Chapter III. Rings Section III.1. Rings and Homomorphisms

Note. In this section, we introduce rings and define "field." Rings will play a large role in our eventual study of the insolvability of the quintic because polynomials will be elements of rings.

Definition III.1.1. A *ring* is a nonempty set R together with two binary operations (denoted + and multiplication) such that:

- (i) (R, +) is an abelian group.
- (ii) (ab)c = a(bc) for all $a, b, c \in R$ (i.e., multiplication is associative).
- (iii) a(b+c) = ab + ac and (a+b)c = ac + bc (left and right distribution of multiplication over +).

If in addition,

(iv) ab = ba for all $a, b \in R$,

then R is a commutative ring. If R contains an element 1_R such that

(v) $1_R a = a 1_R = a$ for all $a \in R$,

then R is a ring with identity (or unity).

Note. An obvious "shortcoming" of rings is the possible absence of inverses under multiplication.

Note. We adopt the standard notation from (R, +). We denote the + identity as 0 and for $n \in \mathbb{Z}$ and $a \in R$, na denotes the obvious repeated addition (see Definition I.1.8).

Theorem III.1.2. Let R be a ring. Then

- (i) 0a = a0 = 0 for all $a \in R$.
- (ii) (-a)b = a(-b) = -(ab) for all $a, b \in R$.
- (iii) (-a)(-b) = ab for all $a, b \in R$.
- (iv) (na)b = a(nb) = n(ab) for all $n \in \mathbb{Z}$ and for all $a, b \in R$.
- (v) For all $a_i, b_j \in R$, $\left(\sum_{i=1}^n a_i\right) \left(\sum_{j=1}^m b_j\right) = \sum_{i=1}^n \sum_{j=1}^m a_i b_j.$

Definition III.1.3. A nonzero element a in the ring R is a *left* (respectively, *right*) zero divisor if there exists a nonzero $b \in R$ such that ab = 0 (respectively, ba = 0). A zero divisor is an element of R which is both a left and right zero divisor.

Lemma III.1.A. A ring has no zero divisors if and only if left or right cancellation hold in R (that is, for all $a, b, c \in R$ with $a \neq 0$, if either ab = ac or ba = ca then b = c). **Definition III.1.4.** An element a in a ring R with identity is *left invertible* (respectively, *right invertible*) if there exists $c \in R$ (respectively, $b \in R$) such that $ca = 1_R$ (respectively, $ab = 1_R$). The element c (respectively, b) is a *left* (respectively, *right*) *inverse* of a. An element $a \in R$ that is both left and right invertible is *invertible* and is called a *unit*.

Note III.1.A. If a has a left inverse c and a right inverse b then $ca = 1_R = ab$ and so $b = 1_R b = (ca)b = c(ab) = c1_R = c$. The set of all units in a ring R with identity forms a group under multiplication (Exercise III.1.A)—you have seen an example of this before when considering the group (\mathbb{R}^*, \cdot), for example.

Definition III.1.5. A commutative ring R with identity 1_R and no zero divisors is an *integral domain*. A ring D with identity $1_D \neq 0$ in which every nonzero element is a unit is a *division ring*. A *field* is a commutative division ring.

Note. A ring R with identity is a division ring if and only if the nonzero elements of R form a group under multiplication (Exercise III.1.B). Every field F is an integral domain since ab = 0 and $a \neq 0$ imply that $b = 1_F b = (a^{-1}a)b = a^{-1}(ab) = a^{-1}0 = 0$.

Example. The integers \mathbb{Z} form an integral domain. The ring $2\mathbb{Z}$ is a commutative ring without identity. Examples of fields are \mathbb{Q} , \mathbb{R} , and \mathbb{C} . The set of all $n \times n$ matrices with entries from \mathbb{Q} (or \mathbb{R} or \mathbb{C}) form a noncommutative ring with identity. The units here are the nonsingular matrices.

Example. For p prime, \mathbb{Z}_p is a field. If n is not prime, then \mathbb{Z}_n is a commutative ring with unity. The divisors of zero are those equivalence classes whose representatives, $1, 2, \ldots, n-1$, are not relatively prime with n.

Example. Let G be a multiplicative group and R a ring. We now define a ring R(G) called the group ring of G over R. Let R(G) be the additive abelian group $\sum_{g \in G} R$ (one copy of R for each $g \in G$) where we require all but finitely many entries in a "|G|-tuple" to be 0. So for $x \in R(G)$, say $x = \{r_g\}_{g \in G}$ where the nonzero r_g are $r_{g_1}, r_{g_2}, \ldots, r_{g_n}$, denote x as the formal sum

$$r_{g_1}g_1 + r_{g_2}g_2 + \dots + r_{g_n}g_n = \sum_{i=1}^n r_{g_i}g_i.$$

In the formal sum, we allow some of the r_{g_i} to be zero and some of the g_i to be repeated. So an element of R(G) can be written as a formal sum in different ways (for example, $r_{g_1}g_1 + 0g_2 = r_{g_1}g_1$ and $r_{g_1}g_1 + s_{g_1}g_1 = (r_{g_1} + s_{g_1})g_1$). We define addition on R(G) as

$$\sum_{i=1}^{n} r_{g_i} g_i + \sum_{i=1}^{n} s_{g_i} g_i = \sum_{i=1}^{n} (r_{g_i} + s_{g_i}) g_i$$

(where zero coefficients are inserted so that the formal sums involve exactly the same indices g_1, g_2, \ldots, g_n). Define multiplication on R(G) as

$$\left(\sum_{i=1}^n r_{g_i}g_i\right)\left(\sum_{j=1}^m s_{g_j}h_j\right) = \sum_{i=1}^n \sum_{j=1}^m (r_{g_i}s_{h_j})(g_ih_j).$$

Notice that $r_{g_i}s_{h_j}$ make sense since it is a product in ring R. Product g_ih_j makes sense since it is a product in multiplicative group G. We claim

• R(G) is a group under addition and multiplication as defined.

