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Section II.7. Nilpotent and Solvable Groups

Note. In this section, we define nilpotent and solvable groups and see that ev-

ery nilpotent group is solvable (Proposition II.7.10). Solvable groups realize their

greatest importance in the proof of the insolvability of the quintic in Chapter V (in

the Appendix to Section V.9).

Note. Hungerford describes our success with finite abelian groups (Section II.2)

and p-groups (Section II.5) as yielding “striking results.” In order to combine

these results, we consider the class of finite groups which are products of their

Sylow subgroups. We saw in Exercise II.5.8 that if every Sylow subgroup of a finite

group G is normal then G is the direct product of its Sylow subgroups. In this

section we define nilpotent groups in terms of the behavior of certain associated

groups. We see in Proposition II.7.5 that these are precisely the groups which are

direct products of their Sylow subgroups.

Note. Recall that the center of a group G is C(G) = {a ∈ G | ax = xa for all x ∈

G}. Notice that C(G) is an abelian subgroup of G (by Problem I.2.11). By

Corollary II.4.7 (see the proof) C(G) is a normal subgroup of G. So consider

the canonical homomorphism π : G → G/C(G) (where π(g) = gC(G)). Define

C2(G) = π−1[C(G/C(G))]. By the proof of Theorem I.5.11, C2(G) is normal in G

and contains C(G). So we can define a chain of groups with C1(G) = C(G), and

Ci(G) is the inverse image of C(G/Ci−1(G)) under the canonical homomorphism

mapping G → G/Ci−1(G). The “inverse image” part is necessary so that we

actually get subgroups of G.
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Definition II.7.1. The sequence of normal subgroups of G described above, 〈e〉 <

C1(G) < C2(G) < · · ·, is the ascending central series of G. Group G is nilpotent if

Cn(G) = G for some n.

Note. Since G = C(G) = C1(G) for abelian G, every abelian group is nilpotent.

Example 1. Let n be odd and consider Dn. The center of Dn is C(Dn) = C1(Dn) =

{e} by Exercise I.6.12. So Dn/{e} = {d{e} | d ∈ Dn} = {{d} | d ∈ Dn} ∼= Dn. Now

C(Dn/{e}) = {{e}} by Exercise I.6.2 and so C2(Dn) = π−1(C(Dn/{e})) = {e}.

So this process is repeated so that Ci(Dn) = {e} for all i ∈ N, and the ascending

central series for Dn (with n odd) is {e} < {e} < {e} < · · ·. Therefore Dn in not

nilpotent when n is odd.

Example 2. Consider D8 (a group of order 16). The center of D8 is C(D8) =

{e, a4} by Exercise I.6.12 (in the solution, C(Dn) = {e, an/2} for n even). Now

D8/C(D8) ∼= D4 by Exercise I.6.A and so C(D8/C(D8)) = {{e, a4}, a2{e, a4}} =

{{e, a4}, {a2, a6}} (that is, the center of D8/C(D8) is the identity coset and, since

D8/C(D8) ∼= D4, the “rotation” a2 of order 2). Then,

C1(D8) = π−1(C(D8/C(D8))) = π−1({e, a4}, {a2, a6}) = {e, a2, a4, a6}

(since π maps elements of D8 to cosets, π−1 maps cosets to their elements). Next,

D8/C1(D8) is, by Lagrange’s Theorem (Corollary I.4.6) of order 4 and so must be

abelian. Hence

C(D8/C1(D8)) = D8/C1(D8)
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= {{e, a2, a4, a6}, {a, a3, a5, a7}, {b, ba2, ba4, ba6}, {ba, ba3, ba5, ba7}}.

So C2(D8) = π−1(C(D8/C1(D8)) = D8 and the ascending central series is {e} <

{e, a4} < {e, a2, a4, a6} < D8. So D8 is nilpotent.

Note. We now prove several properties of nilpotent groups.

Proposition II.7.2. Every finite p-group is nilpotent.

Proposition II.7.3. The direct product of a finite number of nilpotent groups is

nilpotent.

Lemma II.7.4. If H is a proper subgroup of a nilpotent group G, then H is a

proper subgroup of its normalizer NG(H).

Note. The following result classifies finite nilpotent groups in terms of their rela-

tionship to their Sylow p-subgroups.

Proposition II.7.5. A finite group is nilpotent if and only if it is (isomorphic to)

the direct product of its Sylow subgroups.

Note. The following gives us a special case in which the converse of Lagrange’s

Theorem holds.



II.7. Nilpotent and Solvable Groups 4

Corollary II.7.6. If G is a finite nilpotent group and m divides |G|, then G has

a subgroup of order m.

Definition II.7.7. Let G be a group. The subgroup of G generated by the set

{aba−1b−1 | a, b ∈ G} is called the commutator subgroup of G and denoted G′.

