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Section III.4. Rings of Quotients and Localization

Note. Taking our lead from the rational numbers, in this section we define a ring of

quotients (or “ring of fractions”) for a given commutative ring R. The development

mimics the way we might define ring Q in terms of ring Z (and involves the idea of

equivalence classes in the since of “reducing” a fraction: 1/2 = 2/4 = 3/6 = · · ·).

Similar material is covered in Introduction to Modern Algebra (MATH 4127/5127)

in Section IV.21. The Field of Quotients of an Integral Domain. At the end of this

section, we consider “localizations” of a prime ideal (a topic which is referenced

only occasionally in what follows and may be considered optional).

Definition III.4.1. A nonempty set S of a ring R is multiplicative provided that

a, b ∈ S implies ab ∈ S (that is, S is closed under multiplication).

Example. In ring R, sets Q, Z, 2Z, Q+, and Z+ are multiplicative. More generally,

the set S of all elements in a nonzero ring with identity that are not zero divisors

is multiplicative. The set of units in any ring with identity is a multiplicative set.

Note. In Q, we have “multiple representations” of the same elements when con-

sidering quotients of integers: a/b = c/d if and only if ad = bc. More precisely,

consider Z as a ring and S = Z+ (the positive integers). We define a relation on

https://faculty.etsu.edu/gardnerr/4127/notes/IV-21.pdf
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set Z × S as: (a, b) ∼ (c, d) if and only if ad − bc = 0. It is easily shown that

this is an equivalence relation. We then define Q as the set of equivalence classes

of Z× S under this equivalence relation. We denote the equivalence class of (a, b)

as “a/b.” Addition and multiplication are defined as usual (once one verifies that

defining them using representatives of the equivalence classes results in well-defined

operations).

Note. We generalize this idea by starting with a commutative ring R. For S

a multiplicative set, we define a commutative ring S−1R with an identity, and a

homomorphism ϕS : R → S−1R (in Theorems III.4.2 and III.4.3(i)). If S is the

set of all nonzero elements in an integral domain R, then S−1R is a field (shown

in Theorem III.4.3(iii)). The notation “S−1R” is used for this commutative ring

because we will create “quotients” with numerators from R and denominators from

S. The proof of the following is straightforward and left as Exercise III.4.A.

Theorem III.4.2. Let S be a multiplicative subset of a commutative ring R. The

relationship defined on set R× S by

(r, s) ∼ (r′, s′) if and only if s1(rs
′ − r′s) = 0 for some s1 ∈ S

is an equivalence relation. Furthermore if R has no zero divisors and 0 6∈ S then

(r, s) ∼ (r′, s′) if and only if rs′ − r′s = 0.
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Note III.4.A. We denote the equivalence class (r, s) ∈ R×S as r/s. The set of all

equivalence classes under ∼ is denoted S−1R. It is straightforward to verify that:

(i) r/s = r′/s′ if and only if s1(rs
′ − r′s) = 0 for some s1 ∈ S;

(ii) (tr)/(ts) = r/s for all r ∈ R and s, t ∈ S; and

(iii) If 0 ∈ S, then S−1R consists of a single equivalence class.

Note III.4.B. By Theorem III.4.2, we have (r, s) ∼ (r′, s′) if and only if s1(rs
′ −

r′s) = 0 for same s1 ∈ S. So if 0 ∈ S then, with s1 = 0, we have (r, s) ∼ (r′, s′) for

all r, r′ ∈ R and s, s′ ∈ S. That is, there is only one equivalence class under ∼ if

we allow 0 ∈ S. Think of S as the “denominators” in a quotient. Here we need not

completely disallow “division by 0” (the setting is general enough to absorb this

as a possibility), but in what results we get only one equivalence class. This means

that the ring of quotients we define below (in Theorem III.4.3(i)) is the trivial ring

with only one element. So that’s the price we pay, even in this general setting, of

trying to “divide by 0.” Notice this is more of a legal loophole, than an actual

result of any mathematical interest; the trivial ring {0} satisfies the definition of

a commutative ring with additive identity 0 and multiplicative identity 0. If we

exclude 0 from S then more interesting things happen (namely, we get an integral

domain or, if S is big enough, a field).