- R(G) is commutative if and only if both R and G are commutative.
- If R has identity 1_R and G has identity e then $1_R e$ is the identity of R(G).

Example. Let $S = \{1, i, j, k\}$. Let K be the additive abelian group $\mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$ and write the elements of K as formal sums $(a_0, a_1, a_2, a_3) = a_0 1 + a_1 i + a_2 j + a_3 k$. We often drop the "1" in " $a_0 1$ " and replace it with just a_0 . Addition in K is as expected:

$$(a_0+a_1i+a_2j+a_3k)+(b_0+b_1i+b_2j+b_3k) = (a_0+b_0)+(a_1+b_1)i+(a_2+b_2)j+(a_3+b_3)k.$$

We turn K into a ring by defining multiplication as

$$(a_0 + a_1i + a_2j + a_3k)(b_0 + b_1i + b_2j + b_3k) = (a_0b_0 - a_1b_1 - a_2b_2 - a_3b_3)$$

 $+(a_0b_1+a_1b_0+a_2b_3-a_3b_2)i+(a_0b_2+a_2b_0+a_3b_1-a_1b_3)j+(a_0b_3+a_3b_0+a_1b_2-a_2b_1)k.$

This product can be interpreted by considering:

- (i) multiplication in the formal sum is associative,
- (ii) ri = ir, rj = jr, rk = kr for all $r \in \mathbb{R}$,
- (iii) $i^2 = j^2 = k^2 = ijk = -1, ij = -ji = k, jk = -kj = i, ki = -ik = j.$

We claim that K is a noncommutative division ring where $(a_0 + a_1i + a_2j + a_3k)^{-1} = (a_0/d) - (a_1/d)i - (a_2/d)j - (a_3/d)k$ where $d = a_0^2 + a_1^2 + a_2^2 + a_3^2$. K is called the division ring of *real quarternions*. You may have encountered the quarternions as a multiplicative group of order 8 with elements $\pm 1, \pm i, \pm j, \pm k$. See my Introduction to Modern Algebra (MATH 4127/5127) notes on Section I.7. Generating Sets and

Cayley Digraphs. The real quarternions division ring may also be interpreted as a subring of the ring of all 2×2 matrices over \mathbb{C} (see Exercise III.1.8).

Note. In a ring, we use the usual notation na for repeated addition and a^n for repeated multiplication, where $n \in \mathbb{Z}$. Recall that for $k, n \in \mathbb{Z}$ with $0 \le k \le n$, the binomial coefficient is $\binom{n}{k} = \frac{n!}{(n-k)!k!}$.

Theorem III.1.6. Binomial Theorem.

Let R be a ring with identity, $n \in \mathbb{N}$, and $a, b, a_1, a_2, \ldots, a_s \in R$.

- (i) If ab = ba then $(a + b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$.
- (ii) If $a_i a_j = a_j a_i$ for all i and j, then

$$(a_1 + a_2 + \dots + a_s)^n = \sum \frac{n!}{i_1! i_2! \cdots i_s!} a_1^{i_1} a_2^{i_2} \cdots a_s^{i_s}$$

where the sum is over all s-tuples (i_1, i_2, \ldots, i_n) where $i_1 + i_2 \cdots + i_s = n$.

Definition III.1.7. Let R and S be rings. A function $f : R \to S$ is homomorphism of rings provided that for all $a, b \in R$ we have

$$f(a+b) = f(a) + f(b)$$
 and $f(ab) = f(a)f(b)$.

The kernel of a homomorphism of rings $f : R \to S$ is $\text{Ker}(f) = \{r \in R \mid f(r) = 0\}.$

Note. If $f: R \to S$ is a ring homomorphism where 1_R and 1_S are multiplicative identities in R and S respectively, then it is not necessary that $f(1_R) = 1_S$; see Exercises III.1.15 and III.1.16.

Note. Just as we did for groups, we can define for rings: monomorphism (one to one homomorphism), epimorphism (onto homomorphism), isomorphism, and automorphism.

Definition III.1.8. Let R be a ring. If there is a least positive integer n such that na = 0 for all $a \in R$, then R has *characteristic* n. If no such n exists, then R is said to have *characteristic zero*.

Note. The following result (part (ii)) shows that the characteristic of a ring with identity 1_R can by found by considering the identity only.

Theorem III.1.9. Let R be a ring with identity 1_R and characteristic n > 0.

- (i) If φ : Z → R is the map given by m → m1_R, then φ is a homomorphism of rings, with kernel ⟨n⟩ = {kn | k ∈ Z} = nZ.
- (ii) n is the least positive integer such that $n1_R = 0$.
- (iii) If R has no zero divisors (in particular, if R is an integral domain) then n is prime.

Theorem III.1.10. Every ring R may be embedded in a ring S with identity (that is, there is a one to one homomorphism mapping R into S). The ring S (which is not unique) may be chosen to be either of characteristic zero or of the same characteristic as R.

Revised: 2/7/2024