
III.3. Factorization in Commutative Rings 1

Section III.3. Factorization in Commutative Rings

Note. In this section, we introduce the concepts of divisibility, irreducibility, and

prime elements in a ring. We define a unique factorization domain and show that

every principal ideal domain is one (“every PID is a UFD”—Theorem III.3.7). We

push the Fundamental Theorem of Arithmetic and the Division Algorithm to new

settings.

Definition III.3.1. A nonzero element a of commutative ring R divides an element

b ∈ R (denoted a | b) if there exists x ∈ R such that ax = b. Elements a, b ∈ R are

associates if a | b and b | a.

Theorem III.3.2. Let a, b, u be elements of a commutative ring R with identity.

(i) a | b if and only if (b) ⊂ (a).

(ii) a and b are associates if and only if (a) = (b).

(iii) u is a unit if and only if u | r for all r ∈ R.

(iv) u is a unit if and only if (u) = R.

(v) The relation “a is an associate of b” is an equivalence relation on R.

(vi) If a = br with r ∈ R a unit, then a and b are associates. If R is an integral

domain, the converse is true.

Note. The proof of Theorem III.3.2 is to be given in Exercise III.3.A.
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Definition III.3.3. Let R be a commutative ring with identity. An element c ∈ R

is irreducible provided that:

(i) c is a nonzero nonunit, and

(ii) c = ab implies that either a is a unit or b is a unit.

An element p ∈ R is prime provided that:

(i) p is a nonzero nonunit, and

(ii) p | ab implies that either p | a or p | b.

Example III.3.A. In the ring Z, if p is “prime” then p and −p are both irreducible

and prime (in the sense of Definition III.3.3). In the ring Zn, where n ≡ 2 (mod 4),

2 is prime but not irreducible since 2 = 2(n/2 + 1) but neither 2 nor n/2 + 1 are

units (since both are “even”). In Exercise III.3.3 you are asked to show that 2 is

irreducible but not prime in the ring {a + b
√

10 | a, b ∈ Z} (see III.3 Supplement:

The Gaussian Integers for details). So the concepts of prime and irreducible can

be very different in general. This is not the case in an integral domain, though (see

parts (iii) and (iv) in the next result).

Theorem III.3.4. Let p and c be nonzero elements in an integral domain R.

(i) p is prime if and only if (p) is a nonzero prime ideal,

(ii) c is irreducible if and only if (c) is maximal in the set S of all proper principal

ideals of R.

https://faculty.etsu.edu/gardnerr/5410/notes/III-3-Gaussian-Integers.pdf
https://faculty.etsu.edu/gardnerr/5410/notes/III-3-Gaussian-Integers.pdf
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(iii) Every prime element of R is irreducible.

(iv) If R is a principal ideal domain, then p is prime if and only if p is irreducible.

(v) Every associate of an irreducible (respectively, prime) element of R is irre-

ducible (respectively, prime).

(vi) The only divisors of an irreducible element of R are its associates and the

units of R.

Notes. We have sort of reached the “mountain top of weirdness” in terms of

abstract algebraic structures (in the humble opinion of your instructor). We now

introduce a better behaved structure (in which the concepts of prime and irreducible

are the same, for example). From this point on, we almost exclusively consider rings

with this “unique factorization” behavior.

Definition III.3.5. An integral domain R is a unique factorization domain (“UFD”)

provided that:

(i) every nonzero nonunit element a ∈ R can be written a = c1c2 · · · cn, with

c1, c2, . . . , cn irreducible, and

(ii) if a = c1c2 · · · cn and a = d1d2 · · · dm (where ci, di are all irreducible), then

n = m and for some permutation σ of {1, 2, . . . , n}, ci and dσ(i) are associates

for every i.
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Note. Notice that every field is vacuously a unique factorization domain; “vacu-

ously” because a field contains no nonzero nonunits.

Note. The integers are an example of a unique factorization domain (UFD) where

the irreducibles are the usual prime numbers in N (and their negatives), the only

units are 1 and−1, the associates are the pairs n and−n, and the uniqueness of part

(ii) is given by the Fundamental Theorem of Arithmetic. See my online notes for

Elementary Number Theory (MATH 3120) on Section 2. Unique Factorization, and

notice Theorem 2.2. Also see my online notes for Mathematical Reasoning (MATH

3000) on Section 6.3. Divisibility: The Fundamental Theorem of Arithmetic and

notice Theorem 6.29.

Note III.3.A. In the definition of UFD, part (ii) shows that for an irreducible we

must have m = n = 1. So if c is irreducible and c | ab, then cx = ab for some

x ∈ R. So a = c1c2 · · · cn and b = d1d2 · · · dm for irreducible ci, di by (i) of the

definition and ab = (c1c2 · · · cn)(d1d2 · · · dm). Since ab = cx = c(x1x2 · · ·xk) for

some irreducible xi, we have k = n + m − 1 and by (ii) c must be an associate

of either some ci (in which case c | a) or an associate of some di (in which case

c | b). So c is prime. Also, by Theorem III.3.4(iii) every prime is irreducible. So

in a UFD irreducible and prime elements coincide.

