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Section III.2. Ideals

Note. Ideals are to rings as normal subgroups are to groups. We will use ideals

to define quotient rings. We’ll state isomorphism theorems, define direct products,

and prove the Chinese Remainder Theorem.

Definition III.2.1. Let R be a ring and S a nonempty subset of R that is closed

under the operations of addition and multiplication in R. If S is itself a ring under

these operations then S is a subring of R. A subring I of R is a left ideal provided

r ∈ R and x ∈ I implies rx ∈ I;

I is a right ideal provided

r ∈ R and x ∈ I implies xr ∈ I;

I is an ideal if it is both a left and right ideal.

Note. If f : R → S is a homomorphism of rings then (as we’ll see in Theorem

III.2.8 and as we’d expect given our approach to quotient groups) Ker(f) is an

ideal in R and Im(f) is a subring of S. For each n ∈ Z, 〈n〉 is an ideal in Z. For

any ring R, two ideals are the trivial ideal {0} and the improper ideal R.

Note. Let D be a division ring and R the ring of n × n matrices over D. Let Ik

be the set of all matrices that have zero entries except possibly in column k. Then

Ik is a left ideal (but not a right ideal) of R (because of the row × column product
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of matrices). Let Jk consists of those matrices with zero entries except possibly in

row k. Then Jk is a right ideal of R (but not a left ideal). Ring R has no “proper”

two sided ideals, however (see Exercise III.2.9).

Note III.2.A. As with subgroups, we call ideal I proper in R if I 6= {0} and

I 6= R. Notice that if R has identity (or “unity”) 1R and if 1R is in ideal I then

I = R. In fact, if u is a unit in R and u ∈ I, then 1R = uu−1 ∈ I and so I = R.

If 1R /∈ I then I 6= R. So we can say that a left (or right) nonzero ideal I of ring

R with identity 1R is proper if and only if I contains no units of R. So a division

ring (in which every nonzero element is a unit) has no proper left (or right) ideals.

Theorem III.2.2. A nonempty subset I of a ring R is a left (respectively, right)

ideal if and only if for all a, b ∈ I and r ∈ R:

(i) a, b ∈ I implies a− b ∈ I, and

(ii) a ∈ I, r ∈ R implies ra ∈ I (respectively, ar ∈ I).

Note. The following is a very straightforward implication of Theorem II.2.2.

Corollary III.2.3. Let {Ai | i ∈ I} be a family of left (respectively, right) ideals

in a ring R. Then ∩i∈IAi is also a left (respectively, right) ideal of R.
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Definition III.2.4. Let X be a subset of a ring R. Let {Ai | i ∈ I} be the family

of all left (respectively, right) ideals in R which contains X. Then ∩i∈IAi is the

left (respectively, right) ideal generated by X, denoted (X). The elements of X are

generators of (X). If |X| is finite then (X) is finitely generated. An ideal generated

by a single element x, denoted (x), is a principal ideal. A principal ideal ring is a

ring in which every ideal is principal. A principal ideal ring which is an integral

domain is a principal ideal domain (or “PID”).

Theorem III.2.5. Let R be a ring a ∈ R and X ⊂ R.

(i) The principal ideal (a) consists of all elements of the form

ra + as + na +
m∑

i=1

riasi

where r, s, ri, si ∈ R, m ∈ N ∪ {0}, and n ∈ Z.

(ii) If R has an identity (“unity”) then

(a) =

{
n∑

i=1

riasi | ri, si ∈ R, n ∈ N

}
.

(iii) If a is in the center of R, C(R) = {c ∈ R | cr = rc for all r ∈ R}, then

(a) = {ra + na | r ∈ R, n ∈ Z}.

(iv) Ra = {ra | r ∈ R} (respectively, aR = {ar | r ∈ R}), is a left (respectively,

right) ideal in R (which may not contain a). If R has an identity, then a ∈ Ra

and a ∈ aR.

(v) If R has an identity and a is in the center of R, then Ra = (a) = aR.

(vi) If R has an identity and X is the center of R, then the ideal (X) consists of

all finite sums r1a1 + r2a2 + · · ·+ rnan where n ∈ N∪{0}, ri ∈ R, and ai ∈ X.
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Definition. Let A1, A2, . . . , An be nonempty subsets of ring R. Define

A1 + A2 + · · ·+ An = {a1 + a2 + · · ·+ an | ai ∈ Ai for i = 1, 2, . . . , n}.

If AB are nonempty subsets of R define

AB = {a1b1 + a2b2 + · · ·+ anbn | ai ∈ Ai, bi ∈ Bi, n ∈ N}.

