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Section II.4. The Action of a Group on a Set

Note. In this section, we introduce the idea of a group “acting” on a set. This

has applications to counting (see Fraleigh’s Section III.17 “Application of G-Sets to

Counting”), but our main use of this topic is to the proofs of the Sylow Theorems

in the next section.

Definition II.4.1. An action of a group G on a set S is a function mapping

G× S → S (denoted (g, x) 7→ g ? x) such that for all x ∈ S and g1, g2 ∈ G we have

e ? x = x and (g1g2) ? x = g1 ? (g2 ? x).

When this occurs, we say that G acts on set S.

Note. Hungerford denotes the action of group element g on set element x simply

as “gx.” This is common and is followed by Fraleigh, and Dummit and Foote.

However, in these class notes we use a star, ?, to denote this: g ? x. This is not

common and simply introduced here to distinguish group action from the binary

operation in a group (since many applications of group action will involve set S as

a group itself).

Example. Consider the symmetry group Sn and the set In = {1, 2, . . . , n}. For

σ ∈ Sn and x ∈ In, consider the function mapping Sn × In → In defined as σ ? x =

σ(x). Since ι ?x = ι(x) = x and (σ1σ2)?x = (σ1 ◦σ2)(x) = σ1(σ2(x)) = σ1 ? (σ2 ?x)

then Sn acts on a set In. Similarly, the alternating group An acts on set In. The

dihedral group Dn also acts on set In when we interpret the elements of Dn as

acting on the set of vertices of an n-gon with labels 1, 2, . . . , n (labeled clockwise,

say).
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Example. Let G be a group and H a subgroup of G. Then we can treat group H

as acting on set G by defining function mapping H ×G → G as h ? x = hx where

hx is the product in group G. Certainly the identity of H behaves as required and

associativity of the binary operation gives the second condition in the definition of

action. The action of h ∈ H on G is called left translation (it is also a permutation

of G). If K is another subgroup of G and S is the set of all left cosets of K in G,

then H acts on the set of cosets S by left translation, as given by h?xK = (hx)K.

Example. Let H be a subgroup of a group G. An action of H on set G is given

by the mapping H ×G → G as h ? x = hxh−1. Of course e ? x = exe−1 = x and

(g1g2)?x = g1g2x(g1g2)
−1 = g1g2xg−1

2 g−1
1 = g1(g2xg−1

2 )g−1
1 = g1(g2?x)g−1

1 = g1?(g2?x).

This action of h ∈ H on G is called conjugation by h and element hxh−1 ∈ G is a

conjugate of x. If K is any subgroup of G and h ∈ H, then hKh−1 is a subgroup

of G isomorphic to K by Exercise I.5.6. So H acts on the set S of all subgroups

of G by conjugation: h ? K = hKh−1 (which is an action by the argument above).

The group hKh−1 is said to be conjugate to K.

Theorem II.4.2. Let G be a group that acts on a set S.

(i) The relation on S defined by

x ∼ x′ ⇐⇒ g ? x = x′ for some g ∈ G

is an equivalence relation on set S.

(ii) For each x ∈ S, Gx = {g ∈ G | g ? x = x} is a subgroup of G.
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Note/Definition. We know that the equivalence classes of an equivalence relation

partition the set on which they are based (Theorem 0.4.1). The equivalence classes

of the equivalence relation given in Theorem II.4.2(i) are the orbits of G on S. The

orbit of a given x ∈ S is denoted x. The subgroup Gx is called the stabilizer of x

(or the subgroup fixing x, or the isotropy group of x).

Definition. If a group G acts on itself by conjugation, then the orbit {gxg−1 | g ∈

G} of x ∈ G is the conjugacy class of x. If a subgroup H acts on G by conjugation

then the stabilizer group Hx = {h ∈ H | hxh−1 = x} = {h ∈ H | hx = xh} is

the centralizer of x in H, denoted CH(x). If H = G, CG(x) is simply called the

centralizer of x. If H acts by conjugation on the set S of all subgroups of G, then

the subgroup of H fixing K ∈ S, namely {h ∈ H | hKh−1 = K} is the normalizer

of K in H, denoted NH(K). The group NG(K) is the normalizer of K.

Theorem II.4.3. If a group G acts on a set S, then the cardinal number of x ∈ S,

|x|, is the index [G : Gx] (recall that [G : Gx] is the cardinal number of the left

cosets of subgroups Gx in group G).

Note. We now consider the special case of action on a set where the action is

conjugation and the set is a group.
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Corollary II.4.4. Let G be a finite group and K a subgroup of G.

(i) The number of elements in the conjugacy class of x ∈ G is [G : CG(x)], which

divides |G|.

(ii) If x1, x2, . . . , xn are the distinct conjugacy classes of G, then |G| =
∑n

i=1[G :

CG(xi)].

(iii) The number of subgroups of G conjugate to K is [G : NG(K)], which divides

|G|.

Definition. For finite group G, the equation |G| =
∑n

i=1[G : CG(xi)] given in

Corollary II.4.4(ii) is the class equation of group G.

Theorem II.4.5. If a group G acts on set S, then this action induces a homo-

morphism mapping G → A(S) where A(S) is the group of all permutations of

S.

Corollary II.4.6. Cayley’s Theorem.

If G is a group, then there is a monomorphism (a one to one homomorphism)

mapping G → A(G). Hence, every group is isomorphic to a group of permutations.

In particular, every finite group is isomorphic to a subgroup of Sn with n = |G|.

Note. Recall that if G is a group, then the set of all automorphisms of G (that is,

isomorphisms of G with itself) is a group, denoted Aut(G) (see Exercise I.2.15(a)).
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Corollary II.4.7. Let G be a group.

(i) For each g ∈ G, conjugation by g induces an automorphism of G.

(ii) There is a homomorphism mapping G → Aut(G) whose kernel is C(G) = {g ∈

G | gx = xg for all x ∈ G}.

Definition. The automorphism τg of G in Corollary II.4.7(i) (which maps x ∈ G

to gxg−1) is the inner automorphism induced by g. The set C(G) = {g ∈ G | gx =

xg for all x ∈ G} is the center of G.

Note II.4.A. The center of G, C(G), is a normal subgroup of G by Theorem

I.5.1(iii). If g ∈ C(G) then g = xgx−1 for all x ∈ G and so the conjugacy class

of g consists of only g. So if G is finite and x ∈ C(G) then by Corollary II.4.4(i)

[G : CG(x)] = 1. So the class equation of Corollary II.4.4(ii) is

|G| =
n∑

i=1

[G : CG(xi)] where the distinct conjugacy classes of G are x1, x2, . . . , xn

= |C(G)|+
m∑

i=1

[G : CG(xi)]

where x1, x2, . . . xm are the distinct conjugacy classes of G for which [G : CG(xi)] > 1

(and so xi ∈ G \ C(G)).

Proposition II.4.8. Let H be a subgroup of a group G and let G act on set S

of all left cosets of H in G by left translation. Then the kernel of the induced

homomorphism mapping G → A(S) is contained in H.
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Corollary II.4.9. If H is a subgroup of index n in a group G (that is, H has n

left cosets in G) and no nontrivial normal subgroup of G is contained in H, then

G is isomorphic to a subgroup of Sn.

Note. The following result foreshadows the Sylow Theorems of the next section.

Corollary II.4.10. If H is a subgroup of a finite group G of index p (that is, H

has p left cosets in G), where p is the smallest prime dividing the order of G, then

H is normal in G.
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