Note III.3.B. Let R = {a + b
√

10 | a, b ∈ Z}. In Exercise III.3.4 it is to be

shown that this is an integral domain (under the usual addition and multiplication)

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-2.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-6-3.pdf
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and that every element can be factored into a product of irreducibles (see III.3

Supplement: The Gaussian Integers for details). So (i) in the definition of UFD

holds. However, it is shown that 2, 3, 4 −
√

10, and 4 +
√

10 are irreducibles and

that neither 2 nor 3 is an associate of 4 −
√

10 or 4 +
√

10. Then 6 = 2 · 3 =

(4−
√

10)(4 +
√

10) is written as a product of of irreducibles in two different ways

(in the sense of Definition 3.5(ii)). So there are integral domains which are not

UFDs.

Note. The big result of this section is that every principal ideal domain (“PID”)

is a unique factorization domain (“UFD”). In this direction, we need the following

preliminary result.

Lemma III.3.6. If R is a principal ideal ring and (a1) ⊂ (a2) ⊂ · · · is a chain of

ideals in R, then for some positive integer n, (aj) = (an) for all j ≥ n.

Theorem III.3.7. Every principal ideal domain R is a unique factorization do-

main. That is, “every PID is a UFD.”

Note III.3.C. The converse of Theorem III.3.7 (i.e., “Every UFD is a PID”) does

not hold as established by the fact that Z[x] is a UFD (as shown in Theorem

III.6.14) but Z[x] is not a PID (as shown in Exercise III.6.1).

https://faculty.etsu.edu/gardnerr/5410/notes/III-3-Gaussian-Integers.pdf
https://faculty.etsu.edu/gardnerr/5410/notes/III-3-Gaussian-Integers.pdf
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Note. We now consider some “special” integral domains.

Definition III.3.8. Let R be a commutative. R is a Euclidean ring if there is a

function ϕ : R \ {0} → N ∪ {0} such that:

(i) if a, b ∈ R and ab 6= 0, then ϕ(a) ≤ ϕ(ab),

(ii) if a, b ∈ R and b 6= 0, then there exist q, r ∈ R such that either a = qb+ r with

r = 0, or r 6= 0 and ϕ(r) < ϕ(b).

A Euclidean ring which is an integral domain is called a Euclidean domain.

Note III.3.D. The ring Z with ϕ(x) = |x| is a Euclidean domain (by the Division

Algorithm, Theorem 0.6.3; also see my online notes on for Mathematical Reasoning

on Section 6.3. Divisibility: The Fundamental Theorem of Arithmetic and notice

Theorem 6.17). If F is a field, then the ring of polynomials F [x] is a Euclidean

domain with ϕ(f) = degree of f (as shown in Corollary III.6.4).

Note III.3.E. Let Z[i] = {a+bi | a, b ∈ Z}. Then Z[i] is an integral domain called

the domain of Gaussian integers. Define ϕ(a + bi) = a2 + b2. Then Z[i] with ϕ is

a Euclidean ring. See III.3 Supplement: The Gaussian Integers for details.

Theorem III.3.9. Every Euclidean ring R is a principal ideal ring with identity.

Consequently every Euclidean domain is a unique factorization domain.

https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-6-3.pdf
https://faculty.etsu.edu/gardnerr/5410/notes/III-3-Gaussian-Integers.pdf
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Note III.3.F. The converse of Theorem III.3.9 is false—that is, there is a PID

that is not a Euclidean domain, as shown in Exercise III.3.8.

Definition III.3.10. Let X be a nonempty subset of a commutative ring R. An

element d ∈ R is a greatest common divisor of X provided:

(i) d | a for all a ∈ X, and

(ii) c | a for all a ∈ X implies that c | d.

If R has an identity 1R and a1, a2, . . . , an has 1R as a greatest common divisor, then

a1, a2, . . . , an are relatively prime.

Note. Greatest common divisors may not exist for a given set (even when it is

a finite set) and when a set has a greatest common divisor, it may not be unique

(though by part (ii) of Definition III.3.10, two greatest common divisors of a set

must be associates). In fact, any associate of a greatest common divisor of a set is

itself a greatest common divisor of the set.

Theorem III.3.11. Let a1, a2, . . . , an be elements of a commutative ring R with

identity.

(i) d ∈ R is a greatest common divisor of {a1, a2, . . . , an} such that d = r1a1 +

r2a2 + · · ·+ rnan for some ri ∈ R if and only if (d) = (a1) + (a2) + · · ·+ (an).

(ii) If R is a principal ideal ring, then a greatest common divisor of a1, a2, . . . , an

exists and every one is of the form r1a1 + r2a2 + · · · rnan, where each ri ∈ R.
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(iii) If R is a unique factorization domain, then there exists a greatest common

divisor of a1, a2, . . . , an.

Revised: 3/22/2024