If A1, A2, . . . , An are nonempty, define

A1A2 · · ·An = {a1
1a

1
2 · · · a1

n + a2
1a

2
2 · · · a2

n + · · ·+ am
1 am

2 · · · am
n | aj

i ∈ Ai, m ∈ N}.

We denote {a}B = aB, A{b} = Ab, and AA · · ·A = An.

Theorem III.2.6. Let A1, A2, . . . , An, B, C be left (respectively, right) ideals in a

ring R.

(i) A1 + A2 + · · ·+ An and A1A2 · · ·An are left (respectively, right) ideals.

(ii) (A + B) + C = A + (B + C).

(iii) (AB)C = ABC = A(BC).

(iv) B(A1 +A2 + · · ·+An) = BA1 +BA2 + · · ·+BAn and (A1 +A2 + · · ·+An)C =

A1C + A2C + · · ·AnC.

Note III.2.B. For R a ring, 〈R, +〉 is an abelian group and an ideal I of R

determines a normal subgroup 〈I, +〉 of 〈R, +〉. So the quotient group R/I exists.

In fact, the cosets in R/I can be multiplied in the obvious way (by representatives)

and so R/I has a ring structure.
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Theorem III.2.7. Let R be a ring and I an ideal of R. Then the additive quotient

group R/I is a ring with multiplication given by

(a + I)(b + I) = ab + I.

If R is commutative or has an identity, then the same is true of R/I.

Note. The following result is analogous to Theorem I.5.5. You might recall that

Fraleigh initially sets up quotient groups using kernels of homomorphisms. See my

online notes for Introduction to Modern Algebra (MATH 4127/5127) on Section

III.13. Homomorphisms and Section 14. Factor Groups. Also, check out the front

of the ETSU Abstract Algebra Club t-shirt:

https://faculty.etsu.edu/gardnerr/4127/notes/III-13.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/III-13.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/III-14.pdf
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Theorem III.2.8. If f : R → S is a homomorphism of rings then the kernel of f

is an ideal in R. Conversely if I is an ideal in R then the map π : R → R/I given

by r 7→ r + I is an onto homomorphism (epimorphism) of rings with kernel I.

Note. We now present several results for “quotient rings” which are parallel to

results from Section I.5 for quotient groups.

Theorem III.2.9. If f : R → S is a homomorphism of rings and I is an ideal of

R which is contained in the kernel of f , then there is a unique homomorphism of

rings f : R/I → S such that f(a + I) = f(a) for all a ∈ R. Im(f) = Im(f) and

Ker(f) = Ker(f)/I. f is an isomorphism if and only if f is an epimorphism and

I = Ker(f).

Corollary III.2.10. First Isomorphism Theorem.

If f : R → S is a homomorphism of rings, then f induces an isomorphism of rings

R/Ker(f) ∼= Im(f).

Corollary III.2.11. If f : R → S is a homomorphism of rings, I is an ideal in

R, and J is an ideal in S such that f(I) ⊂ J , then f induces a homomorphism of

rings f : R/I → S/J , given by a + I 7→ f(s) + J . f is an isomorphism if and only

if Im(f) + J = S and f−1(J) ⊂ I. In particular, if f is an epimorphism such that

f(I) = J and Ker(f) ⊂ I, then F is an isomorphism.
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Theorem III.2.12. Let I and J be ideals in a ring R.

(i) Second Isomorphism Theorem.

There is an isomorphism of rings I/(I ∩ J) ∼= (I + J)/J .

(ii) Third Isomorphism Theorem.

If I ⊂ J , then J/I is an ideal in R/I and there is an isomorphism of rings

(R/I)/(J/I) ∼= R/J .

Note. The four previous results follow easily once we quote the corresponding

result for quotient groups from Section I.5. Then we need only verify the homo-

morphism property for multiplication. The correspondences are:

Ring Result Group Result

Theorem III.2.9 Theorem I.5.6

Corollary III.2.10 Corollary I.5.7

Corollary III.2.11 Corollary I.5.8

Theorem III.2.12(i) Corollary I.5.9

Theorem III.2.12(ii) Corollary I.5.10

Theorem III.2.13. If I is an ideal in a ring R, then there is a one-to-one corre-

spondence (i.e., bijection) between the set of all ideals of R which contain I and

the set of all ideals of R/I, given by J 7→ J/I. Hence every ideal in R/I is of the

form J/I where J is an ideal of R which contains I.
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Definition III.2.14. An ideal P in a ring R is prime if P 6= R and for any ideals

A, B in R

AB ⊂ P implies A ⊂ P or B ⊂ P.

