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Section I.4. Cosets and Counting

Note. In this section, we generalize the idea of congruence modulo m on Z to a

more general setting. This is the same approach taken in an undergraduate class,

but we will deal in a more hands-on way with the equivalence relation here.

Definition I.4.1. Let H be a subgroup of group G and a, b ∈ G. a is right

congruent to b modulo H, denoted a ≡r b (mod H) if ab−1 ∈ H. a is left congruent

to b modulo H, denoted a ≡` b (mod H), if a−1b ∈ H.

Note. We use left and right congruent to define left and right cosets. As in

undergraduate algebra, we’ll use the cosets to prove Lagrange’s Theorem and, under

“appropriate conditions” make a group out of the cosets.

Theorem I.4.2. Let H be a subgroup of a group G.

(i) Right and left congruence modulo H are each equivalence relations on G.

(ii) The equivalence class of a ∈ G under right (and left) congruence modulo H is

the set Ha = {ha | h ∈ H} (and aH = {ah | h ∈ H} for left congruence).

(iii) |Ha| = |H| = |aH| for all a ∈ G.

The set Ha is a right coset of H in G and aH is a left coset of H in G.
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Note. We see from the proof that |Ha| = |aH| = |H|, even if H is infinite since

the existence of a bijection is established.

Corollary I.4.3. Let H be a subgroup of group G.

(i) G is the union of the right (and left) cosets of H in G.

(ii) Two right (or two left) cosets of H in G are either disjoint or equal.

(iii) For a, b ∈ G, we have that Ha = Hb if and only if ab−1 ∈ H, and aH = bH if

and only if a−1b ∈ H.

(iv) If R is the set of distinct right cosets of H in G and L is the set of distinct

left cosets of H in G, then |R| = |L|.

Note. Parts (i) and (ii) imply that the right (and left) cosets of H in G partition

G.

Note. In additive notation, we have a ∼=r b (mod H) if and only if a− b ∈ H. The

equivalence class of a ∈ G is the right coset H + a = {h + a | h ∈ H}.

Definition I.4.4. Let H be a subgroup of a group G. The index of H in G,

denoted [G : H], is the cardinal number of the set of distinct right (or left) cosets

of H in G.
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Note. G and H may be infinite while [G : H] is finite: [Z : 〈m〉] = m. The

extreme values of the index occur when H = {e} and H = G: [G : {e}] = |G| and

[G : G] = 1.

Theorem I.4.5. If K, H, G are groups with K < H < G, then [G : K] = [G :

H][H : K]. If any two of these indices are finite, then so is the third.

Note. The proof of the well-known Lagrange’s Theorem is now easy.

Corollary I.4.6. Lagrange’s Theorem.

If H is a subgroup of a group G, then |G| = [G : H]|H|. In particular, if G is finite

then the order |a| of a ∈ G divides |G|; |H| divides |G|.

Note. The converse of the “in particular” comment in Lagrange’s Theorem does

not hold. For example, the alternating group A4 of order 12 (defined in Section

I.6) does not have a subgroup of order 6; this is to be shown in Exercise I.6.8. So

it is natural to ask: “For a given divisor d of the order of a finite group G, under

what conditions does G have a subgroup of order d?” This is partially addressed

in Section II.5. The Sylow Theorems; see Cauchy’s Theorem (Theorem II.5.2) and

the First Sylow Theorem (Theorem II.5.7).

https://faculty.etsu.edu/gardnerr/5410/notes/II-5.pdf
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Note. For group G and H, K subsets of G, we denote the set {hk | h ∈ H, k ∈ K}

as HK. If H and K are subgroups of G, then HK may or may not (see Exercise

I.4.7) be a subgroup of G. Now for some “counting” results.

Theorem I.4.7. Let H and K be finite subgroups of a group G. Then |HK| =

|H||K|/|H ∩K|.

Proposition I.4.8. If H and K are subgroups of a group G, then [H : H ∩K] ≤

[G : K]. If [G : K] is finite, then [H : H ∩K] = [G : K] if and only if G = KH.

Proposition I.4.9. Let H and K be subgroups of finite index of group G. Then

[G : H ∩K] is finite and [G : H ∩K] ≤ [G : H][G : K]. Furthermore, [G : H ∩K] =

[G : H][G : K] if and only if G = HK.

Revised: 10/17/2023


