Section I.2. Homomorphisms and Subgroups

Note. Recall that, in a general sense, an “isomorphism” between two mathematical structures is a one to one and onto mapping which preserves the structure. In a semigroup, the structure is the binary operation. In this section we define homomorphisms and related mappings and explore subgroups generated by sets of elements of a group.

Definition I.2.1. Let \(G \) and \(H \) be semigroups. A function \(f : G \to H \) is a homomorphism if \(f(ab) = f(a)f(b) \) for all \(a, b \in G \). A one to one (injective) homomorphism is a monomorphism. An onto (surjective) homomorphism is an epimorphism. A one to one and onto (bijective) homomorphism is an isomorphism. If there is an isomorphism from \(G \) to \(H \), we say that \(G \) and \(H \) are isomorphic, denoted \(G \cong H \). A homomorphism \(f : G \to G \) is an endomorphism of \(G \). An isomorphism \(f : G \to G \) is an automorphism of \(G \).

Note. If \(f : G \to H \) and \(g : H \to K \) are homomorphisms on semigroups \(G, H, K \), then the composition \(g \circ f = gf : G \to K \) is a homomorphism. Similarly, compositions of monomorphisms, epimorphisms, isomorphisms, and automorphisms are respectively monomorphisms, epimorphisms, isomorphisms, and automorphisms. You are probably familiar with the fact that a group homomorphism maps identities to identities and inverses to inverses. However, a monoid homomorphism may not preserve identities (see Exercise I.2.1).
Example. Let $G = \mathbb{Z}$ and $H = \mathbb{Z}_m$. Define $f : \mathbb{Z} \to \mathbb{Z}_m$ as $x \to \overline{x}$ (that is, $f(x)$ is the equivalence class of \mathbb{Z}_m containing x). Then f is a homomorphism. Of course, f is not one to one, however f is onto. So f is an epimorphism (called the “canonical epimorphism” of \mathbb{Z} onto \mathbb{Z}_m).

Example. If A is an abelian group, then $f : A \to A$ defined as $f(a) = a^{-1}$ is an automorphism of A. $g : A \to A$ defined as $g(a) = a^2$ is an endomorphism of A.

Example. Let $m, k \in \mathbb{N}$, $m \neq 1 \neq k$. Then $f : \mathbb{Z}_m \to \mathbb{Z}_{mk}$ defined as $f(x) = \overline{kx}$ is a monomorphism.

Note. The following definitions are similar to the definitions of set valued functions encountered in analysis.

Definition I.2.2. Let $f : G \to H$ be a homomorphism of groups. The kernel of f is $\text{Ker}(f) = \{g \in G \mid f(g) = e_H \in H\}$. If $A \subseteq G$, then the image of A is $f(A) = \{h \in H \mid h = f(a) \text{ for some } a \in A\}$. The set $f(G)$ is called the image of homomorphism f, denoted $\text{Im}(f)$. If $B \subseteq H$, the inverse image of B is the set $f^{-1}(B) = \{g \in G \mid f(g) \in B\}$. We denote the identity $i : G \to G$ defined as $i(g) = g$ for all $g \in G$ as 1_G.
Note. Of course, the inverse image of a set makes sense even if the inverse function may not exist. For example, the endomorphism \(f : \mathbb{Z} \to \mathbb{Z} \) defined as \(f(x) = x^2 \) does not have an inverse (since it is not one to one), but we can still consider \(f^{-1}(\{9\}) = \{-3, 3\} \).

Note 1. Let \(A, B, C \) be sets with \(f : A \to B \) and \(g : B \to C \). Then we have:

(a) if \(f \) and \(g \) are one to one then \(gf \) is one to one;

(b) if \(f \) and \(g \) are onto then \(gf \) is onto;

(c) if \(gf \) is one to one then \(f \) is one to one; and

(d) if \(gf \) is onto then \(g \) is onto.

Notice that the identity map \(1_A \) is one to one and onto by definition. These results are on page 5 of Hungerford.