Note. Exercise III.2.14 gives some classification of prime ideals:

Exercise III.2.14. If P is an ideal in (not necessarily commutative) ring R, then

the following conditions are equivalent:

(a) P is a prime ideal.

(b) If r, s ∈ R are such that rRs ⊂ P , then r ∈ P or s ∈ P .

(c) If (r) and (s) are principal ideals of R such that (r)(s) ⊂ P , then r ∈ P or

s ∈ P .

(d) If U and V are right ideals in R such that UV ⊂ P , then U ⊂ P or V ⊂ P .

(e) If U and V are left ideals in R such that UV ⊂ P , then U ⊂ P or V ⊂ P .

Note. The following result gives a classification of prime ideals in a commutative

ring.

Theorem III.2.15. If P is an ideal in a ring R such that P 6= R and for all

a, b ∈ R

ab ∈ P implies a ∈ P or b ∈ P (1)

then P is prime. Conversely if P is prime and R is commutative, then P satisfies

condition (1).
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Note. Exercise III.2.9(b) shows (by a general example) that commutativity is

necessary in the converse part of Theorem III.2.15.

Note. Another reason for the terminology “prime” ideal is inspired by considering

the prime ideal (p) for prime integer p in ring Z. Then

ab ∈ (p) =⇒ p | ab =⇒ p | a or p | b =⇒ a ∈ (p) or b ∈ (p).

Theorem III.2.16. In a commutative ring R with identity 1R 6= 0, an ideal P is

prime if and only if the quotient ring R/P is an integral domain.

Definition III.2.17. An ideal M in a ring R is said to be maximal if M 6= R and

for every ideal N such that M ⊂ N ⊂ R, either N = M or N = R. A maximal left

or maximal right ideal is similarly defined.

Theorem III.2.18. In a nonzero ring R with identity, maximal ideals always

exist. In fact, every ideal in R (except R itself) is contained in a maximal ideal.

This also holds for left ideals and right ideals.

Note. Theorem III.2.18 is further evidence for the desirability of accepting the Ax-

iom of Choice and its logical equivalent, Zorn’s Lemma. It guarantees the existence

of maximal ideals.
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Theorem III.2.19. If R is a commutative ring such that RR = R2 = R (in

particular, if R has an identity) then every maximal ideal M in R is prime.

Theorem III.2.20. Let M be an ideal in a ring R with identity 1R 6= 0.

(i) If M is maximal and R is commutative then the quotient ring R/M is a field.

(ii) If the quotient ring R/M is a division ring, then M is maximal.

Note III.2.C. Since a field is an example of a division ring, Theorem III.2.20

implies that for M an ideal in ring R with identity 1R 6= 0, the quotient ring R/M

is a filed if and only if M is a maximal ideal. As shown in Exercise III.2.19 with an

example, Theorem III.2.20(i) is false if R does not have an (multiplicative) identity.

Note. The following result gives conditions equivalent to a commutative ring being

a field.

Corollary III.2.21. The following conditions on a commutative ring R with

identity 1R 6= 0 are equivalent.

(i) R is a field.

(ii) R has no proper ideals.

(iii) {0} is a maximal ideal in R.

(iv) Every nonzero homomorphism of rings R → S is injective (a “monomor-

phism”).
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Note. The following result allows us to define the (external) direct product of a

family of rings.

Theorem III.2.22. Let {Ri | i ∈ I} be a nonempty family of rings and
∏

i∈I Ri

the direct product of additive abelian groups Ri.

(i)
∏

i∈I Ri is a ring with multiplication defined by {ai}i∈I{bi}i∈I = {aibi}i∈I .

(ii) If Ri has an identity (respectively, is commutative) for every i ∈ I, then
∏

i∈I Ri

has an identity (respectively, is commutative).

(iii) For each k ∈ I the canonical projection πk :
∏

i∈I Ri → Rk given by {ai} 7→ ak

is an epimorphism (onto) of rings.

(iv) For each k ∈ I the canonical injection ιk : Rk →
∏

i∈I Ri, given by ak 7→ {ai}

(where ai = 0 for i 6= k) is a monomorphism (one to one) of rings.

Definition. Let {Ri | i ∈ I} be a family of rings.
∏

i∈I Ri as given in Theorem

III.2.22 is the (external) direct product of the family.

Note. If {Ri | i ∈ I} is a family of rings and for each i ∈ I, Ai is an ideal in Ri,

then “it is easy to see” (Hungerford, page 130) that
∏

i∈I Ai is an ideal in
∏

i∈I Ri.

