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Supplement: The Fundamental Theorem

of Algebra—History

Note. There a number of ways to state the Fundamental Theorem of Algebra:

1. Every polynomial with complex coefficients has a complex root.

2. Every polynomial of degree n with complex coefficients has n complex roots

counting multiplicity.

3. Every polynomial of degree n with complex coefficients can be written as a

product of linear terms (using complex roots).

4. The complex field is algebraically closed.

Historically, finding the roots of a polynomial has been the motivation for both

classical and modern algebra.



Supplement: Fundamental Theorem of Algebra—History 2

Al-Khwarizmi (790–850) and Fibonacci (1170–1250)

(From MacTutor History of Mathematics)

Note. The Babylonians (1900 to 1600 bce) had some knowledge of the quadratic

equation and could solve the equation x2 + (2/3)x = 35/60 (see page 1 Israel

Kleiner’s A History of Abstract Algebra, Birkhäuser: 2007). We would then expect

that they could solve x2 + ax = b for a > 0 and b > 0. The technique would be

to “complete the square” (suggestive geometric terminology, eh!). Of course, the

Babylonians had no concept of what we call the quadratic equation:

xx2 + bx + c = 0 =⇒ x =
−b ±

√
b2 − 4ac

2a
.

For more details on the development of ancient mathematics, including Euclid’s

presentations on number theory and the introduction of the “Arabic numerals”

by Al-Khwarizmi and Fibonacci, see my handout for senior level Introduction to

Modern Algebra (MATH 4127/5127) “A Student’s Question: Why the Hell am I

in this Class?”:

http://faculty.etsu.edu/gardnerr/4127/notes/Why-am-I-here.pdf
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Tartaglia (1500–1557) and Cardano (1501–1576)

(From MacTutor History of Mathematics)

Note. Around 1530, Niccolò Tartaglia discovered a formula for the roots of a third

degree polynomial. Gerolamo Cardano published the formula in Ars Magna in 1545

(leading to a “battle” between Tartaglia and Cardano). In 1540, Ludovico Ferrari

found a formula for the roots of a fourth degree polynomial. The cubic equation

gives the roots of ax3 + bx2 + cx + d = 0 as:
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Abel (1802–1829) and Galois (1811–1832)

(From MacTutor History of Mathematics)

Note. The rapid succession of the discovery of the cubic and quartic equations

lead many to think that a general (algebraic) formula for the roots of an nth degree

polynomial was on the horizon. However, Niels Henrik Abel’s 1821 proof of the

unsolvability of the quintic and later work of Evaristé Galois, we now know that

there is no such algebraic formula.
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Albert Girard (1595–1632), Gottfried Leibniz (1646–1716), Leonhard Euler

(1707–1783), Jean d’Alembert (1717–1783) (From MacTutor)

Note. The first person to clearly claim that an n degree polynomial equation has

n solutions was Albert Girard (1595–1632) in 1629 in his L’invention Nouvelle en

l’Algèbre. However, he did not understand the nature of complex numbers and this

was to have implications for future explorations of the problem. In fact, Gottfried

Wilhelm von Leibniz (1646–1716) claimed to prove that the Fundamental Theorem

of Algebra was false, as shown by considering x4 + t4 which he claimed could not

be written as a product of two real quadratic factors. His error was based, again,

on a misunderstanding of complex numbers. In 1742, Leonhard Euler (1707–1783)

showed that Leibniz’s example was not correct. In 1746, Jean Le Rond D’Almbert

(1717–1783) made the first serious attempt at a proof of the Fundamental Theorem

of Algebra, but his proof had several weaknesses. This note is based on:

http://www-history.mcs.st-and.ac.uk/HistTopics/

Fund theorem of algebra.html
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Note. Leonhard Euler proved that every real polynomial of degree n, where n ≤ 6,

has exactly n complex roots. In 1749, Euler attempted a proof for a general nth

degree polynomial, but his proof was a bit sketchy. In 1772, Joseph-Louis Lagrange

raised objections to Euler’s proof. Pierre-Simon Laplace (1749–1827), in 1795, tried

to prove the FTA using a completely different approach using the discriminant of

a polynomial. His proof was very elegant and its only ‘problem’ was that again the

existence of roots was assumed. (See the reference for the previous note.)

