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Section II.6. Classification of Finite Groups

Note. In this section, based largely on Sylow’s three theorems, we classify all

groups of order up to 15. First, we classify groups of order pq where p and q are

distinct primes.

Proposition II.6.1. Let p and q be primes such that p > q.

(i) If q - p− 1 then every group of order pq is isomorphic to the cyclic group Zpq.

(ii) If q | p − 1 then there are (up to isomorphism) exactly two distinct groups

of order pq: the cyclic group Zpq and a nonabelian group K generated by

elements c and d such that these elements have orders |c| = p and |d| = q.

Also dc = csd where s 6≡ 1 (mod p) and sq ≡ 1 (mod p). This nonabelian

group is called a metacyclic group.

Note. With Cp = 〈c〉 and Cq = 〈d〉 as cyclic multiplicative groups of orders p and q,

respectively, and θ : Cq → Aut(Cp) given by θ(di) = αi where α : Cp → Cp is given

by the automorphism mapping ci 7→ csi, then the metacyclic group is isomorphic

to the semidirect product Cp ×θ Cq (see Exercises II.6.1 and II.6.2).

Corollary II.6.2. If p is an odd prime, then every group of order 2p is isomorphic

either to the cyclic group Z2p or the dihedral group Dp.

Note. We can now classify some finite groups. If G is a group of prime order p,

then by Lemma II.2.3 G ∼= Zp. If G is a group of order 2p where p is an odd prime,

then Corollary II.6.2 gives the two possibilities for G.
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Proposition II.6.3. There are (up to isomorphism) exactly two distinct non-

abelian groups of order 8: the quaternion group Q8 (see Exercise I.2.3) and the

dihedral group D4.

Proposition II.6.4. There are (up to isomorphism) exactly three distinct non-

abelian groups of order 12: the dihedral group D6, the alternating group A4, and a

group T generated by elements a and b such that |a| = 6, b2 = a3, and ba = a−1b.

Note. The group T of order 12 is an example of a dicyclic group. A presentation

of the nth dicyclic group, denoted Dicn, is given by (X | Y ) where X = {a, b}

and Y = {a2n, anb−2, b−1aba}. That is, Dicn is generated by a and b where a and

b satisfy the relations a2n = e, an = b2, and b−1ab = a−1. The group Dicn is

of order 4n (see Steven Roman’s Fundamentals of Group Theory: An Advanced

Approach, Springer-Verlag (2011), pages 347–348). So the group T is actually

the third dicyclic group, Dic3. The first dicyclic group is isomorphic to Z4; for

n ≥ 2, Dicn is nonabelian. In fact, the second dicyclic group is isomorphic to

the quaternions, Q8
∼= Dic2 (see Example I.9.A in the class notes and notice that

b−1ab = a−1 implies that ba = a−1b). When n is a power of 2, Dicn is isomorphic

to a “generalized quaternion group.”
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Note. “There is no known formula giving the number of distinct [i.e., nonisomor-

phic] groups of order n, for every n” (Hungerford, page 98). However we have the

equipment to classify all groups of orders less than or equal to 15. For prime orders

2, 3, 5, 7, 11, and 13, Exercise I.4.3 tells us that there is only one group of each

of these orders. By Corollary II.6.2, for orders 6, 10, and 14 there are two noni-

somorphic groups of these orders n, namely Zn and Dn/2. Exercise I.4.5 gives two

groups of order 4, Z4 and Z2 ⊕ Z2. Theorem II.2.1 and Proposition II.6.3 classify

the five groups of order 8, Z8, Z4 ⊕ Z2, Z2 ⊕ Z2 ⊕ Z2, Q8, and D4. Exercise II.5.13

and Theorem II.2.1 classify the two groups of order 9, Z9 and Z3 ⊕ Z3. Theorem

II.2.1 and Proposition II.6.4 classify the five groups of order 12 as Z12, Z6⊕Z2, A4,

D6, and T . Proposition II.6.1 classifies the one group of order 15 as Z15.

Note. To summarize, the first table below gives the references to justify the

second table which includes a list of all groups of order 15 or less (yes, yes, “up to

isomorphism”).

Order Reference Order Reference

1 trivial 9 Exercise II.5.13

2 Exercise I.4.3 Theorem II.2.1

3 Exercise I.4.3 10 Corollary II.6.2

4 Exercise I.4.5 11 Exercise I.4.3

5 Exercise I.4.3 12 Theorem II.2.1

6 Corollary II.6.2 Proposition II.6.4

7 Exercise I.4.3 13 Exercise I.4.3

8 Theorem II.2.1 14 Corollary I.6.2

Proposition II.6.3 15 Proposition II.6.1
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Order Group Comments

1 Z1 The trivial group.

2 Z2

3 Z3
∼= A3

4 Z4

Klein 4-group V ∼= Z2 ⊕ Z2 The smallest non-cyclic group.

