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Section II.8. Normal and Subnormal Series

Note. In this section, two more series of a group are introduced. These will be

useful in the Insolvability of the Quintic. In addition, the Jordan-Hölder Theorem

will be stated and proved. This result illustrates the usefulness of a study of finite

simple groups.

Definition II.8.1. A subnormal series of a group G is a chain of subgroups

G = G0 > G1 > · · · > Gn such that Gi+1 is normal in Gi for 0 ≤ i < n. The

factors of the series are the quotient groups Gi/Gi+1. The length of the series is the

number of strict inclusions (or equivalently, the number of nonidentity factors). A

subnormal series such that Gi is normal in G for all i is a normal series.

Note. Of course every normal series is a subnormal series, but a subnormal series

may not be normal (see Exercise I.5.10).

Note. We can have K/H and H/G, but this does not necessarily imply that K is a

normal subgroup of G. In Exercise II.7.9 it is shown that the commutator subgroup

of G = A4 is H = A′
4
∼= Z2⊕Z2. In fact (with the usual notation for the permutation

group S4), A′
4 = {(1)(2)(3)(4), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}. By Theorem

II.7.8, A′
4 /A4. Now K = {(1)(2)(3)(4), (1, 2)(3, 4)} is a normal subgroup of A′

4 (by

Exercise I.5.1), but K is not a normal subgroup of G = A4 since for (2, 3)(1, 3) =

(1, 2, 3) ∈ A4 we have (1, 2, 3)((1, 2)(3, 4))(1, 2, 3)−1 = (1, 2, 3)(1, 2)(3, 4)(1, 3, 2) =

(1, 3)(2, 4) 6∈ K. That is, K / H and H / G, but K is not a normal subgroup of G.

That is, the relation “is a normal subgroup” is not transitive.
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Example. The derived series of commutator subgroups G > G(1) > G(2) > · · ·G(n)

is a normal series, since each G(i) is normal in G by Exercise II.7.13. If G is nilpotent

then the ascending central series C1(G) < C2(G) < · · · < Cn(G) = G is a normal

series for G since each Ci(G) is normal in G.

Definition II.8.2. Let G = G0 > G1 > · · · > Gn be a subnormal series. A

one-step refinement of this series is any series of the form G = G0 > G1 > · · · >

Gi > N > Gi+1 > · · · > Gn or G = G0 > G1 > · · · > Gn > N , where N is a normal

subgroup of Gi and (if i < n) Gi+1 is normal in N . A refinement of a subnormal

series S is any subnormal series obtained from S by a finite sequence of one-step

refinements. A refinement of S is said to be proper if its length is larger then the

length of S.

Definition II.8.3. A subnormal series G = G0 > G1 > · · · > Gn = {e} is a

composition series if each factor Gi/Gi+1 is simple. A subnormal series G = G0 >

G1 > · · · > Gn = {e} is a solvable series if each factor is abelian.

Definition. N 6= G is a maximal normal subgroup of G if there is no normal

subgroup M 6= G of G with N / M and N 6= M .

Note A. By Corollary I.5.12, if N is a normal subgroup of a group G, then every

normal subgroup of G/N is of the form H/N where H is a normal subgroup of G

which contains N . So when G 6= N , G/N is simple if and only if N is a maximal

normal subgroup of G.
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Theorem II.8.4.

(i) Every finite group G has a composition series.

(ii) Every refinement of a solvable series is a solvable series.

(iii) A subnormal series is a composition series if and only if it has no proper

refinements.

Note. The following result resolves the difference between Fraleigh and Hunger-

ford’s definition of solvable groups.

Theorem II.8.5. A group G is solvable if and only if it has a solvable series.

Example. The dihedral group Dn is solvable. Let a be a generator of a subgroup of

order n (say a = ρ1, a “fundamental rotation” which generates the cyclic subgroup

of Dn of order n consisting only of the rotations). Then we have the series Dn >

〈a〉 > {e} and Dn/〈a〉 ∼= Z2 is abelian, and 〈a〉/{e} ∼= Zn is abelian. So this is a

solvable series and by Theorem II.8.5, Dn is solvable.

Example. Let |G| = pq where p and q are prime and, say, p > q. Then G has a

normal subgroup of order p (and index q) by Corollary II.4.10. The subgroup is of

prime order and so is cyclic, say it is 〈a〉 ∼= Zp. Then G/〈a〉 is of order q and so

is an abelian group (isomorphic to Zq) and 〈a〉/{e} ∼= Zp is abelian. So group G

has a solvable series G > 〈a〉 > {e} and so by Theorem II.8.5 group G is solvable.

This example with its factors Zp and Zq foreshadows the following result.
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Proposition II.8.6. A finite group G is solvable if and only if G has a composition

series whose factors are cyclic and of prime order.