Carl Friederich Gauss (1777–1855)

(From MacTutor History of Mathematics)

Note. Quoting from Morris Kline’s Mathematical Thought from Ancient to Modern

Times, Oxford University Press (1972), Volume 2 (page 598): “The first substantial

proof of the fundamental theorem, though not rigorous by modern standards, was

given by Gauss in his doctoral thesis of 1799 at Hemlstädt” (see Werke, Königliche

Gellschaft der Wissenscheften zu Göttingen, 1876, 3 (1–30)). “He criticized the

work of d’Alembert, Euler, and Lagrange and then gave his own proof. Gauss’s

method was not to calculate a root but to demonstrate its existence. . . . Gauss

gave three more proofs of the theorem.”
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Note. Gauss’s first proof, given in his dissertation, was a geometric proof which

depended on the intersection of two curves which were based on the polynomial.

In his second proof, he abandoned the geometric argument, but gave an argument

still not rigorous based on the ideas of the time [Werke, 3, 33–56]. The third proof

was based on Cauchy’s Theorem and, hence, on the then-developing theory of com-

plex functions (see “Gauss’s Third Proof of the Fundamental Theorem of Algebra,”

American Mathematical Society, Bulletin, 1 (1895), 205-209). This was originally

published in 1816 in Comm. Soc. Gott, 3 (also in Werkes, 3, 59–64). The fourth

proof is similar to his first proof and appears in Werke, 3, 73–102 (originally pub-

lished in Abhand. der Ges. der Wiss. zu Gött., 4, 1848/50). Gauss’s proofs were

not entirely general, in that the first three proofs assumed that the coefficients of

the polynomial were real. Gauss’s fourth proof covered polynomials with complex

coefficients. Gauss’s work was ground-breaking in that he demonstrated the ex-

istence of the roots of a polynomial without actually calculating the roots [Kline,

pages 598 and 599].
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Joseph Liouville (1809–1882)

(From MacTutor History of Mathematics)

Note. To date, the easiest proof is based on Louisville’s Theorem (which, like

Gauss’s third proof is, in turn, based on Cauchy’s Theorem). Louisville’s Theorem

appears in 1847 in “Le cons sur les fonctions doublement périodiques,” Journal für

Mathematik Bb., 88(4), 277–310.
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Note. In your graduate career, you have several opportunities to see a proof of

the Fundamental Theorem of Algebra. Here are some of them:

1. In Complex Analysis [MATH 5510/5520] where Liouville’s Theorem is used to

give a very brief proof. See

http://faculty.etsu.edu/gardnerr/5510/notes/IV-3.pdf

(Theorems IV.3.4 and IV.3.5). You are likely to see the same proof in our

Complex Variables class [MATH 4337/5337]. In fact, this is the proof which

Fraleigh presents in his A First Course In Abstract Algebra, 7th Edition:

http://faculty.etsu.edu/gardnerr/4127/notes/VI-31.pdf

(see Theorem 31.18).

2. In Complex Analysis [MATH 5510/5520] again where Rouche’s Theorem (based

on the argument principle) is used:

http://faculty.etsu.edu/gardnerr/5510/notes/V-3.pdf

(see Theorem V.3.8 and page 4).

3. In Introduction to Topology [MATH 4357/5357] where path homotopies and

fundamental groups of a surface are used:

http://faculty.etsu.edu/gardnerr/5210/notes/Munkres-56.pdf.

4. In Modern Algebra 2 [MATH 5420] where a mostly algebraic proof is given, but

two assumptions based on analysis are made: (A) every positive real number
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has a real positive square root, and (B) every polynomial in R[x] of odd degree

has a root in R. Both of these assumptions are based on the definition of R

and the Axiom of Completeness. See:

http://faculty.etsu.edu/gardnerr/5410/notes/V-3-A.pdf

Note. There are no purely algebraic proofs of the Fundamental Theorem of Algebra

[A History of Abstract Algebra, Israel Kleiner, Birkhäuser (2007), page 12]. There

are proofs which are mostly algebraic, but which borrow result(s) from analysis

(such as the proof presented by Hungerford). However, if we are going to use a result

from analysis, the easiest approach is to use Liouville’s Theorem from complex

analysis. This leads us to a philosophical question concerning the legitimacy of the

title “Fundamental Theorem of Algebra” for this result! If seems more appropriate

to refer to it as “Liouville’s Corollary”! Polynomials with complex coefficients are

best considered as special analytic functions (an analytic function is one with a

power series representation) and are best treated in the realm of complex analysis.

Your humble instructor therefore argues that the Fundamental Theorem of Algebra

is actually a result of some moderate interest in the theory of analytic complex

functions. After all, algebra in the modern sense does not deal so much with

polynomials (though this is a component of modern algebra), but instead deals

with the theory of groups, rings, and fields!
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