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Section I.7. Categories: Products, Coproducts,

and Free Objects

Note. Sections I.1 to I.6 contain topics which you encountered in undergraduate

algebra. The remainder of Chapter I contains topics you probably did not encounter

in your undergraduate sequence. Hungerford uses terminology from the area of

“categories” in the rest of Chapter I and occasionally throughout the rest of the

book. The last chapter of the book, Chapter X, is devoted to category theory (about

20 pages). By comparison, Dummit and Foote (Abstract Algebra, 3rd Edition, 2004)

mentions category theory in the body of their book, but mostly restricts it to an

appendix.

Note. Informally, a “category” is a class of mathematical objects (eg., the category

of groups, the category of sets, etc.). Russell’s Paradox shows that we cannot have a

“set of all sets,” however category theory allows a category of all sets (see Categories

for the Working Mathematician, S. MacLane, Springer-Verlag, 1971). The idea is

to collect into a category all similar mathematical objects and then to give a proof

of some property in the setting of category theory—the result then applies to all

categories and hence in different mathematical settings (eg., groups, sets, etc.).

Note. Quoting from Chapter X (page 464): “Many different mathematical topics

may be interpreted in terms of categories so that the techniques and theorems
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of the theory of categories may be applied to these topics. . . . Consequently it is

frequently possible to provide a proof in a category setting, which has as special

cases the previously known results from two different areas. This unification process

provides a means of comprehending wider areas of mathematics as well as new

topics whose fundamentals are expressible in categorical terms.”

Definition I.7.1. A category is a class C of objects (denoted A,B,C) together

with

(i) a class of disjoint sets, denoted hom(A,B), one for each pair of objects in C

(an element f of hom(A,B) is called a morphism from A to B and is denoted

f : A→ B); and

(ii) for each triple (A,B,C) of objects of C a function mapping

hom(B,C)× hom(A,B) → hom(A,C)

(for morphisms f : A→ B, g : B → C, this function is written (g, f) 7→ g ◦ f

and g ◦ f : A→ C is called the composite of f and g). All such functions are

subject to the two axioms:

(I) Associativity. If f : A → B, g : B → C, h : C → D are morphisms of C

then h ◦ (g ◦ f) = (h ◦ g) ◦ f .

(II) Identity. For each object B of C there exists a morphism 1B : B → B

such that for any f : A→ B, g : B → C

1B ◦ f = f and g ◦ 1B = g.



I.7. Categories: Products, Coproducts, and Free Objects 3

Definition. In a category C a morphism f : A → B is called an equivalence if

there is in C a morphism g : B → A such that g ◦ f = 1A and f ◦ g = 1B. If

f : A→ B is an equivalence then A and B are said to be equivalent.

Example. Let S be the category of all sets. For A,B ∈ S, hom(A,B) is the set

of all functions f : A→ B. Function composition is associative:

(h ◦ (g ◦ f))(x) = h((g ◦ f)(x)) = h(g(f(x))) = (h ◦ g)(f(x)) = ((h ◦ g) ◦ f)(x).

Clearly, for any B, 1B is defined as 1B(b) = b for all b ∈ B. Function f is an

equivalence if f is invertible and f is invertible if and only if f is bijective by

Equation (13) of Section 0.3.

Example. Let G be the category of all groups with hom(A,B) as the set of all

group homomorphisms f : A→ B. Associativity and Identity are satisfied as in the

previous example. By Theorem I.2.3(ii), a morphism is an equivalence if and only

if it is an isomorphism. The category A of all abelian groups is defined similarly.

Note. The above two examples help illustrate the idea of equivalence. In S, two

sets are equivalent if and only if they are of the same cardinality. In G, two groups

are equivalent if and only if they are isomorphic.
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Example I.7.A. To illustrate that a category need not consist of all sets or all

groups, a multiplicative group G can be considered as a category with one element,

G. Let hom(G,G) be the set of elements of G and a ◦ b = a ∗ b. Then 1G = e

and since every element of hom(G,G) has an inverse then every element is an

equivalence. The multiplication of elements under the binary operation insures

that the definition of category is satisfied.