Note. Since we can often refine a subnormal series of a given group, then we see

that a group may have several different subnormal (or solvable) series. A group

may also have different composition series, as shown in Exercise II.8.1. However,

there is a type of uniqueness in terms of an equivalence, as given in the following

definition.

Definition II.8.7. Two subnormal series S and T of a group G are equivalent if

there is a one-to-one correspondence between the nontrivial factors of S and the

nontrivial factors of T such that corresponding factors are isomorphic groups.

Fraleigh’s Example 35.7. The two series {0} < 〈5〉 < Z15 and {0} < 〈3〉 < Z15

are equivalent normal series since the set of factor groups for {0} < 〈5〉 < Z15 is

{Z15/〈5〉 ∼= Z5, 〈5〉/〈0〉 ∼= Z3} and the set of factor groups for {0} < 〈3〉 < Z15 is

{Z15/〈3〉 ∼= Z3, 〈3〉/〈0〉 ∼= Z5}.

Note. Two subnormal series of a given group do not have to have the same number

of terms in order to be equivalent, but they do have to have the same “length” (that

is, number of nontrivial factors).

Lemma II.8.8. If S is a composition series of a group G, then any refinement of

S is equivalent to S.
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Note. The following result, the Zassenhaus Lemma or Butterfly Lemma is impor-

tant in the role it plays in the proof of Schrier’s Theorem and ultimately in the

proof of the Jordan-Hölder Theorem. The result is called the “Butterfly Lemma”

based on the shape of the subgroup diagram (this name is mentioned by Fraleigh

[see page 313 of the 8th edition] but is not mentioned by Hungerford). This diagram

appears on the back of the first t-shirts for the ETSU Abstract Algebra Club!

Lemma II.8.9. Zassenhaus’ Lemma/The Butterfly Lemma.

Let A∗, A, B∗, B be subgroups of a group G such that A∗ is normal in A and B∗

is normal in B.

(i) A∗(A ∩ B∗) is a normal subgroup of A∗(A ∩ B).

(ii) B∗(A∗ ∩ B) is a normal subgroup of B∗(A ∩ B).

(iii) A∗(A ∩ B)/A∗(A ∩ B∗) ∼= B∗(A ∩ B)/B∗(A∗ ∩ B).
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Theorem II.8.10. Schrier’s Theorem.

Any two subnormal series of a group G have subnormal refinements that are equiv-

alent. Any two normal series of a group G have normal refinements that are

equivalent.

Fraleigh’s Example 35.8. Consider the two normal series of Z: (1) {0} < 8Z <

4Z < Z and (2) {0} < 9Z < Z. Consider the refinement of (1) {0} < 72Z < 8Z <

4Z < Z and the refinement of (2) {0} < 72Z < 18Z < 9Z < Z. The four factor

groups for both refinements are

72Z/{0} ∼= 72Z, 8Z/72Z ∼= Z/9Z ∼= Z9,

4Z/8Z ∼= 9Z/18Z ∼= Z2, Z/4Z ∼= 18Z/72Z ∼= Z4.

Notice the factor groups are the same, although they appear in different orders.

So there is a one to one correspondence between the factor groups {Hi+1/Hi} and

{Kj+1/Kj}. That is, the refinements are equivalent.

Example. Two composition series for Z6 are {0} < {0, 2, 4} < Z6 and {0} <

{0, 3} < Z6. However these two series are equivalent since both have associated

factor groups (isomorphic to) Z2 and Z3. This is no coincidence, as shown in the

following.

Theorem II.8.11. Jordan-Hölder Theorem.

Any two composition series of a group G are equivalent. Therefore every group

having a composition series determines a unique list of simple groups.
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Note. Every finite group has a composition series by Theorem II.8.4(i). So the

Jordan-Hölder Theorem implies that every finite group is associated with a (finite)

list of simple groups. This fact lead to the 30 plus year exploration of finite simple

groups. Daniel Gorenstein in his 1982 Finite Simple Groups: An Introduction to

Their Classification (NY: Plenum Press, 1982) claims “In February 1981, the clas-

sification of the finite simple groups. . . was completed, representing one of the most

remarkable achievements in the history of mathematics. Involving the combined

efforts of several hundred mathematicians from around the world over a period

of 30 years, the full proof covered something between 5,000 and 10,000 journal

pages, spread over 300 to 500 individual papers.” One of the papers is the 255

page paper by Walter Feit and John Thompson mentioned in the last section titled

“Solvability of Groups of Odd Order” (Proceedings of the London Mathematical

Society, 13 (1960), 775–1029). For more details on this project, see my handout

for Introduction to Modern Algebra (MATH 4127/5127) on simple groups:

http://faculty.etsu.edu/gardnerr/4127/notes/Simple-Groups.pdf
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