Note. We now establish some of the properties of S−1R. After this, we will address

the existence of certain homomorphisms.
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Theorem III.4.3. Let S be a multiplicative subset of a commutative ring R and

let S−1R be the set of equivalence classes of R × S under the equivalence relation

of Theorem III.4.2.

(i) S−1R is a commutative ring with identity, where addition and multiplication

are defined by r/s + r′/s′ = (rs′ + r′s)/(ss′) and (r/s)(r′/s′) = (rr′)/(ss′).

(ii) If R is a nonzero ring with no zero divisors and 0 6∈ S, then S−1R is an integral

domain.

(iii) If R is a nonzero ring with no zero divisors and S is the set of all nonzero

elements of R, then S−1R is a field.

Definition. The ring S−1R in Theorem III.4.3 is the ring of quotients or ring of

fractions of R by set S. (This should not be confused with a “quotient ring.”)

When S is the set of all nonzero elements in an integral domain R, the field S−1R

of Theorem III.4.3(iii) is the quotient field of the integral domain R (or the field of

quotients).

Note. With R = Z and S = Z \ {0}, the field of quotients S−1R is Q.

Definition. Suppose R a nonzero commutative ring and S the set of all nonzero

elements of R that are not zero divisors. If S is nonempty (as is the case if R is

a ring with identity), then S−1R is the complete ring of quotients of ring R. It is

also called the total ring of quotients or total ring of fractions.
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Note III.4.C. In light of Theorem III.4.3(iii) and the previous definition, we can

state: “If a nonzero ring R has no zero divisors, then the complete ring of quotients

of R is a field.”

Note III.4.D. Exercise III.4.1 states: “Determine the complete ring of quotients

of the ring Zn for each n ≥ 2.” In this exercise, it is to be shown that the complete

ring of quotients of Zn, n ≥ 2, is isomorphic to Zn. Also, for n = p prime we

have S = Zn \ {0} and S−1Zn = S−1Zp
∼= Zp is a field (in this case Zp is an

integral domain; see Corollary III.4.6). As an example, for Z6 we take S = {1, 5}

(notice that S is a multiplicative set; powers of 5 are equal to either 1 or 5). Then

S−1Z6 includes 0/1, 1/1, 2/1, 3/1, 4/1, 5/1, 0/5, 1/5, 2/5, 3/5, 4/5, and 5/5. Now

0/1 = 0/5, 1/1 = 5/5, 2/1 = 4/5, 3/1 = 3/5, 4/1 = 2/5, and 5/1 = 1/5 (these can

be verified by “cross multiplying”). So there are six equivalence classes in S−1R.

Since the equivalence classes form an additive group of order six, then Z6
∼= S−1Z6.

In fact, the isomorphism is given by mapping r̄ 7→ r̄/1̄ for r ∈ {0, 1, 2, 3, 4, 5}.

Note III.4.E. In a ring, a zero divisor cannot have an inverse. If r is a zero

divisor in ring R, then rr′ = 0 for some r′ ∈ R. IF r is a unit (in which case

R must be a ring with identity) then r−1r = 1 for some r−1 ∈ R. But then

r−1(rr′) = r−1(0) or (r−1r)r′ = 0 or (1)r′ = 0, and hence r′ = 0. But then r is not

a zero divisor after all! Notice that we have used associativity in establishing that

r′ = 0 here. In fact, there are algebraic structures in which zero divisors do have

inverses. The Cayley-Dickson algebra of the Sedenions is an algebraic structure
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with two binary operations, addition and multiplication, where multiplication is

neither commutative nor associative (so this is NOT a ring). There are zero divisors

in the Sedenions which have multiplicative inverses; in fact, every nonzero Sedenion

has an inverse. For details, see my supplemental notes for Introduction to Modern

Algebra 2 (MATH 4137/5137) on Supplement. The Cayley-Dickson Construction

and Nonassociative Algebras.

