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Section III.3. Supplement: The Gaussian Integers

Note. In this supplement, we define the Gaussian integers, show they form an

integral domain. We define a multiplicative norm and use this to prove that the

Gaussian integers form an integral domain. Our main references for this supplement

are John Fraleigh’s A First Course In Abstract Algebra, 7th edition (Addison-

Wesley, 2003) and Thomas Hungerford’s Algebra (Springer-Verlag, 1974).

Note III.3.GI.A. We now give a brief description of “reciprocity,” which was

the inspiration for the development of the Gaussian integers. This note is based

on Isreal Kleiner’s “From Numbers to Rings: The Early History of Ring Theory,”

Elemente der Mathematik, 53, 18–35 (1998); this sources is available online on the

European Mathematical Society Press website (accessed 3/19/2024).

Image from the MacTutor biography webpage of Gauss (accessed 3/19/2024)

https://ems.press/content/serial-article-files/45056
https://mathshistory.st-andrews.ac.uk/Biographies/Gauss/
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Solving polynomial equations of the form

amxm + am−1x
m−1 + · · ·+ a2x

2 + a1x + a0 ≡ 0 (mod n),

where ai ∈ Z, plays a role in number theory. The case of m = 2 (i.e., the quadratic)

was dealt with by Karl F. Gauss (April 30, 1777–February 23, 1855). In his famous

1801 book Disquisitiones Arithmeticae, Gauss showed that the quadratic case of

solving a2x
2 + a1x + a0 ≡ 0 (mod n) requires only consideration of the congruence

x2 ≡ q (mod p) where p and q are primes (the cases of odd primes and even primes

handled separately). Gauss proved that x2 ≡ q (mod p) is solvable if and only if

x2 ≡ p (mod q), unless p ≡ q ≡ 3 (mod 4) in which case x2 ≡ q (mod p) is solvable

if and only if x2 ≡ p (mod q) is not solvable. This is Gauss’ Quadratic Reciprocity

Law. This is stated and proved in Elementary Number Theory (MATH 3120);

see my online notes for that class on Section 12. Quadratic Reciprocity and notice

Theorem 12.4, The Quadratic Reciprocity Theorem (beware that this expressed in

terms of Legendre symbols of the forms (p/q) and (q/p); these are not quotients,

and are defined in Section 11. Quadratic Congruences).

Image from the MacTutor biography webpage of Jacobi and the MacTutor

biography webpage of Eisenstein (accessed 3/19/2024)

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-12.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-11.pdf
https://mathshistory.st-andrews.ac.uk/Biographies/Jacobi/
https://mathshistory.st-andrews.ac.uk/Biographies/Eisenstein/
https://mathshistory.st-andrews.ac.uk/Biographies/Eisenstein/
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This initial work lead to the study of more general “reciprocity relations” between

the solvability of xm ≡ q(mod p) and xm ≡ p (mod q) for m > 2. Carl Ja-

cobi (December 10, 1804–February 18, 1851) and Ferdinand Eisenstein (April 16,

1823–October 1852) considered cubic reciprocity (Jacobi in a paper of 1827, and

Eisenstein in three papers of 1844–45). In the process, they (primarily Eisenstein)

considered the ring Z[ρ] = {a + bρ | a, b ∈ Z} where ρ = (−1 + i
√

3)/2 = e2πi/3

(so that ρ3 = 1). This is now known as the Eisenstein integers. The Eisenstein

integers form a unique factorization domain and the units are ±1, ±ρ, ±ρ2. With

this tool, they formulated the cubic reciprocity law (as did Gauss, though he never

published his result). Gauss considered quartic reciprocity in two papers. The

first was “Theoria Residuorum Biquadraticorum, Commentatio Prima,” Commen-

tationes Societatis Regiae Scientiarum Gottingensis recentiores, 6, 25–56 (April 5,

1825), and the second was “Theoria Residuorum Biquadraticorum, Commentatio

Secunda,” Commentationes Societatis Regiae Scientiarum Gottingensis recentiores,

7, 89–148 (April 15, 1831). Copies of these (in Latin) are online on the HathiTrust

website for the 1825 paper and the HathiTrust website for the 1831 paper. It was

in the second of these two papers on quartic reciprocity (“Residuorum Biquadrati-

corum”) that Gauss introduced the Gaussian integers: Z[i] = {a + bi | a, b ∈ Z}. It

is straightforward to show that the Gaussian integers form a subring of C (and so

form a commutative ring with identity). Since C has no zero divisors, then neither

does Z[i]. That is, the Gaussian integers form an integral domain. In summary, we

have the following.

https://babel.hathitrust.org/cgi/pt?id=mdp.39015073697198&seq=249
https://babel.hathitrust.org/cgi/pt?id=mdp.39015073697198&seq=249
https://babel.hathitrust.org/cgi/pt?id=mdp.39015073697180&view=1up&seq=285
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Theorem A. The Gaussian integers, Z[i] = {a + bi | a, b ∈ Z}, form an integral

domain.