Example. Let C be a category and define the category D whose objects are all

morphisms of C. If f : A→ B and g : C → D are morphisms of C then hom(f, g)

consists of all pairs (α, β) of morphisms of C such that α : A → C, β : B → D,

and β ◦ f : A→ D is the same as g ◦ α : A→ D. That is, the following diagram is

commutative:

When these conditions are satisfied, we consider (α, β) : f → g. For associativity,

suppose (α, β) : f → g, (γ, δ) : g → h, and (ε, κ) : h → k; suppose f : A → B,

g : C → D, h : E → F , and k : G → H. So we have (based on the setting)

α : A → C, β : B → D, γ : C → E, δ : D → F , ε : E → G, and κ : F → H; and

β ◦ f = g ◦ α, δ ◦ g = h ◦ γ, κ ◦ h = k ◦ ε. Schematically:



I.7. Categories: Products, Coproducts, and Free Objects 5

Now (γ, δ) ◦ (α, β) : f → h, where f : A → B, h : E → F , γ ◦ α : A → E,

δ◦β : B → F , and we know that h◦(γ◦α) : A→ F is the same as (δ◦β)◦f : A→ F .

Also, (ε ◦ κ) ◦ ((γ, δ) ◦ (α, β)) : f → k where (k ◦ ε) ◦ (γ ◦ α) : A→ H is the same

as (κ ◦ δ) ◦ (β ◦ f) : A→ H. Similarly ((ε, κ) ◦ (γ, δ)) ◦ (α, β) : f → k and because

function composition is associative (ε, κ) ◦ ((γ, δ) ◦ (α, β)) = ((ε, κ) ◦ (γ, δ))◦ (α, β).

For Identity, suppose f, g, h ∈ D and let (α, β) be a morphism such that (α, β) :

f → g. Let (ιA, ιB) be the morphism mapping f to f such that ιA : A → A

and ιB : B → B are the identity maps on objects A and B, respectively. Then

(α, β) ◦ (ιA, ιB) : f → g and (α, β) ◦ (ιA, ιB) = (α, β). Similarly, for (γ, δ) : h → f

we have (ιA, ιB) ◦ (γ, δ) : h→ f and (ιA, ιB) ◦ (γ, δ) = (γ, δ), so 1(α,β) = (ιA, ιB):
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Definition I.7.2. Let C be a category and {Ai | i ∈ I} a family of objects of C.

A product for the family {Ai | i ∈ I} is an object P of C together with a family

of morphisms {πi : P → Ai | i ∈ I} such that for any object B and family of

morphisms {ϕi : B → Ai | i ∈ I}, there is a unique morphism ϕ : B → P such

that πi ◦ ϕ = ϕi for all i ∈ I. The product P of {Ai | i ∈ I} is denoted P =
∏
i∈I

Ai

or (P, {πi}).

Note. Notice that the product P is itself required to be an object in category C.

So a family of objects in a category may not have a product. Products do exist in

several familiar categories. For example, a product of sets (the Cartesian product)

is given in Theorem 0.5.2. In the next section, we’ll deal with products of groups.

Note. For i1, i2 ∈ I and family {Ai | i ∈ I}, we have that Ai1 and Ai2 are “parts”

of P =
∏
i∈I

Ai. We also need morphisms πi1 and πi2 such that πi1 : P → Ai1 and

πi2 : P → Ai2. Finally we need for any B ∈ C and for any morphisms ϕi1 and ϕi2

such that ϕi1 : B → Ai1 and ϕi2 : B → Ai2, a unique morphism ϕ : B → P such

that (1) πi1 ◦ϕ : B → Ai1 and ϕi1 : B → Ai1 are the same, and (2) πi2 ◦ϕ : B → Ai2

and ϕi2 : B → Ai2 are the same. In other words, the following diagram commutes:

In general, we require commutivity over a diagram containing all ϕi, πi, and Ai

(and this is required for all B ∈ C).
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Note. The following result shows that the construction of the product is indepen-

dent of the morphisms πi.

Theorem I.7.3. Let C be a category of objects and {Ai | i ∈ I} a family of objects

in C. If (P, {πi}) and (Q, {ψi}) are both products of {Ai | i ∈ I} then P and Q are

equivalent.

Note. If in an abstract category we reverse the directions of all morphisms in a

statement about the category (or, equivalently, if we reverse all the “arrows” in the

diagrams which are required to commute) then we create a “dual” statement about

the category. The following is the dual statement of the definition of a product.