Note III.4.F. So what happens if we compute a ring of quotients and include a

zero divisor in set S? Consider, for example, the ring Z6 and let S = {3̄}. Notice

that S is a multiplicative set. So S−1Z6 includes 0̄/3̄, 1̄/3̄, 2̄/3̄, 3̄/3̄, 4̄/3̄, and

5̄/3̄. Now 0̄/3̄ = 2̄/3̄ = 4̄/3̄ and 1̄/3̄ = 3̄/3̄ = 5̄/3̄ (these can be verified by “cross

multiplying”). Therefore, S−1Z6 only has two elements and so is isomorphic to the

ring Z2. Notice that we have “lost” zero divisor 3̄ (we have even lost Z6), but its

image under the mapping 3̄ 7→ (3̄ × 3̄)/3̄ = 3̄/3̄ (which we’ll see soon in Theorem

III.4.4) is a unit in S−1Z6; in fact, the image of 3̄ is the multiplicative identity in

S−1Z6 so that it is its own inverse.

Note. We now turn our attention to homomorphisms. If ϕ : Z → Q is the map

n 7→ n/1 then ϕ is a monomorphism that embeds Z in Q. Also, for each nonzero

n ∈ Z, ϕ(n) is a unit in Q. We now generalize this idea.

Theorem III.4.4. Let S be a multiplicative subset of a commutative ring R.

(i) The map ϕS : R → S−1R given by r 7→ rs/s (for any s ∈ S) is a well-defined

homomorphism of rings such that ϕS(s) is a unit in S−1R for every s ∈ S.

https://faculty.etsu.edu/gardnerr/4127/notes-Herstein/notes-Cayley-Dickson.pdf
https://faculty.etsu.edu/gardnerr/4127/notes-Herstein/notes-Cayley-Dickson.pdf
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(ii) If 0 6∈ S and S contains no zero divisors, then ϕS is a monomorphism. In

particular, any integral domain may be embedded in its quotient field.

(iii) If R has an identity and S consists of units, then ϕS is an isomorphism. In

particular, the complete ring of quotients of a field F is isomorphic to F .

Note III.4.G. The embedding ϕS of an integral domain R in its quotient field

allows us to identify R with its image under ϕS (notice that ϕS : R → Im(ϕ)S is

an isomorphism). In this case, we have 1 ∈ S and we identify r ∈ R with equivalent

class r/1 ∈ S−1R.

Note. In the next theorem, a ring of quotients of commutative ring R is deter-

mined (up to isomorphism) in terms of a certain homomorphism, Hungerford says

that “rings of quotients may be completely characterized by a universal mapping

property” (see page 144). The “up to isomorphism” part of the claim as the ap-

proach taken by David Dummit and Richard Foote in Abstract Algebra, 3rd edition

(John Wiley and Sons, 2004); see their Theorem 15.36 and definition of “ring of

fractions of R with respect to [multiplicative set] D,” D−1R. They also call D−1R

the “localization of R at D.”

Theorem III.4.5. Let S be a multiplicative subset of a commutative ring R and

let T be any commutative ring with identity. If f : R → T is a homomorphism

of rings such that f(s) is a unit in T for all s ∈ S, then there exists a unique

homomorphism of rings f : S−1R → T such that fϕS = f . The ring S−1R is

completely determined (up to isomorphism) by this property.
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Note. The corollary to Theorem III.4.5 gives a sense in which the “smallest” field

containing an integral domain is the field of quotients of the integral domain, as

shown next.

Corollary III.4.6. Let R be an integral domain considered as a subring of its

quotient field F (see Theorem III.4.4(ii)). If E is a field and f : R → E is a

monomorphism of rings, then there is a unique monomorphism of rings, then there

is a unique monomorphism of fields f : F → E, such that f |R = f . In particular,

any field E1 containing R contains an isomorphic copy F1 of F with R ⊂ F1 ⊂ E1.

Note. The material in Theorems III.4.7 to III.4.11 are not needed until Section

V.6, “Dedekind Domains,” so we temporarily postpone the presentation of these

results (which contain the “localization” part of this section). First, we consider

local rings and Theorem III.4.13.