Note. Notice that G is abelian if and only if G′ = {e}. Hungerford says (page

102) “In a sense, G′ provides a measure of how much G differs from an abelian

group.” Of course, “in a sense” is a great, vague disclaimer! The following result

somewhat elaborates on this.

Theorem II.7.8. If G is a group, then the commutator subgroup G′ is a normal

subgroup of G and G/G′ is abelian. If N is a normal subgroup of G, then G/N is

abelian if and only if N contains G′.

Note. Fraleigh (page 150 of the 7th edition) calls G/G′ an “abelianized version”

of G. Notice that it is the “largest” abelian quotient group of G since N = G′ is

the “smallest” normal subgroup of G for which G/N is abelian, by Theorem II.7.8.

Example. We can use Theorem II.7.8 to find commutator subgroups. The Cayley

table for S3 is (in the notation of Fraleigh):
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ρ0 ρ1 ρ2 µ1 µ2 µ3

ρ0 ρ0 ρ1 ρ2 µ1 µ2 µ3

ρ1 ρ1 ρ2 ρ0 µ3 µ1 µ2

ρ2 ρ2 ρ0 ρ1 µ2 µ3 µ1

µ1 µ1 µ2 µ3 ρ0 ρ1 ρ2

µ2 µ2 µ3 µ1 ρ2 ρ0 ρ1

µ3 µ3 µ1 µ2 ρ1 ρ2 ρ0

We see that S3 has subgroup N = {ρ0, ρ1, ρ2} which is normal by Exercise I.5.1

since [S3 : N ] = 2. Now S3/N ∼= Z2 is abelian, so by Theorem II.7.8, N contains

S′
3. We now show that ρ0, ρ1, ρ2 are each commutators (in the notation of Exercise

II.7.2 we denote the commutator of x and y as [x, y] = xyx−1y−1):

[ρ0, ρ0] = ρ0ρ0ρ
−1
0 ρ−1

0 = ρ0,

[µ1, µ3] = µ1µ3µ
−1
1 µ−1

3 = µ1µ3µ1µ3 = ρ2ρ2 = ρ1, and

[µ1, µ2] = µ1µ2µ
−1
1 µ−1

2 = µ1µ2µ1µ2 = ρ1ρ1 = ρ2.

So S′
3 = N . Since N is abelian then N ′ = {ρ0}. So the sequence of derived

subgroups of S3 are: S3 > N > {ρ0}. That is, S
(2)
3 = {ρ0}. This means that S3 is

“solvable” as defined next.

Note. We now turn our attention to solvable groups. Solvable groups play a major

role in showing the insolvability of the quintic (in Section V.9).

Definition. Let G be a group and let G(1) = G′ be the commutator subgroup of

G. For i ≥ 1 define G(i) = (G(i−1))′ (that is, G(i) is the commutator subgroup of

G(i−1)). G(i) is the ith derived subgroup of G.
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Note. The derived subgroups of G produce a subgroup chain G > G(1) > G(2) >

· · ·. By Theorem II.7.8 we know that each of these subgroup inclusions is in fact

actually a normal subgroup inclusion. Each G(i) is a normal subgroup of G (and

hence of each earlier subgroup in the chain) by Exercise II.7.13.

Definition II.7.9. A group G is said to be solvable if G(n) = 〈e〉 for some n.

Note. Notice the similarity between the definition of nilpotent group and solvable

group. Notice also that every abelian group G is solvable since, for such a group,

G(1) = G′ = {e}.

Note. If you dealt with solvable groups in your senior level algebra class (Intro-

duction to Modern Algebra, MATH 4137/5137) then this is likely not the definition

of “solvable” which you encountered. In Fraliegh’s 8th edition of A First Course

in Abstract Algebra, a solvable group is defined as:

Definition 35.18. A group G is solvable if it has a composition series {Hi} such

that all factor groups Hi+1/Hi are abelian.

Here we see that solvability is ultimately related to the fact that something is

abelian. This commutivity property is used by Niels Henrik Abel in his proof of

the insolvability of the quintic (called “Abel’s Theorem” in Hungerford’s Proposi-

tion V.9.8). This is why he is commemorated by the term “abelian group” for a

group with a commutative binary operation. In the next section (namely, in The-

orem II.8.5) we will show that Hungerford’s and Fraleigh’s definitions of solvable

group are equivalent.
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Proposition II.7.10. Every nilpotent group is solvable.

Note. The converse of Proposition II.7.10 does not hold, since S3 and S4 are

solvable but not nilpotent, as shown in Exercise II.7.10.

Theorem II.7.11.

(i) Every subgroup and every homomorphic image of a solvable group is solvable.

(ii) If N is a normal subgroup of a group G such that N and G/N are solvable,

then G is solvable.

Note. The following is instrumental in the proof of the Insolvability of the Quintic.

Notice that the proof includes the fact that An is not solvable for n ≥ 5.

Corollary II.7.12. If n ≥ 5, then the symmetric group Sn is not solvable.