Note. We now introduce “multiplicative norms,” which we will use to establish

certain properties of the Gaussian integers. Most of this material is based on

Fraleigh’s book.

Definition. (Fraleigh’s Definition 47.6) Let D be an integral domain. A multi-

plicative norm N on D is a function N : D → Z such that the following conditions

are satisfied:

1. N(α) = 0 if and only if α = 0.

2. N(αβ) = N(α)N(β) for all α, β ∈ D.

Note III.3.GI.B. A “multiplicative norm” N on an integral domain need not be

a norm is the usual sense (as seen in Linear Algebra or Analysis), because we do

not require that N is nonnegative. Notice that any ring with such a mapping N

defined on it (which satisfies the two given conditions) cannot have zero divisors.

Note. The usual norm on C is the modulus of each complex number: |z| = |a+ib| =
√

a2 + b2. This is shown to be a norm in Complex Variables (MATH 4337/5337) as

an exercise from Section 1.4. Vectors and Moduli and a proof is given in Complex

Analysis 1 (MATH 5510) in I.3. The Complex Plane (see Theorem I.3.A). This

https://faculty.etsu.edu/gardnerr/5337/notes/Chapter1-4.pdf
https://faculty.etsu.edu/gardnerr/5510/notes/I-3.pdf
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can be used to define a multiplicative norm on the Gaussian integers. We define

multiplicative norm N on Z[i] as N(a + bi) = |a + bi|2 = a2 + b2. The next result

allows us to find the Gaussian integers which are units.

Theorem B. (Fraleigh’s Theorem 47.7) If D is an integral domain with a mul-

tiplicative norm N , then N(1D) = 1 and |N(u)| = 1 for every unit u ∈ D. If,

furthermore, every α satisfying |N(α)| = 1 is a unit in D, then an element π ∈ D

with |N(π)| = p, for a prime p ∈ Z, is an irreducible of D.

Note III.3.GI.C. Theorem B let’s us find the units of Z[i] using the multiplicative

norm N . We simply need to find all Gaussian integers a+ bi such that N(a+ bi) =

a2 + b2 = 1. Since a, b ∈ Z then we must have either a = ±1 and b = 0, or

a = 0 and b = ±1. So the only units are 1, −1, i, and −i. Now every α ∈ Z[i]

such that |N(α)| = 1 is a unit of Z[i] (since the only such α are 1, −1, i, −i), so

Theorem B implies that any π ∈ Z[i] such that |N(π)| = p where p is prime in Z,

is irreducible in Z[i]. This may not allow us to classify the irreducible Gaussian

integers, but we can observe, for example, that 5 ∈ Z[i] is not irreducible. We have

5 = (1 + 2i)(1 − 2i) and, since N(1 + 2i) = N(1 − 2i) = 12 + 22 = 5 (and 5 is

prime in Z), 1 + 2i and 1 − 2i are irreducible. That is, 5 = (1 + 2i)(1 − 2i) is a

factorization of 5 into irreducibles. We now shift over to material from Hungerford.

Note. A different ring is considered in Hungerford’s Exercise III.3.3 and also

analyzed using a multiplicative norm. Let R be the subring {a + b
√

10 | a, b ∈ Z}
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of the field of real numbers. As claimed in my online notes for Section III.3.

Factorization in Commutative Rings; see Note III.3.B. Define N : R → Z as

N(a + b
√

10) = (a + b
√

10)(a− b
√

10) = a2 − 10b2.

Lemma A. (Hungerford’s Exercise III.3.3(a)) With R = {a+b
√

10 | a, b ∈ Z} and

N : R → Z as N(a + b
√

10) = (a + b
√

10)(a− b
√

10) = a2 − 10b2, we have that N

is a multiplicative norm on R.

