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Chapter III. Rings

Section III.1. Rings and Homomorphisms

Note. In this section, we introduce rings and define “field.” Rings will play a large

role in our eventual study of the insolvability of the quintic because polynomials

will be elements of rings.

Definition III.1.1. A ring is a nonempty set R together with two binary opera-

tions (denoted + and multiplication) such that:

(i) (R, +) is an abelian group.

(ii) (ab)c = a(bc) for all a, b, c ∈ R (i.e., multiplication is associative).

(iii) a(b + c) = ab + ac and (a + b)c = ac + bc (left and right distribution of

multiplication over +).

If in addition,

(iv) ab = ba for all a, b ∈ R,

then R is a commutative ring. If R contains an element 1R such that

(v) 1Ra = a1R = a for all a ∈ R,

then R is a ring with identity (or unity).

Note. An obvious “shortcoming” of rings is the possible absence of inverses under

multiplication.
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Note. We adopt the standard notation from (R, +). We denote the + identity as 0

and for n ∈ Z and a ∈ R, na denotes the obvious repeated addition (see Definition

I.1.8).

Theorem III.1.2. Let R be a ring. Then

(i) 0a = a0 = 0 for all a ∈ R.

(ii) (−a)b = a(−b) = −(ab) for all a, b ∈ R.

(iii) (−a)(−b) = ab for all a, b ∈ R.

(iv) (na)b = a(nb) = n(ab) for all n ∈ Z and for all a, b ∈ R.

(v) For all ai, bj ∈ R, (
n∑

i=1

ai

)(
m∑

j=1

bj

)
=

n∑
i=1

m∑
j=1

aibj.

Definition III.1.3. A nonzero element a in the ring R is a left (respectively, right)

zero divisor if there exists a nonzero b ∈ R such that ab = 0 (respectively, ba = 0).

A zero divisor is an element of R which is both a left and right zero divisor.

Lemma III.1.A. A ring has no zero divisors if and only if left or right cancellation

hold in R (that is, for all a, b, c ∈ R with a 6= 0, if either ab = ac or ba = ca then

b = c).
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Definition III.1.4. An element a in a ring R with identity is left invertible (re-

spectively, right invertible) if there exists c ∈ R (respectively, b ∈ R) such that

ca = 1R (respectively, ab = 1R). The element c (respectively, b) is a left (respec-

tively, right) inverse of a. An element a ∈ R that is both left and right invertible

is invertible and is called a unit.

Note III.1.A. If a has a left inverse c and a right inverse b then ca = 1R = ab and

so b = 1Rb = (ca)b = c(ab) = c1R = c. The set of all units in a ring R with identity

forms a group under multiplication (Exercise III.1.A)—you have seen an example

of this before when considering the group (R∗, ·), for example.

Definition III.1.5. A commutative ring R with identity 1R and no zero divisors is

an integral domain. A ring D with identity 1D 6= 0 in which every nonzero element

is a unit is a division ring. A field is a commutative division ring.

Note. A ring R with identity is a division ring if and only if the nonzero elements of

R form a group under multiplication (Exercise III.1.B). Every field F is an integral

domain since ab = 0 and a 6= 0 imply that b = 1F b = (a−1a)b = a−1(ab) = a−10 = 0.

Example. The integers Z form an integral domain. The ring 2Z is a commutative

ring without identity. Examples of fields are Q, R, and C. The set of all n × n

matrices with entries from Q (or R or C) form a noncommutative ring with identity.

The units here are the nonsingular matrices.
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Example. For p prime, Zp is a field. If n is not prime, then Zn is a commu-

tative ring with unity. The divisors of zero are those equivalence classes whose

representatives, 1, 2, . . . , n− 1, are not relatively prime with n.

Example. Let G be a multiplicative group and R a ring. We now define a ring

R(G) called the group ring of G over R. Let R(G) be the additive abelian group∑
g∈G R (one copy of R for each g ∈ G) where we require all but finitely many

entries in a “|G|-tuple” to be 0. So for x ∈ R(G), say x = {rg}g∈G where the

nonzero rg are rg1
, rg2

, . . . , rgn
, denote x as the formal sum

rg1
g1 + rg2

g2 + · · ·+ rgn
gn =

n∑
i=1

rgi
gi.

In the formal sum, we allow some of the rgi
to be zero and some of the gi to be

repeated. So an element of R(G) can be written as a formal sum in different ways

(for example, rg1
g1 + 0g2 = rg1

g1 and rg1
g1 + sg1

g1 = (rg1
+ sg1

)g1). We define

addition on R(G) as

n∑
i=1

rgi
gi +

n∑
i=1

sgi
gi =

n∑
i=1

(rgi
+ sgi

)gi

(where zero coefficients are inserted so that the formal sums involve exactly the

same indices g1, g2, . . . , gn). Define multiplication on R(G) as(
n∑

i=1

rgi
gi

)(
m∑

j=1

sgj
hj

)
=

n∑
i=1

m∑
j=1

(rgi
shj

)(gihj).

