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Section II.3. The Krull-Schmidt Theorem

Note. In the Fundamental Theorem of Finitely Generated Abelian Groups (The-

orem II.2.6), we say that every such group can be written as a finite direct sum of

groups of the form Z and Zpn (p prime). The purpose of this section is to extend

this idea to some other types of groups.

Note. In Exercise I.8.1, it is shown that the groups Z and Zpn are “indecom-

posable” in the sense that neither is a direct sum of proper subgroups. We now

formally define “indecomposable.” Throughout this section we use multiplicative

notation. First, we elaborate on some notational details.

Note II.3.A. Hungerford is a bit informal in this section writing “G = H × K”

where H and K are subgroups of G. This is consistent with his simplified notation

(and Notes I.8.B and Notes I.8.C in Section I.8. Direct Products and Direct Sums),

but it cannot be the case since H ×K consists of pairs of elements of G. We will

be careful in these notes and write “G = H × K” to indicate an external direct

product. For internal direct products we write G = H ×i K (a notation of my own

making, so beware of this in your future studies).

Definition. (From Dummit and Foote’s Abstract Algebra, 3rd Edition, page 180.)

If G = H ×i K, then group H is a complement of group K in G (and similarly, K

is a complement of H in G).

Definition II.3.1. A group G is indecomposable if G 6= 〈e〉 and G is not the

internal direct product of two of its proper subgroups.

https://faculty.etsu.edu/gardnerr/5410/notes/I-8.pdf
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Note II.3.B. Recall the definition of internal direct product:

Definition I.8.8. Let {Ni | i ∈ I} be a family of normal subgroups of a group

G such that G = 〈∪i∈INi〉 and for each k ∈ I we have Nk ∩ 〈∪i6=kNi〉 = 〈e〉.

Then G is an internal weak direct product of the family {Ni | i ∈ I} (or the

internal direct sum if G is additive and abelian).

So if G is decomposable then G must have normal subgroups N1 and N2 such that

G = 〈N1 ∪ N2〉 and N1 ∩ N2 = {e}. Therefore, one way to prove that a group is

indecomposable is to prove that any two normal subgroups have an intersection

including more than just the identity. This technique can be used in some of the

exercises.

Note II.3.C. In Exercise II.3.1, it is shown that G is indecomposable if G 6= 〈e〉 and

G = H×w K implies either K = 〈e〉 or H = 〈e〉. We also know that if G = H×w K

then both H and K are proper normal subgroups of G by the definition of internal

direct product and indecomposable. So G can be decomposed only if it has a proper

normal subgroup. In other words, a group G without a proper normal subgroup

is indecomposable. Therefore, all simple groups are indecomposable. However,

the converse does not hold. The group Z/p2Z ∼= Zp2, where p is prime, is not

simple since it has a subgroup of order p (namely, 〈p〉 = {0, p, 2p, . . . , p2 − 1})

which is normal since Zp2 is abelian, but Zp2 is indecomposable because the only

proper subgroups of Zp2 are of order p by Lagrange’s Theorem (Corollary I.4.6)

and are cyclic by Theorem I.3.5, and so are isomorphic to Zp by Theorem I.3.2,

but Zp2 6∼= Zp ⊕ Zp (every element of Zp ⊕ Zp, except (0, 0), generates a group of

order p so Zp ⊕ Zp is not cyclic). We therefore have:
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Lemma II.3.A. Every nontrivial simple group is indecomposable, but

there exist indecomposable groups which are not simple.

Note. In Exercise II.3.2, it is shown that Sn is indecomposable for n ≥ 2. In

Exercise II.3.3, it is shown that Q is indecomposable.

Note. The Krull-Schmidt Theorem deals with writing certain types of groups

as products of indecomposable groups. The “certain type” involves the following

condition.

Definition II.3.2. A group G satisfies the ascending chain condition (ACC) on

[normal] subgroups if every chain G1 < G2 < · · · of [normal] subgroups of G there

is n ∈ N such that Gi = Gn for all i > n. Group G satisfies the descending chain

condition (DCC) on [normal] subgroups if for every chain G1 > G2 > . . . of [normal]

subgroups of G there is n ∈ N such that Gi = Gn for all i > n.

Example II.3.D. Of course, a finite group must satisfy both the ascending and

descending chain conditions. In Exercise II.3.5 you are asked to show that Z satisfies

the ascending chain condition but not the descending chain condition. In Exercise

II.3.13 you are asked to show that the Prüfer group satisfies the descending chain

condition but not the ascending chain condition.
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Note. We only need the ACC and DCC on normal subgroups, though the condition

could be considered on any subgroups.

Note II.3.E. The ACC and DCC involve, in some informal sense, a finiteness

condition. In particular, every finite group satisfies both the ACC and DCC. In

Exercise II.3.5(a), it is shown that Z satisfies the ACC but not the DCC. As

a consequence, a finitely generated abelian group will satisfy the ACC (Exercise

II.3.5(b)) but not necessarily the DCC. Further evidence for the finiteness claim is

given in the following result.

Theorem II.3.3. If a group G satisfies either the ascending or descending chain

condition on normal subgroups, then G is isomorphic to the direct product of a

finite number of indecomposable subgroups.

Note II.3.F. Since all finite groups satisfy both the ACC and the DCC, then a

corollary to Theorem II.3.3 is that every finite group is isomorphic to the direct

product of a finite number of indecomposable subgroups.

Note. The Krull-Schmidt Theorem states that the direct product of indecompos-

ables in Theorem II.3.3 is unique.
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Definition. An endomorphism f of a group G (that is, f is a homomorphism

mapping G → G) is a normal endomorphism if af(b)a−1 = f(aba−1) for all a, b ∈ G.

