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Section II.5. The Sylow Theorems

Note. Finite abelian groups are classified in the “Fundamental Theorem” (Theo-

rem II.2.6). So we now turn our attention to finite nonabelian groups. We won’t

completely classify finite nonabelian groups (nor is this likely to ever be done) but

we make some initial steps with the First, Second, and Third Sylow Theorems.

Note. Peter Ludvig Sylow (1832–1918) published the three “Sylow Theorems”

of this section in “Théorèmes sur les groupes de substitutions,” Mathematische

Annalen 5 (1872), 584–594. He, like Abel, was from Norway.

In 1862 Sylow lectured at the University of Christiania (Oslo, Norway). In his

lectures Sylow explained Abel’s and Galois’s work on algebraic equations. Between

1873 and 1881 Sylow (with Sophus Lie) prepared an edition of Abel’s complete

work. After proving Cauchy’s theorem (Theorem II.5.2) that a finite group of an

order which is divisible by a prime p, has a subgroup of order p, Sylow asked

whether it can be generalized to powers of p. The answer and the results on which
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Sylow’s fame rests are in his 10 page paper published in 1872; almost all work on

finite groups uses Sylow’s theorems. He spent most of his career as a high school

teacher in Halden, Norway. Sylow was awarded an honorary doctorate from the

University of Copenhagen and taught at Christiania University starting in 1898.

(This information is from MacTutor History of Mathematics Archive biography of

Sylow.)

Note. Fraleigh mimics Hungerford’s presentation of this material. When we

present the results we will also give a reference to Fraleigh’s corresponding result.

Most of the results concern prime power order groups and subgroups.

Lemma II.5.1. Fraleigh, Theorem 36.1.

If a group H of order pn (p prime) acts on a finite set S and if S0 = {x ∈ S | h?x =

x for all h ∈ H} then |S| ≡ |S0| (mod p).

Theorem II.5.2. Fraleigh, Theorem 36.3. Cauchy’s Theorem.

If G is a finite group whose order is divisible by a prime p, then G contains an

element of order p.

http://www-history.mcs.st-and.ac.uk/Biographies/Sylow.html
http://www-history.mcs.st-and.ac.uk/Biographies/Sylow.html
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Note. The abstract to M. Meo’s “The Mathematical Life of Cauchy’s Group

Theorem” (Historia Mathematica 31 (2004), 196–221) reads:

“Cauchy’s theorem on the order of finite groups is a fixture of elemen-

tary course work in abstract algebra today: its proof is a straightfor-

ward exercise in the application of general mathematical tools. The

initial proof by Cauchy, however, was unprecedented in its complex

computations involving permutational group theory and contained an

egregious error. A direct inspiration to Sylow’s theorem, Cauchy’s the-

orem was reworked by R. Dedekind, G.F. Frobenius, C. Jordan, and

J.H. McKay in ever more natural, concise terms. Its most succinct

form employs just the structure lacking in Cauchys original proof—the

wreath product.”

On the second page of this paper, Meo comments: “Cauchy’s theorem in permuta-

tion groups, which constituted the major conclusion of the 101 pages of Mémoire sur

les arrangements que l’on peut former avec des lettres données [Cauchy, 1845]. . . It

appeared just before the posthumous publication of Galois [1846]. . . and the two

publications together [i.e., that of Cauchy and Galois] have recently been character-

ized as ‘the two sources that introduced group theory to mathematics’ [Neumann,

1989, 293].” Meo’s paper is online: “The Mathematical Life of Cauchy’s Group

Theorem” (accessed 11/14/2019). As a side note, the “J.H. McKay” (that’s “James

Harold”) mentioned in the abstract had the same Ph.D. adviser (William Richard

Ball) as my graduate algebra professor (Paul Daniel Hill).

http://www.sciencedirect.com/science/article/pii/S031508600300003X
http://www.sciencedirect.com/science/article/pii/S031508600300003X
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Definition. A group in which every element has order a power (≥ 0) of some fixed

prime p is a p-group. If H is a subgroup of group G and H is a p-group, then H is

a p-subgroup of G.

Note. The subgroup 〈e〉 of a group G is a p-subgroup since e1 = ep0

= e.

Corollary II.5.3. Fraleigh Corollary 36.4.

A finite group G is a p-group if and only if |G| is a power of p.

Corollary II.5.4. The center C(G) of a nontrivial finite p-group G contains more

than one element.

Lemma II.5.5. If H is a p-subgroup of a finite group G, then [NG(H) : H] ≡ [G :

H] (mod p).

Corollary II.5.6. Fraleigh Corollary 36.7.

If H is a p-subgroup of a finite group G such that p divides [G : H], then NG(H) 6=

H.

Note. Now for the First Sylow Theorem. Notice that it deals with subgroups

which are of order a power of a prime and also makes a normality claim for certain

subgroups.
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Theorem II.5.7. Fraleigh Theorem 36.8. First Sylow Theorem.