Lemma B. (Hungerford’s Exercise III.3.3(b)) With R = {a+b
√

10 | a, b ∈ Z} and

N : R → Z as N(a+ b
√

10) = a2−10b2, u is a unit in R if and only if |N(u)| = ±1.

Note. By Lemma B, we have that 3+
√

10 is a unit because N(3+
√

10) = 9−10 =

−1. In fact, the inverse of 3 +
√

10 is −3 +
√

10 since (3 +
√

10)(−3 +
√

10) =

−(3 +
√

10)(3−
√

10) = 1.

Lemma C. (Hungerford’s Exercise III.3.3(c)) With R = {a+ b
√

10 | a, b ∈ Z} and

N : R → Z as N(a + b
√

10) = a2 − 10b2, we have that 2, 3, 4 +
√

10, and 4−
√

10

are irreducible elements of R.

Lemma D. (Hungerford’s Exercise III.3.3(d)) With R = {a+b
√

10 | a, b ∈ Z} and

N : R → Z as N(a + b
√

10) = a2 − 10b2, we have that 2, 3, 4 +
√

10, and 4−
√

10

are not prime elements of R.

https://faculty.etsu.edu/gardnerr/5410/notes/III-3.pdf
https://faculty.etsu.edu/gardnerr/5410/notes/III-3.pdf
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Note. We saw in Example III.3.A that in the ring Zn, where n ≡ 2 (mod 4),

2̄ is prime but not irreducible. Lemmas C and D show that, in R, there are

irreducibles that are not prime. So, in general, irreducibility and primeness are

distinct properties.

Theorem C. (Hungerford’s Exercise III.3.4) Let R = {a + b
√

10 | a, b ∈ Z} and

N : R → Z as N(a + b
√

10) = a2 − 10b2. Then a and b are associates if and only if

|N(a)| = |N(b)|. Every element of R can be factored into a product of irreducibles,

though this factorization need not be unique (in the sense of Definition 3.5(ii)).

Note III.3.GI.D. Theorem C shows that even though every element of R can be

factored into a product of irreducibles, the factorization may not be unique. We can

establish this by example from Lemma C. Notice that 6 = 2·3 = (4+
√

10)(4−
√

10)

where 2, 3, 4 −
√

10, and 4 +
√

10 are irreducible. However, since N(2) = 4,

N(3) = 9, N(4−
√

10) = 6, and N(4 +
√

10) = 6 then by Theorem C neither of 2

and 3 is an associate of 4−
√

10 or 4 +
√

10. That is, these factorizations of 6 into

products of irreducibles are not the same in the sense of Definition III.3.5(ii).

Note. Next, we argue that the Gaussian integers form a Euclidean domain with

ϕ(a + bi) = a2 + b2. First, we need a preliminary lemma which is given in Exercise

III.3.6(a).
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Lemma E. (Hungerford’s Exercise III.3.6(a)) If a and n are integers, n > 0, then

there exist integers q and r such that a = qn + r, where |r| ≤ n/2.

Note. Lemma E now allows us to prove the following.

Theorem D. (Hungerford’s Exercise III.3.6(b)) The Gaussian integers Z[i] = {a+

bi | a, b ∈ Z} form a Euclidean domain with ϕ(a + bi) = a2 + b2.

Note III.3GI.E. By Theorem III.3.9, every Euclidean domain is a unique factor-

ization domain, so we now have by Theorem D that the Gaussian integers form

a unique factorization domain. In Mathematical Reasoning (MATH 3000), this

appears as Fundamental Theorem of Arithmetic in the Gaussian integers; see my

online notes for Mathematical Reasoning on Section 7.2. The Gaussian Integers and

notice Theorem 7.20. It is also shown in those notes that the Division Algorithm

holds in Z[i] (in Theorem 7.14) and the Euclidean Algorithm (for finding greater

common divisors) holds in Z[i].

Note. In Fraleigh’s A First Course In Abstract Algebra, 7th edition (Addison-

Wesley, 2003), Section IX.47. Gaussian Integers and Multiplicative Norms (pages

409 and 410) it is stated:

https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-7-2.pdf
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“. . . a suitably defined norm may be of help in determining the arith-

metic structure of [integral domain] D. This is strikingly illustrated in

algebraic number theory, where for a domain of algebraic integers we

consider many different norms of the domain, each doing its part in

helping to determine the arithmetic structure of the domain. . . . This

is an example of the importance of studying properties of elements in

an algebraic structure by means of mapping associated with them.”
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