0.6.4. The positive integer c is the greatest common divisor of the

integers a1, a2, . . . , an if:

(1) c | ai for 1 ≤ i ≤ n;

(2) d ∈ Z and d | ai for 1 ≤ i ≤ n implies d | c.

c is denoted (a1, a2, . . . , an).

Note. The following is an application of the division algorithm.

Theorem 0.6.5. If a1, a2, . . . , an are integers, not all 0, then (a1, a2, . . . , an) exists.

Furthermore there are integers k1, k2, . . . , kn such that

(a1, a2, . . . , an) = k1a1 + k2a2 + · · ·+ knan.
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Definition. The integers a1, a2, . . . , an are relatively prime if (a1, a2, . . . , an) = 1.

A positive integer p > 1 is said to be prime if its only divisors are ±1 and ±p.

Note. An application of Theorem 0.6.5 is the following.

Theorem 0.6.6. If a and b are relatively prime integers and a | bc, then a | c. If

p is prime and p | a1a2 · · · an, then p | ai for some i.

Note. The following result, The Fundamental Theorem of Arithmetic, is proved

in Fraleigh’s text (see Section 45 and Corollary 45.18). To be be precise, Fraleigh

shows that Z is a unique factorization domain.

Definition. Let m > 0 be a fixed integer. If a, b ∈ Z and m | (a − b) then a is

congruent to b modulo m.

Note. The following result gives a precise definition to Zn. Notice that, as a

result, the elements of Zn are not {0, 1, 2, . . . , n−1} but instead equivalence classes

of elements of Z modulo n (as you may recall from Introduction to Modern Algebra

[MATH 4127/5127] the elements of Zn = Z/(nZ) are also cosets of nZ).

Theorem 0.6.8. Let m > 0 be an integer and a, b, c, d ∈ Z.

(i) Congruence modulo m is an equivalence relation on the set of integers Z, which

has precisely m equivalence classes.

(ii) If a ≡ b (mod m) and c ≡ d (mod m), then a + c ≡ bd (mod m) and ac ≡ bd

(mod m).

(iii) If ab ≡ ac (mod m) and a and m are relatively prime, then b ≡ c (mod m).
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