Let G be a group of order pnm with n ≥ 1, p prime, and (p, m) = 1. Then G

contains a subgroup of order pi for each 1 ≤ i ≤ n and every subgroup of G of

order pi (i < n) is normal in some subgroup of order pi+1.

Definition. A subgroup P of a group G is said to be a Sylow p-subgroup (p prime)

if P is a maximal p-subgroup of G (that is, P < H < G with H a p-group implies

P = H).

Note. By the first Sylow Theorem (Theorem II.5.7), every finite group G, say

|G| = pnm where n ≥ 1, p is prime, and (p, m) = 1, has a nontrivial Sylow

p-subgroup (namely, a subgroup of order pn).

Corollary II.5.8. Let G be a group of order pnm with p prime, n ≥ 1, and

(p, m) = 1. Let H be a p-subgroup of G.

(i) H is a Sylow p-subgroup of G if and only if |H| = pn.

(ii) Every conjugate of a Sylow p-subgroup is a Sylow p-subgroup.

(iii) If there is only one Sylow p-subgroup P , then P is normal in G.
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Theorem II.5.9. Fraleigh Theorem 36.10. Second Sylow Theorem.

If H is a p-subgroup of a finite group G, and P is any Sylow p-subgroup of G, then

there exists x ∈ G such that H < xPx−1. In particular, any two Sylow p-subgroups

of G are conjugate.

Note. We can illustrate the Second Sylow Theorem as:

Theorem II.5.10. Fraleigh 36.11. Third Sylow Theorem.

If G is a finite group and p a prime, then the number of Sylow p-subgroups of G

divides |G| and is of the form kp + 1 for some k ≥ 0.

Theorem II.5.11. If P is a Sylow p-subgroup of a finite group G, then NG(NG(P )) =

NG(P ).
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Example. Fraleigh, Example 36.12.

To illustrate the Sylow Theorems, consider S3 of order 3! = 6. S3 consists of the

permutations

ρ0 =

 1 2 3

1 2 3

 µ1 =

 1 2 3

1 3 2


ρ1 =

 1 2 3

2 3 1

 µ2 =

 1 2 3

3 2 1


ρ2 =

 1 2 3

3 1 2

 µ3 =

 1 2 3

2 1 3



The multiplication table for S3 is then:

ρ0 ρ1 ρ2 µ1 µ2 µ3

ρ0 ρ0 ρ1 ρ2 µ1 µ2 µ3

ρ1 ρ1 ρ2 ρ0 µ3 µ1 µ2

ρ2 ρ2 ρ0 ρ1 µ2 µ3 µ1

µ1 µ1 µ2 µ3 ρ0 ρ1 ρ2

µ2 µ2 µ3 µ1 ρ2 ρ0 ρ1

µ3 µ3 µ1 µ2 ρ1 ρ2 ρ0

The Sylow 2-subgroups are {ρ0, µ1}, {ρ0, µ2}, {ρ0, µ3}. With p = 2, we see that

there are 3 ≡ 1 (mod 2) such subgroups and 3 divides |S3| = 6, thus illustrat-

ing the Third Sylow Theorem. With the group action as conjugation, we have

ρ2{ρ0, µ1}ρ−1
2 = {ρ0, µ3}, ρ1{ρ0, µ1}ρ−1

1 = {ρ0, µ2}, and ρ1{ρ0, µ2}ρ−1
1 = {ρ0, µ3},

thus illustrating the Second Sylow Theorem.
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Note. We will use the Sylow Theorems in Section II.6 to help classify certain

finite order groups. In particular, the Second Sylow Theorem can be used to deal

with showing that groups are not simple by allowing us (under certain conditions)

to show that a Sylow p-subgroup is a normal subgroup. We now give two such

examples.

Example. Fraleigh, Example 36.13.

We claim that no group of order 15 is simple. Suppose group G is of order 15,

|G| = 15. We will show that G has a normal subgroup of order 5. By the First

Sylow Theorem (Theorem II.5.7), G has at least one subgroup of order 5 and

this is a Sylow p-subgroup (with p = 5) by Corollary II.5.8(i). By the Third

Sylow Theorem (Theorem II.5.10), the number of such subgroups is congruent to

1 modulo 5 and divides 15. Now 1 is the only such number, and so G has exactly

one subgroup of order 5, say P . By Corollary II.5.8(iii), subgroup P is a normal

subgroup of G, and so G is not simple.

Example. Every group G of order 483 is not simple. Notice that 483 = 3·7·23. By

the First Sylow Theorem (Theorem II.5.7), this group G has a Sylow 23-subgroup.

By the Third Sylow Theorem (Theorem II.5.10), the number of Sylow 23-subgroups

is 1 modulo 23 and divides |G| = 483. The divisors of 483 which are not multiples

of 23 are 1, 3, 7, and 21. The only one of these which is 1 modulo 23 is 1. So G has

1 Sylow 23-subgroup. By Corollary II.5.8(iii) this Sylow 23-subgroup is a normal

subgroup of G, and so G is not simple.
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