If the index set I is finite and each Ri has an identity, then every ideal in
∏

i∈I Ri

is of the form
∏

i∈I Ai with Ai an ideal in Ri (see Exercise III.2.22).
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Theorem III.2.23. Let {Ri | i ∈ I} be a nonempty family of rings S a ring

and {ϕi : S → Ri | i ∈ I} a family of homomorphisms of rings. Then there

is a unique homomorphism of rings ϕ : S →
∏

i∈I Ri such that πiϕ = ϕi for all

i ∈ I where πi is the canonical projection of Theorem III.2.22. The ring
∏

i∈I Ri is

uniquely determined up to isomorphism by this property. In other words
∏

i∈I Ri

is a product in the category of rings.

Theorem III.2.24. Let A1, A2, . . . , An be ideals in a ring R such that

(i) A1 + A2 + · · ·+ An = R, and

(ii) for each k, with 1 ≤ k ≤ n, Ak ∩ (A1 +A2 + · · ·+Ak−1 +Ak+1 + · · ·An) = {0}.

Then there is a ring isomorphism R ∼= A1 × A2 × · · · × An.

Definition. If A1, A2, . . . , An are ideals of ring R satisfying the hypotheses of

Theorem III.2.24 then R is a (internal) direct product of the ideals Ai.

Note. There is a subtle distinction between internal and external direct products;

one not-so-subtle difference is that an external direct product is defined over any

family of rings, whereas an internal direct product is only defined over a finite

collection of ideals in a ring (recall that ideals are themselves rings). If R “is” the

internal direct product of ideals A1, A2, . . . , An then each Ai is an ideal contained

in R but the Ai’s are not contained in A1 ×A2 × · · · ×An, only isomorphic images

of the Ai’s are contained in the product (under the canonical injection of Theorem

II.2.22(iv)).
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Note. We now explore the Chinese Remainder Theorem which will be needed in

Chapters VIII and IX when a detailed study of rings is continued (so we can skip

the rest of this chapter if we are pushed for time).

Definition. Let A be an ideal in a ring R and a, b ∈ R. Then a and b are congruent

modulo A (denoted a ≡ b (mod A)) if a− b ∈ A.

Theorem III.2.25. Chinese Remainder Theorem.

Let A1, A2, . . . , An be ideals in a ring R such that R2 + Ai = R for all i and

Ai + Aj = R for all i 6= j. If b1, b2, . . . , bn ∈ R, then there exists b ∈ R such that

b ≡ bi(mod Ai) for i = 1, 2, . . . , n.

Furthermore, b is uniquely determined up to congruence modulo the ideal

A1 ∩ A2 ∩ · · · ∩ An.

Note. The Chinese Remainder Theorem is applicable to questions in elementary

number theory as follows. Suppose we are looking for an integer x which is congru-

ent to 3 modulo 5, 2 modulo 7, and 5 modulo 11. Since 5, 7, and 11 are relatively

prime, then if we find one such integer x we can find others by considering those

integers congruent to x modulo 5×7×11 = 385. The Chinese Remainder Theorem

does not say how to find x, but merely insures that such x exists. In this example,

x = 93 (or any other integer equivalent to 93 modulo 385). The Chinese Remain-

der Theorem is explored in Introduction to Number Theory (MATH 3120); see my
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online notes for that class on Section 5. Linear Congruences; see Theorem 5.2. You

can find calculators online which find the smallest positive x; see for example David

Wees’ Chinese Remainder Theorem Calculator (accessed 1/21/2024).

Corollary III.2.26. Let m1, m2, . . . ,mn be positive integers such that (mi, mj) =

1 for i 6= j. If b1, b2, . . . , bn are any integers, then the system of congruences

x ≡ b1(mod m1), x ≡ b2(mod m2), . . . , x ≡ bn(mod mn)

has an integral solution that is uniquely determined modulo m = m1m2 · · ·mn.

Note. The earliest example of a question involving the ideas of Corollary III.2.26

appear in Sun Zi’s Sun Zi suanjing (“Master Sun’s Mathematical Manual”). Sun

Zi is though to have lived from about 400 to 460. See the MacTutor webpage on

the Chinese mathematics (accessed 1/21/2024). This is the reason the result is

called the “Chinese Remainder Theorem,” (though Hungerford’s timeline of “the

first century A.D.” for the result is mysterious).

Corollary III.2.27. If A1, A2, . . . , An are ideals in a ring R, then there is a

monomorphism of rings

θ : R/(A1 ∩ A2 ∩ · · · ∩ An) → R/A1 ×R/A2 × · · · ×R/An.

If R2 + Ai = R for all i and Ai + Aj = R for all i 6= j, then θ is an isomorphism of

rings.
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