5 Z5

6 Z6
∼= Z2 ⊕ Z3

S3
∼= D3 The smallest nonabelian group.

7 Z7

8 Z8

Z2 ⊕ Z4

Z2 ⊕ Z2 ⊕ Z2

D4 Nonabelian.

Quaternions Q8 Nonabelian.

9 Z9

Z3 ⊕ Z3

10 Z10
∼= Z2 ⊕ Z5

D5 Nonabelian.

11 Z11

12 Z12
∼= Z3 ⊕ Z4

Z2 ⊕ Z6
∼= Z2 ⊕ Z2 ⊕ Z3

D6
∼= Z2 ×D3 Nonabelian.

A4 Nonabelian; Smallest group which shows converse

of Lagrange’s Theorem does not hold.

Dic3
∼= T Nonabelian, dicyclic group of order 12.

13 Z13

14 Z14
∼= Z2 ⊕ Z7

D7 Nonabelian.

15 Z15
∼= Z3 ⊕ Z5



II.6. Classification of Finite Groups 5

Note. There are 14 groups of order 16, 5 of which are abelian. A proof of this

is given in Marcel Wild’s “The Groups of Order Sixteen Made Easy,” American

Mathematical Monthly, 112, January 2005, 20-31. The paper is “easy” since it does

not use Sylow theorems, p-groups, generators/relations, nor group action. Many

of the groups (namely, half of them) involve products (or semi-direct products; see

Exercise II.6.1) of Z2 and a group of order 8.

Note. If we wish to go beyond order 16, then we know that there is only one group

of order 17 since 17 is prime (and similarly for 19). By Proposition II.6.1, there

are two groups of order 21, Z21 and another (nonabelian) group of order 21. Notice

that this other group is a bit of a “mystery group”; it is not a symmetry group

Sn, alternating group An, dihedral group Dn, nor a dicyclic group Dicn (based on

the orders of these groups). For order 22, we can apply Corollary II.6.2 to see

that there are two groups, Z22 and D11 (and similarly for order 26). A webpage

listing all groups of order at most 100 is online at “Tribimaximal Mixing From

Small Groups” by K. Parattu, A. Wingerter (accessed 11/14/2019). See also The

GAP Small Groups Library (accessed 11/14/2019) which contains results from the

computational group theory software “GAP” (Groups, Algorithms, Programming).

https://www.mimuw.edu.pl/~zbimar/small_groups.pdf
https://www.mimuw.edu.pl/~zbimar/small_groups.pdf
http://www.gap-system.org/Packages/sgl.html
http://www.gap-system.org/Packages/sgl.html
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Note. Three general results are worth mentioning. Let p be prime.

(1) We know that there is a single group (up to isomorphism) of order p and it is

Zp by Exercise I.4.3.

(2) There are only two groups of order p2 for p prime, Zp2 and Zp⊕Zp (by Exercise

II.5.13 a group of order p2 is abelian, and so the Fundamental Theorem of Finitely

Generated Abelian Groups [Theorem II.2.6] applies to give this result).

(3) For p3, there are three abelian groups of order p3 (by the Fundamental Theo-

rem of Finitely Generated Abelian Groups), namely Zp ⊕ Zp ⊕ Zp, Zp ⊕ Zp2, and

Zp3. When p = 2, we know that there are two nonabelian groups of order 8 by

Proposition II.6.3, namely the quaternions Q8 and the dihedral group D4. For p

an odd prime, there are two nonabelian groups of order p3 as shown in Exercise

II.6.8. One of these groups has generators a and b where |a| = p2, |b| = p, and

b−1ab = a1+p. The other has generators a, b, and c where |a| = |b| = |c| = p,

c = a−1b−1ab, ca = ac, and cb = bc. Keith Conrad of the University of Connecticut

describes these groups online: “Groups of Order p3” (accessed 11/14/2019). The

second type of group is an example of a Heisenberg group and is of the form:

Heis(Zp) =




1 a b

0 1 c

0 0 1


∣∣∣∣∣∣∣∣∣ a, b, c ∈ Zp

 .

The entries a, b, c can be taken from other algebraic structures. If they are real

numbers, then what is produced is the continuous Heisenberg group which has

applications in one dimensional quantum mechanical systems (hence the connection

with physicist Werner Heisenberg, 1901–1976).

https://kconrad.math.uconn.edu/blurbs/grouptheory/groupsp3.pdf
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Note. See also Supplement. Small Groups, notes which I use in Introduction to

Modern Algebra (MATH 4127/5127). This document overlaps with some of the

material in this section of notes, but also includes a brief discussion of the “Monster

group” and a reference to the ATLAS of Finite Groups, by Conway, Curtis, Norton,

Parker, and Wilson (Oxford University Press, 1985).

Revised: 5/1/2021

http://faculty.etsu.edu/gardnerr/4127/notes/Small-Groups.pdf