Proof. ASSUME Sn is solvable for n ≥ 5. Then, by Theorem II.7.11, subgroup An

is solvable. Since An is nonabelian, then the commutator subgroup A′
n 6= {ι} (the

trivial group) because a group G is abelian if and only if G′ = {e}—see the note

after the definition of commutator subgroup. By Theorem II.7.8, A′
n is normal in

An. By Theorem I.6.10, An is simple for n ≥ 5. So, by the definition of simple

group, it must be that A′
n = An. But then the chain of derived subgroups A(i)

consists only of copies of group An and does not terminate at {ι}, implying that

An is not solvable, a CONTRADICTION. So the assumption that Sn is solvable is

false and, in fact, Sn is not solvable for n ≥ 5.
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Note. The remainder of this section is not necessary for what follows (our main

goals are an algebraic proof of the Fundamental Theorem of Algebra [see the ap-

pendix to Section V.3] and a proof of the Insolvability of the Quintic [see Abel’s

Theorem, Proposition V.9.8—we’ll accomplish these goals in Modern Algebra 2

[MATH 5420]). However, we include the statement of a result which is a Sylow-

type result for finite solvable groups.

Definition. A subgroup H of group G is a characteristic subgroup if f(H) < H

for every automorphism f : G → G. Subgroup H is fully invariant if f(H) < H

for every endomorphism (that is, homomorphism from G to G) f : G → G.

Note. Of course, a fully invariant subgroup is also characteristic (since an auto-

morphism is an example of an endomorphism). Also, every characteristic subgroup

is normal (since conjugation of G by an element of G is an automorphism of G and

so the conjugation of H will be a subgroup of H if H is a characteristic subgroup

and so H is normal by Theorem I.5.1(iv)).

Definition. A minimal normal subgroup of a group G is a nontrivial normal

subgroup that contains no proper subgroup which is normal in G.
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Lemma II.7.13. let N be a normal subgroup of a finite group G and H any

subgroup of G.

(i) If H is a characteristic subgroup of N , then H is normal in G.

(ii) Every normal Sylow p-subgroup of G is fully invariant.

(iii) If G is solvable and N is a minimal normal subgroup, then N is an abelian

p-group for some prime p.

Note. The following result is “Sylow-like” in that it gives subgroups of certain

orders and shows that certain such subgroups are conjugate.

Proposition II.7.14. Let G be a finite solvable group of order mn, with gcd(m,n) =

(m,n) = 1. Then

(i) G contains a subgroup of order m;

(ii) any two subgroups of G of order m are conjugate;

(iii) any subgroup of G of order k, where k | m, is contained is a subgroup of order

m.

Note. We omit the proof of Proposition II.7.14. It is about one and a half pages

long and by now you know how brief Hungerford can be on details!
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Note. Phillip Hall (1904–1982) proved Proposition II.7.14 in “A Note on Soluble

Groups” Journal of the London Mathematical Society, 3 (1928), 98–105. If group G

is of order mn and H is a subgroup of G of order m where gcd(m,n) = (m,n) = 1,

then H is called a Hall subgroup of G in his honor. For more information on him,

see “Philip Hall. 11 April 1904 – 30 December 1982” Biographical Memoirs of

Fellows of the Royal Society 30 (1984), 251–279. This is online at:

http://rsbm.royalsocietypublishing.org/content/30/250

(accessed 10/24/2014).

Note. If parameter m in Proposition II.7.14 is a power of a prime, then (i) implies

the existence of a Sylow p-subgroup of G (from the First Sylow Theorem [Theorem

II.5.7]). Part (ii) then implies that any two Sylow p-subgroups are conjugate (from

the Second Sylow Theorem [Theorem II.5.9]).

Note. Phillip Hall has also proved the converse of Proposition II.7.14(i). Namely:

Theorem. If G is a finite group such that whenever |G| = mn with gcd(m,n) =

(m,n) = 1 we have that G has a subgroup of order m, then group G is solvable.

Hungerford declares this result “beyond the scope of this book” (!) and references

Marshall Hall’s The Theory of Groups (1959).
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Note. A prominent figure in the history of group theory is William Burnside (1852–

1927). His famous book, Theory of Groups of Finite Order was first published in

1897 by Cambridge University Press. A second edition was published in 1911

and is still in print with Dover Publications and available through GoogleBooks

(http://books.google.com/books?id=rGMGAQAAIAAJ, accessed 10/24/2014). He

conjectured that every finite group of odd order is solvable. This was proved in

1963 by Walter Feit and John Thompson. The paper was 255 pages long and filled

an entire issue of the Proceedings of the London Mathematical Society. The specific

reference for the paper is “Solvability of Groups of Odd Order,” Proc. Lond. Math.

Soc., 13 (1960), 775–1029. For more details, see my supplemental notes on “Finite

Simple Groups” online at

http://faculty.etsu.edu/gardnerr/4127/notes/Simple-Groups.pdf.
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