Notice that rgi
shj

make sense since it is a product in ring R. Product gihj makes

sense since it is a product in mulitplicative group G. We claim

• R(G) is a group under addition and multiplication as defined.
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• R(G) is commutative if and only if both R and G are commutative.

• If R has identity 1R and G has identity e then 1Re is the identity of R(G).

Example. Let S = {1, i, j, k}. Let K be the additive abelian group R⊕R⊕R⊕R

and write the elements of K as formal sums (a0, a1, a2, a3) = a01 + a1i + a2j + a3k.

We often drop the “1” in “a01” and replace it with just a0. Addition in K is as

expected:

(a0+a1i+a2j+a3k)+(b0+b1i+b2j+b3k) = (a0+b0)+(a1+b1)i+(a2+b2)j+(a3+b3)k.

We turn K into a ring by defining multiplication as

(a0 + a1i + a2j + a3k)(b0 + b1i + b2j + b3k) = (a0b0 − a1b1 − a2b2 − a3b3)

+(a0b1+a1b0+a2b3−a3b2)i+(a0b2+a2b0+a3b1−a1b3)j+(a0b3+a3b0+a1b2−a2b1)k.

This product can be interpreted by considering:

(i) multiplication in the formal sum is associative,

(ii) ri = ir, rj = jr, rk = kr for all r ∈ R,

(iii) i2 = j2 = k2 = ijk = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

We claim that K is a noncommutative division ring where (a0+a1i+a2j+a3k)−1 =

(a0/d) − (a1/d)i− (a2/d)j − (a3/d)k where d = a2
0 + a2

1 + a2
2 + a2

3. K is called the

division ring of real quarternions. You may have encountered the quarternions as a

multiplicative group of order 8 with elements ±1,±i,±j,±k. See my Introduction

to Modern Algebra (MATH 4127/5127) notes on Section I.7. Generating Sets and

http://faculty.etsu.edu/gardnerr/4127/notes/I-7.pdf
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Cayley Digraphs. The real quarternions division ring may also be interpreted as a

subring of the ring of all 2× 2 matrices over C (see Exercise III.1.8).

Note. In a ring, we use the usual notation na for repeated addition and an for

repeated multiplication, where n ∈ Z. Recall that for k, n ∈ Z with 0 ≤ k ≤ n, the

binomial coefficient is
(
n
k

)
= n!

(n−k)!k! .

Theorem III.1.6. Binomial Theorem.

Let R be a ring with identity, n ∈ N, and a, b, a1, a2, . . . , as ∈ R.

(i) If ab = ba then (a + b)n =
∑n

k=0

(
n
k

)
akbn−k.

(ii) If aiaj = ajai for all i and j, then

(a1 + a2 + · · ·+ as)
n =

∑ n!

i1!i2! · · · is!
ai1

1 ai2
2 · · · ais

s

where the sum is over all s-tuples (i1, i2, . . . , in) where i1 + i2 · · ·+ is = n.

Definition III.1.7. Let R and S be rings. A function f : R → S is homomorphism

of rings provided that for all a, b ∈ R we have

f(a + b) = f(a) + f(b) and f(ab) = f(a)f(b).

The kernel of a homomorphism of rings f : R → S is Ker(f) = {r ∈ R | f(r) = 0}.

http://faculty.etsu.edu/gardnerr/4127/notes/I-7.pdf
http://faculty.etsu.edu/gardnerr/4127/notes/I-7.pdf


III.1. Rings and Homomorphism 7

Note. If f : R → S is a ring homomorphism where 1R and 1S are multiplicative

identities in R and S respectively, then it is not necessary that f(1R) = 1S; see

Exercises III.1.15 and III.1.16.

Note. Just as we did for groups, we can define for rings: monomorphism (one

to one homomorphism), epimorphism (onto homomorphism), isomorphism, and

automorphism.

Definition III.1.8. Let R be a ring. If there is a least positive integer n such that

na = 0 for all a ∈ R, then R has characteristic n. If no such n exists, then R is

said to have characteristic zero.

Note. The following result (part (ii)) shows that the characteristic of a ring with

identity 1R can by found by considering the identity only.

Theorem III.1.9. Let R be a ring with identity 1R and characteristic n > 0.

(i) If ϕ : Z → R is the map given by m 7→ m1R, then ϕ is a homomorphism of

rings, with kernel 〈n〉 = {kn | k ∈ Z} = nZ.

(ii) n is the least positive integer such that n1R = 0.

(iii) If R has no zero divisors (in particular, if R is an integral domain) then n is

prime.
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Theorem III.1.10. Every ring R may be embedded in a ring S with identity

(that is, there is a one to one homomorphism mapping R into S). The ring S

(which is not unique) may be chosen to be either of characteristic zero or of the

same characteristic as R.
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