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Section II.2. Finitely Generated Abelian Groups

Note. In this section we prove the Fundamental Theorem of Finitely Generated

Abelian Groups. Recall that every infinite cyclic group is isomorphic to Z and

every finite cyclic group of order n is isomorphic to Zn (Theorem I.3.2).

Theorem II.2.1. Every finitely generated abelian group G is isomorphic to a

finite direct sum of cyclic groups in which the finite cyclic summands (if any) are

of orders m1, m2, . . . ,mt where m1 > 1 and m1 | m2 | · · · | mt.

Note. We will see that we can further “refine” the values of the mi’s of Theorem

II.2.1 and express the orders of the cyclic groups in terms of powers of primes. First

we need a preliminary result.

Lemma II.2.3. If m is a positive integer and m = pn1
1 pn2

2 · · · pnt
t (p1, p2, . . . , pt

distinct primes and each ni ∈ N), then

Zm
∼= Zp1

n1 ⊕ Zp2
n2 ⊕ · · · ⊕ Zpt

nt .

Note. Notice that in the proof of Lemma II.2.3, it is shown that Zrn
∼= Zr ⊕ Zn if

gcd(r, n) = 1. In fact, the converse of Lemma II.2.3 also holds as follows.

Lemma II.2.A. If m is a positive integer and m = nk where n and k are not

relatively prime, then Zm 6∼= Zn ⊕ Zk.

Theorem II.2.2. Every finitely generated abelian group G is isomorphic to a finite

direct sum of cyclic groups, each of which is either infinite or of order a power of a

prime.
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Note. The following result shows that the converse of Lagrange’s Theorem (Corol-

lary I.4.6) holds for finite abelian groups.

Corollary II.2.4. If G is a finite abelian group of order n, then G has a subgroup

of order m for every positive integer m that divides n.

Note. We still have not completed the fundamental theorem—we still need to

establish uniqueness of the decompositions into direct sums of cyclic groups. We

need a preliminary result.

Lemma II.2.5. Let G be an abelian group, m an integer, and p a prime integer.

Then each of the following is a subgroup of G:

(i) mG = {mu | u ∈ G};

(ii) G[m] = {u ∈ G | mu = 0};

(iii) G(p) = {u ∈ G | |u| = pn for some n ≥ 0};

(iv) Gt = {u ∈ G | |u| is finite};

In particular there are the following isomorphism relationships

(v) Zpn[p] ∼= Zp and pmZpn ∼= Zpn−m (m < n).

Let H and Gi (I ∈ I) be abelian groups.
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(vi) If g : G →
∑

i∈I Gi is an isomorphism, then the restrictions of g to mG and

G[m] respectively are isomorphisms giving

mG ∼=
∑
i∈I

mGi and G[m] ∼=
∑
i∈I

Gi[m].

(vii) If f : G → H is an isomorphism then the restrictions of f to Gt and G(p)

respectively are isomorphisms giving

Gt
∼= Ht and G(p) ∼= H(p).

Definition. Let G be an abelian group with subgroup (a subgroup by Lemma

II.2.5)

Gt = {u ∈ G | the order |u| is finite}.

Gt is the torsion subgroup of G. If G = Gt then G is a torsion group. If Gt = {0}

then G is torsion free.

Theorem II.2.6. Fundamental Theorem of Finitely Generated Abelian

Groups.

Let G be a finitely generated abelian group.

(i) There is a unique nonnegative integer s such that the number of infinite cyclic

summands in any decomposition of G as a direct sum of cyclic groups is

precisely s;

(ii) either G is free abelian or there is a unique list of (not necessarily distinct)

positive integers m1, m2, . . . ,mt such that m1 > 1, m1 | m2 | · · · | mt and

G ∼= Zm1
⊕ Zm2

⊕ · · · ⊕ Zmt
⊕ F

with F free abelian;
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(iii) either G is free abelian or there is a list of positive integers ps1
1 , ps2

2 , . . . , psk

k

which is unique except for the order of its members, such that p1, p2, . . . , pk

are (not necessarily distinct) primes, s1, s2, . . . , sk are (not necessarily distinct)

positive integers and

G ∼= Zp1
s1 ⊕ Zp2

s2 ⊕ · · · ⊕ Zpk
sk ⊕ F

with F free abelian.

