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Section II.2. Finitely Generated Abelian Groups

Note. In this section we prove the Fundamental Theorem of Finitely Generated
Abelian Groups. Recall that every infinite cyclic group is isomorphic to Z and

every finite cyclic group of order n is isomorphic to Z,, (Theorem 1.3.2).

Theorem I1.2.1. Every finitely generated abelian group G is isomorphic to a
finite direct sum of cyclic groups in which the finite cyclic summands (if any) are

of orders my, ma, ..., my where my; > 1 and my | mo | -+ | my.

Note. We will see that we can further “refine” the values of the m;’s of Theorem
I1.2.1 and express the orders of the cyclic groups in terms of powers of primes. First

we need a preliminary result.

Lemma I1.2.3. If m is a positive integer and m = pi'py*---p/* (p1,p2, ..., Dt

distinct primes and each n; € N), then
Zm = Zp1”1 EB Zp2”2 @ ct @ Zpt"t .

Note. Notice that in the proof of Lemma II1.2.3, it is shown that Z,,, = Z, ® Z,, if

ged(r,n) = 1. In fact, the converse of Lemma I1.2.3 also holds as follows.

Lemma II.2.A. If m is a positive integer and m = nk where n and k are not

relatively prime, then Z,, 2 Z, ® Zj.

Theorem 11.2.2. Every finitely generated abelian group G is isomorphic to a finite
direct sum of cyclic groups, each of which is either infinite or of order a power of a

prime.
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Note. The following result shows that the converse of Lagrange’s Theorem (Corol-

lary 1.4.6) holds for finite abelian groups.

Corollary 11.2.4. If G is a finite abelian group of order n, then G has a subgroup

of order m for every positive integer m that divides n.

Note. We still have not completed the fundamental theorem—we still need to
establish uniqueness of the decompositions into direct sums of cyclic groups. We

need a preliminary result.

Lemma I1.2.5. Let G be an abelian group, m an integer, and p a prime integer.

Then each of the following is a subgroup of G:

(i) mG = {mu | u € G};

(ii) Gim| ={u € G | mu = 0};

(iii) G(p) = {u € G | |u| = p™ for some n > 0};

(iv) Gt = {u € G | |u] is finite};

In particular there are the following isomorphism relationships
(V) Zylp) 2 Zy and p"Zyn = Zgn-—m (m < n).

Let H and G; (I € I) be abelian groups.
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(vi) If g : G — >, ; G; is an isomorphism, then the restrictions of g to mG and

GG|m] respectively are isomorphisms giving

mG = ZmGi and G|m| = ZGZ[m]

iel iel
(vii) If f : G — H is an isomorphism then the restrictions of f to G; and G(p)

respectively are isomorphisms giving

G = H, and G(p) = H(p).

Definition. Let G be an abelian group with subgroup (a subgroup by Lemma
1.2.5)

Gy ={u € G| the order |u] is finite}.

Gy is the torsion subgroup of G. If G = Gy then G is a torsion group. If Gy = {0}

then G is torsion free.

Theorem 11.2.6. Fundamental Theorem of Finitely Generated Abelian
Groups.
Let G be a finitely generated abelian group.

(i) There is a unique nonnegative integer s such that the number of infinite cyclic
summands in any decomposition of GG as a direct sum of cyclic groups is

precisely s;

(ii) either G is free abelian or there is a unique list of (not necessarily distinct)

positive integers mq, mo, ..., m; such that my > 1, my | mo | -+ | m; and
G=Zpy ®Ly, D DLy, ®F

with F' free abelian;
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(iii) either G is free abelian or there is a list of positive integers pi',p5?, ..., pp*
which is unique except for the order of its members, such that p,po, ..., p
are (not necessarily distinct) primes, si, so, .. ., S are (not necessarily distinct)

positive integers and
G = Zplsl @ ZpQSQ @ ttt @ Zpksk @ F

with F' free abelian.

Note. We know by Theorem II.1.1(iii) that a free abelian group is a direct sum
of copies of the additive groups Z. Since group G is finitely generated, then the
number of copies of Z in the direct sum must be finite. So group F' in Theorem
I1.2.6 is of the form F 2 Z®Z & --- B Z. So Theorem 11.2.6 implies that a finitely

generated abelian group G is of the form
G (Lpyss ®Zpyr ® -+ BLipsr) D (L BLD - DL

where the p; are (not necessarily distinct) primes and the s; are positive inte-
gers. This version of the fundamental theorem is the version stated by Fraleigh;
see my class notes for Introduction to Modern Algebra 1 and 2 (MATH 4127/5127,
4137/5137) on Section I1.11. Direct Products and Finitely Generated Abelian Groups
and Section VII.38. Free Abelian Groups . The parameter s of Theorem I1.2.6 is

the Betti number of group G.


https://faculty.etsu.edu/gardnerr/4127/notes/II-11.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/VII-38.pdf

I1.2. Finitely Generated Abelian Groups )

Definition. Let GG be a finitely generated abelian group with
G=Zpy ® Ly, ® - DLy, ®F

where F'is free abelian and my | ma | - -+ | my. The my, mo, ..., m; are the invariant

factors of G. With
G = Zplsl @ Zp252 @ c @ Zpksk @ F

where F' is free abelian, each p; is prime, and each s; is a positive integer, then the

powers of prime p7', p5?, ..., p;* are the elementary divisors of G.

Corollary I1.2.7. Two finitely generated abelian groups G and H are isomorphic
if and only if G/G; and H/H; have the same rank and G and H have the same

invariant factors (or elementary divisors).

Note. As you know from senior level modern algebra, the fundamental theorem

can be used to find the distinct abelian groups of a given order.

Example. Find all abelian groups (up to isomorphism) of order 720. First, we need
to factor 720: 720 = 2*.32.5. For the factor 2* we get the following non-isomorphic

groups:
Lng, Ly © L, Lip B Ly D Ly, Ly © Ly O Ly © Lo, and Zy D ZLy.

The factor 32 yields: Zg and Zs @ Zs. Factor 5 yields: Zs. So we get a total of 10

possible groups of order 720:
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Za6 © Lo © ZLs Zi6 ® L3 D L3 ® Ls

Lo ® Zg ® Ly ® s, Lo ®Zg D L3 D L3 Ls

Lo ® Ly ® Ly ® Lo ® Zs Lo ® Lo ® Ly © Lz D L3 D Zs

Loy ® Ly @ Lig @ ZLio D ZLig D Zisy Lo ® Ly ® Ly ® Lo B L3 D L3 D Zs,
Loy ® Ly ® Lg ® Zs Ly ® Ly ® L3 ® L3 D ZLs

Note. Hungerford explains how to find the m;’s of Theorem I1.2.6(ii) from the

p;"’s of Theorem I1.2.6(iii). We illustrate this with an example.

Example. Consider G = Zs & Zq5 D Zos P Zss B Zss. Then by Lemma I1.2.3 we

can decompose these constituent groups as
G=275® (Zs®ZLs) D ZLos ® (Zy @ Zo) B (Lo @ Zaz).

So the elementary divisors of G are 2, 22,3, 32,33, 5,5, 5% which we arrange as

203, 5
2, 3%, 5
22 33 52

Then we take products across rows to get m; =1-3-5 =15, my =2-3%-5 = 90,
and ms = 22 - 3% .52 = 2700. So the invariant factors are 15, 90, 2700 and so by
Theorem 1126(11), G= Zl5 D Zg() D ngo.
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