Lemma II.3.4. Let G be a group that satisfies the ascending chain condition on

normal subgroups and let f be an endomorphism of G. Then f is an automorphism

if and only if f is an epimorphism (i.e., an onto homomorphism). Let G be a group

that satisfies the descending chain condition on normal subgroups and let f be

a normal endomorphism of G. Then f is an automorphism if and only if f is a

monomorphism (i.e., a one to one homomorphism).

Note. The following is known as “Fitting’s Lemma,” named after Hans Fit-

ting (1906–1938; he died at age 31 from a “sudden bone disease,” according to

Wikipedia). Generalizations exist involving modules over rings.

Lemma II.3.5. (Fitting’s Lemma.) If G is a group that satisfies both the as-

cending and descending chain conditions on normal subgroups and f is a normal

endomorphism of G, then for some n ≥ 1, we have G = Ker(fn)× Im(fn).

Definition. An endomorphism f if a group G is nilpotent if there exists a n ∈ N

such that fn(g) = e for all g ∈ G.
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Corollary II.3.6. If G is an indecomposable group that satisfies both the as-

cending and descending chain conditions on normal subgroups and f is a normal

endomorphism of G, then either f is nilpotent or f is an automorphism.

Note II.3.G. The converse of Corollary II.3.6 also holds (as shown in Exercise

II.3.A) and so we have a necessary and sufficient condition in terms of normal en-

domorphisms for a group satisfying both the ACC and DCC to be indecomposable.

Namely, a group G which satisfies both the ascending and descending chain condi-

tions on normal subgroups is an indecomposable group if and only if any normal

endomorphism f of G is either nilpotent or is an automorphism.

Note. If G is a multiplicative group and f, g are functions from G to G, then f +g

denotes the function mapping G → G defined as a 7→ f(a)g(a). We can verify that

the set of all such functions form a group. If we restrict ourselves to endomorphisms

(i.e., homomorphisms mapping G → G), since f and g can be endomorphisms but

f + g not an endomorphism (as shown in Exercise II.3.7).

Corollary II.3.7. Let G (where G 6= 〈e〉) be an indecomposable group that

satisfies both the ascending and descending chain conditions on normal subgroups.

If f1, f2, . . . , fn are normal nilpotent epimorphisms of G such that fi1 +fi2 + · · ·+fir

(where 1 ≤ i1 < i2 < · · · < ir ≤ n) is an epimorphism, then f1 + f2 + · · · + fn is

nilpotent.
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Note II.3.H. In the proof of the Krull-Schmidt Theorem, we address the subtle

difference between G as an internal versus external direct product. If G is the

internal direct product of subgroups G1, G2, . . . , Gs, G = G1×i G2×i · · ·×i Gs, then

as shown in the proof of Theorem I.8.6 (and in our Exercise I.8.C(c) for s = 2) there

is an isomorphism ϕ : G1×G2×· · ·×Gs → G given by (g1, g2, . . . , gn) 7→ g1g2 · · · gs.

Consequently, every element of G may be written uniquely (the uniqueness is from

Theorem I.8.9) as a product g1g2 · · · gs, where gi ∈ G for 1 ≤ i ≤ s. For each i, the

map πi : G → Gi given by mapping g1g2 · · · gs 7→ gi is therefore well-defined and is a

homomorphism (and so is an epimorphism; it is onto but not likely one to one). In

fact, πi : G → Gi is the composition of isomorphism ϕ−1 : G → G1×G2× · · · ×Gs

with the canonical projection mapping G1 ×G2 × · · · ×Gs 7→ Gi.

Definition. With G expressed as an internal direct product of its subgroups,

G = G1×i G2×i · · ·×i Gs, the mapping πi : G → Gi described in the previous note

is the canonical epimorphism associated with the internal direct product.

Note. In the statement and proof of the Krull-Schmidt Theorem, unlike Hunger-

ford, we notationally distinguish between internal direct products (with “×i”) and

external direct products (with “×”).
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Theorem II.3.8. (The Krull-Schmidt Theorem)

Let G be a group that satisfies both the ascending and descending chain conditions

on normal subgroups. If G = G1 ×i G2 ×i · · · ×i Gs and G = H1 ×i H2 ×i · · · ×i Ht

with each Gi, Hj indecomposable, then s = t and after reindexing, Gi
∼= Hi for

every i and for each r < t,

G = G1 ×i G2 ×i · · · ×i Gr ×i Hr+1 ×i Hr+2 ×i · · · ×i Ht.

Note II.3.I. Since all finite groups satisfy both the ACC and the DCC, then

a corollary to Theorem II.3.3 and the Krull-Schmidt Theorem is that every finite

group is isomorphic to a unique direct product of a finite number of indecomposable

subgroups (up to isomorphism).

Note II.3.J. The Encyclopedia of Math website (accessed 1/5/2024) gives some

history of the Krull-Schmidt Theorem (which it calls the “Krull-Remak-Schmidt

Theorem”). These ideas are roughly 100 years old. It seems that Robert Remak

first proved the result for finite groups “Ueber die Zerlegung der endlichen Gruppen

in direkte unzerlegbare Faktoren” J. Reine Angew. Math. 139, 293–308 (1911).

Wolfgang Krull proved the result for rings in “Algebraische Theorie der Ringe II”

Math. Ann. 91, 1–46 (1924). Otto J. Schmidt enters the scene in 1929 and presents

a result involving groups series (we see some group series in Hungerford’s Section

II.8) in “Ueber unendliche Gruppen mit endlicher Kette” Math. Z. 29, 34–41

(1929). A Google search reveals that a number of generalizations exist involving

rings, modules, and categories.
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