Note. We know by Theorem II.1.1(iii) that a free abelian group is a direct sum

of copies of the additive groups Z. Since group G is finitely generated, then the

number of copies of Z in the direct sum must be finite. So group F in Theorem

II.2.6 is of the form F ∼= Z⊕Z⊕ · · · ⊕Z. So Theorem II.2.6 implies that a finitely

generated abelian group G is of the form

G ∼= (Zp1
s1 ⊕ Zp2

s2 ⊕ · · · ⊕ Zpk
sk )⊕ (Z⊕ Z⊕ · · · ⊕ Z)

where the pi are (not necessarily distinct) primes and the si are positive inte-

gers. This version of the fundamental theorem is the version stated by Fraleigh;

see my class notes for Introduction to Modern Algebra 1 and 2 (MATH 4127/5127,

4137/5137) on Section II.11. Direct Products and Finitely Generated Abelian Groups

and Section VII.38. Free Abelian Groups . The parameter s of Theorem II.2.6 is

the Betti number of group G.

https://faculty.etsu.edu/gardnerr/4127/notes/II-11.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/VII-38.pdf
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Definition. Let G be a finitely generated abelian group with

G ∼= Zm1
⊕ Zm2

⊕ · · · ⊕ Zmt
⊕ F

where F is free abelian and m1 | m2 | · · · | mt. The m1, m2, . . . ,mt are the invariant

factors of G. With

G ∼= Zp1
s1 ⊕ Zp2

s2 ⊕ · · · ⊕ Zpk
sk ⊕ F

where F is free abelian, each pi is prime, and each si is a positive integer, then the

powers of prime ps1
1 , ps2

2 , . . . , psk

k are the elementary divisors of G.

Corollary II.2.7. Two finitely generated abelian groups G and H are isomorphic

if and only if G/Gt and H/Ht have the same rank and G and H have the same

invariant factors (or elementary divisors).

Note. As you know from senior level modern algebra, the fundamental theorem

can be used to find the distinct abelian groups of a given order.

Example. Find all abelian groups (up to isomorphism) of order 720. First, we need

to factor 720: 720 = 24 ·32 ·5. For the factor 24 we get the following non-isomorphic

groups:

Z16, Z2 ⊕ Z8, Z2 ⊕ Z2 ⊕ Z4, Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2, and Z4 ⊕ Z4.

The factor 32 yields: Z9 and Z3 ⊕ Z3. Factor 5 yields: Z5. So we get a total of 10

possible groups of order 720:
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Z16 ⊕ Z9 ⊕ Z5 Z16 ⊕ Z3 ⊕ Z3 ⊕ Z5

Z2 ⊕ Z8 ⊕ Z9 ⊕ Z5 Z2 ⊕ Z8 ⊕ Z3 ⊕ Z3 ⊕ Z5

Z2 ⊕ Z2 ⊕ Z4 ⊕ Z9 ⊕ Z5 Z2 ⊕ Z2 ⊕ Z4 ⊕ Z3 ⊕ Z3 ⊕ Z5

Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z9 ⊕ Z5 Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z3 ⊕ Z3 ⊕ Z5

Z4 ⊕ Z4 ⊕ Z9 ⊕ Z5 Z4 ⊕ Z4 ⊕ Z3 ⊕ Z3 ⊕ Z5

Note. Hungerford explains how to find the mi’s of Theorem II.2.6(ii) from the

psi

i ’s of Theorem II.2.6(iii). We illustrate this with an example.

Example. Consider G = Z5 ⊕ Z15 ⊕ Z25 ⊕ Z36 ⊕ Z54. Then by Lemma II.2.3 we

can decompose these constituent groups as

G ∼= Z5 ⊕ (Z3 ⊕ Z5)⊕ Z25 ⊕ (Z4 ⊕ Z9)⊕ (Z2 ⊕ Z27).

So the elementary divisors of G are 2, 22, 3, 32, 33, 5, 5, 52 which we arrange as

20, 3, 5

2, 32, 5

22, 33, 52.

Then we take products across rows to get m1 = 1 · 3 · 5 = 15, m2 = 2 · 32 · 5 = 90,

and m3 = 22 · 33 · 52 = 2700. So the invariant factors are 15, 90, 2700 and so by

Theorem II.2.6(ii), G ∼= Z15 ⊕ Z90 ⊕ Z2700.
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