Definition. Let C be a category of objects and {Ai | i ∈ I} a family of objects in

C. A coproduct (or sum) of the family {Ai | i ∈ I} is an object S in C, together

with a family of morphisms {ιi : Ai → S | i ∈ I} such that for any object B and

family of morphisms {ψi : Ai → B | i ∈ I}, there is a unique morphism ψ : S → B

such that ψ ◦ ιi = ψi for all i ∈ I. We denote the coproduct as
∐

i∈I Ai.

Note. In the definition of coproduct S, the mapping in product P , πi : P → Ai, is

replaced with the mapping ιi : Ai → S, ϕi : B → Ai is replaced with ψi : Ai → B,

and unique ϕ : B → P is replaced with unique ψ : S → B. The following claim is

the dual of Theorem I.7.3.
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Theorem I.7.5. Let C be a category of objects and {Ai | i ∈ I} a family of objects

in C. If (S, {ιi}) and (S ′, {λi}) are both coproducts for the family {Ai | i ∈ I},

then S and S ′ are equivalent.

Note. In many categories, the “objects” are sets or are sets with an added structure

(such as groups). When this is the case, the morphisms can be considered as

functions on sets. This leads us to “concrete categories.”

Definition I.7.6. A concrete category is a category C together with a function σ

that assigns to each object A of C a set σ(A), called the underlying set of A, such

that

(i) every morphism mapping A→ B of category C is a function on the underlying

sets σ(A) → σ(B);

(ii) the identity morphism of each object A of C is the identity function on the

underlying set σ(A);

(iii) composition of morphisms in C agrees with composition of functions on the

underlying sets.

Example. The category of groups where σ(〈G, ∗〉) = G is a concrete category.
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Example. We saw in Example I.7.A that we can define a category using a group

〈G, ∗〉 with hom(G,G) is the elements of G and a◦b = a∗b for a, b ∈ G. But this is

not a concrete category since (i) of the definition of concrete category is violated.

The morphisms are not functions on G but instead are elements of G.

Note. We will explore free groups in Section I.9. When we do, we will relate it to

the following definition of “free” in the setting of categories.

Definition I.7.7. Let F be an object in a concrete category C, X a nonempty set,

and i : X → F a set map. Then object F is free on the set X provided that for

any object A of C and set map f : X → A, there exists a unique morphism of C,

f : F → A, such that f ◦ i = f as a set map X → A. This gives the mappings:
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Example. Let A = G be a group and g ∈ G. Let F = Z. We want to find

f , a homomorphism from Z to G, f : Z → G. If F is free on X, then f is

uniquely determined by i and f . We choose X as a subset of F = Z (here,

we choose X = {1}) and let i be the inclusion map (see page 4; it just maps

{1} → {1} ⊂ Z). We need to define f(1), say f(1) = g. Then (since 1 generates

Z) the homomorphism f : Z → G is uniquely determined and hence F is free on

X. This example illustrates the value of having object F free on set X—to define

a morphism on F , it suffices to define the morphism on X = i(X) ⊂ F (where i is

the inclusion map).

Theorem I.7.8. If C is a concrete category, if F and F ′ are objects of C such

that F is free on the set X and F ′ is free on the set X ′ and |X| = |X ′|, then F is

equivalent to F ′.

Note. To summarize this section up to this point, we have seen that any two prod-

ucts or coproducts for a given family of objects are actually equivalent (Theorems

I.7.3 and I.7.5). Also, two objects free on the same set are equivalent (Theorem

I.7.8). We now combine all these ideas in a single concept.

Definition I.7.9. An object I in a category C is universal (or initial) if for each

object C of C there exists one and only one morphism mapping I → C. An object

T of C is couniversal (or terminal) if for each C of C there exists one and only one

morphism mapping C → T .
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Note. As when we compare the definition of product and coproduct, the difference

in the definitions of universal and couniversal involve reversals of the directions of

mappings.

Theorem I.7.10. Any two universal (respectively, couniversal) objects in a cate-

gory C are equivalent.

Example. In the category of all groups, 〈e〉 is universal since for any group

G there is only one homomorphism (in this category, the morphisms are group

homomorphisms) mapping 〈e〉 → G, namely the identity map on 〈e〉. Also, 〈e〉

is couniversal since the only homomorphism mapping G → 〈e〉 is f(g) = e for all

g ∈ G.
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