Theorem I.2.3. Let \(f : G \to H \) be a homomorphism of groups. Then:

(i) \(f \) is a monomorphism if and only if \(\text{Ker}(f) = \{e_G\} \);

(ii) \(f \) is an isomorphism if and only if there is a homomorphism \(f^{-1} : H \to G \) such that \(ff^{-1} = 1_H \) and \(f^{-1}f = 1_G \).
I.2. Homomorphisms and Subgroups

Definition I.2.4. Let G be a semigroup and H a nonempty subset of G. If for every $a, b \in H$ we have $ab \in H$ then H is closed under the binary operation of G. Let G be a group and H a nonempty subset of G that is closed under the binary operation of G. If H itself is a group under the binary operation then H is a subgroup of G. This is denoted $H < G$. For group G, the trivial subgroup is $\{e_G\}$. Subgroup $H < G$ is a proper subgroup if $H \neq G$ and $H \neq \{e_G\}$.

Examples. In $\mathbb{Z}_6 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$, both $H_1 = \{\overline{0}, \overline{3}\}$ and $H_2 = \{\overline{0}, \overline{2}, \overline{4}\}$ are proper subgroups of \mathbb{Z}_6. In \mathbb{Z}, for a given $n \in \mathbb{N}$, $n \neq 0$, $n\mathbb{Z} = \{nx \mid x \in \mathbb{Z}\}$ is a subgroup of \mathbb{Z} (in fact, $n\mathbb{Z} \cong \mathbb{Z}$—see Exercise I.2.7).

Example. In the symmetric group S_n, the set $\{\sigma \in S_n \mid \sigma(n) = n\}$ (i.e., the set of permutations of $\{1, 2, \ldots, n\}$ which leave n fixed) is a subgroup of S_n which is isomorphic to S_{n-1} (see Exercise I.2.8).

Example. If $f : G \to H$ is a homomorphism of groups, then Ker(f) is a subgroup of G (see Exercise I.2.9(a)). This is an important example, as we’ll see when we explore cosets and normal subgroups in Sections I.4 and I.5.

Example. If G is a group, then the set Aut(G) of all automorphisms of G is itself a group under the binary operation of function composition (see Example I.2.15). This will be an important idea when we study field theory and Galois theory in Chapter V.
Theorem I.2.5. Let H be a nonempty subset of a group G. Then H is a subgroup of G if and only if $ab^{-1} \in H$ for all $a, b \in H$.

Corollary I.2.6. If G is a group and $\{H_i \mid i \in I\}$ is a nonempty set of subgroups of G, then $\bigcap_{i \in I} H_i$ is a subgroup of G.

Proof. This is homework Exercise I.2.A. Notice that index set I may not be finite... it may not even be countable! □

Definition I.2.7. Let G be a group and X a subset of G. Let $\{H_i \mid i \in I\}$ be the set of all subgroups of G which contain X. Then $\bigcap_{i \in I} H_i$ is the **subgroup of G generated by the set X**, denoted $\langle X \rangle$.

Note. You are probably familiar with the special case where $G = \langle \{a\} \rangle$. That is, the case when G is generated by a single element. Then G is “cyclic” and, in fact, such G is either isomorphic to \mathbb{Z}_n for some $n \in \mathbb{N}$ or $G \cong \mathbb{Z}$ (see Section I.3).

Definition. For group G, the elements of $X \subset G$ are called **generators** of subgroup $\langle X \rangle$. If $G = \langle a_1, a_2, \ldots, a_n \rangle$ (notice the set brackets are dropped by convention) then G is **finitely generated**. If $G = \langle a \rangle$ then G is **cyclic**.
Theorem I.2.8. If G is a group and X is a nonempty subset of G, then the subgroup $\langle X \rangle$ generated by X consists of all finite products $a_1^{n_1}a_2^{n_2}\cdots a_t^{n_t}$ (where $a_i \in X$ and $n_i \in \mathbb{Z}$ for $i = 1, 2, \ldots, t$). In particular, for every $a \in G$, $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$.

Definition. Let $\{H_i \mid i \in I\}$ be a set of subgroups of group G. The subgroups $\langle \bigcup_{i \in I} H_i \rangle$ is called the group generated by the groups $\{H_i \mid i \in I\}$. If H and K are subgroups of G then the subgroup generated by $H \cup K$, $\langle H \cup K \rangle$, is called the join of H and K, denoted $H \vee K$ (if H and K are multiplicative groups) or $H + K$ (if H and K are additive groups).

Note. If G is an abelian group and $H < G$, $K < G$, then $H \vee K = \{hk \mid h \in H, k \in K\}$ (see Exercise I.2.17).