Definition III.4.12. A local ring is a commutative ring with identity which has

a unique maximal ideal.

Note. An example of a local ring is given in Exercise III.4.13. In that exercise, it

is shown that the ring R consisting of all rational numbers with denominators not

divisible by some fixed prime p is a local ring. The solution of this exercise requires

Theorem 4.11(ii), which we cover below.
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Note III.4.H. Recall that Theorem III.2.18 states that a nonzero ring R with

identity always has a maximal ideal, and that every ideal in R (except R itself;

remember that R itself is not a maximal ideal of R by definition) is contained in a

maximal ideal. So in a local ring, every deal of R (except E itself) is contained in

the unique maximal ideal. For example, with R = Zpn where p is prime and n ≥ 1,

the unique maximal ideal is the one generated by p, (p). We now give two other

conditions that classify local rings.

Theorem III.4.13. If R is a commutative ring with identity then the following

conditions are equivalent:

(i) R is a local ring;

(ii) all nonunits of R are contained in some ideal M 6= R;

(iii) the nonunits of R form an ideal.

Note. We now back up and consider the material relevant to Theorems III.4.7 to

III.4.11 and localization.

Theorem III.4.7. Let S be a multiplicative subset of a commutative ring R.

(i) If I is an ideal in R, then S−1I = {a/s | a ∈ I, x ∈ S} is an ideal in S−1R.

(ii) If J is another ideal in R, then S−1(I + J) = S−1I + S−1J , S−1(IJ) =

(S−1I)(S−1J), and S−1(I ∩ J) = (S−1I)(S−1J).
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Definition. The ideal S−1I in S−1R of Theorem III.4.7(i) is the extension of I in

S−1R.

Note. In the event that commutative ring R has an identity, we get the following

condition under which S−1I = S−1R.

Theorem III.4.8. Let S be a multiplicative subset of a commutative ring R with

identity and let I be an ideal of R. Then S−1I = S−1R if and only if S ∩ I 6= ∅.

Note/Definition. By Exercise III.2.13 (applied to homomorphism f = ϕS), we

have that if J is an ideal in ring of quotients S−1R, then the inverse image ϕ−1
S (J)

is an ideal in R. The ideal ϕ−1
S (J) is the contraction of J in R. We characterize

prime ideals of a ring of quotients, after the next lemma.

Lemma III.4.9. Let S be multiplicative subset of a commutative ring R with

identity and let I be an ideal in R.

(i) I ⊂ ϕ−1
S (S−1I).

(ii) If I = ϕ−1
S (J) for some ideal J in S−1R, then S−1I = J . That is, every ideal

in S−1R is of the form S−1I for some ideal I in R.

(iii) If P is a prime ideal in R and S ∩P = ∅, then S−1P is a prime ideal in S−1R

and ϕ−1
S (S−1P ) = P .
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Theorem III.4.10. Let S be a multiplicative subset of a commutative ring R with

identity. Then there is a one-to-one correspondence between the set U of prime

ideals of R which are disjoint from S and the set V of prime ideals of S−1R, given

by P 7→ S−1P .

Definition. Let R be a commutative ring with identity and P a prime ideal of R.

Then S = R−P is a multiplicative subset of R (by Theorem III.2.15, the product

of two non-elements of a prime ideal cannot be in the prime idea). The ring of

quotients S−1R is the localization of R at P , denoted RP . If I is an ideal in R,

then the ideal S−1I in RP = S−1R is denoted IP .

Note. With S = R − P , the ring of quotients RP = S−1R includes inverses of all

elements of R that are NOT in P . In the next theorem we consider prime ideals

of R contained in P and set up a one-to-one correspondence between these prime

ideals and the prime ideals of RP = S−1R (similar to the one-to-one correspondence

of Theorem II.4.10).

Theorem III.4.11. Let P be a prime ideal in a commutative ring R with identity,

and let S = R− P .

(i) There is a one-to-one correspondence between the set of prime ideals of R

which are contained in P and the set of prime ideals of Rp = S−1R, given by

Q 7→ QP = S−1Q;

(ii) the ideal PP = S−1P in RP is the unique maximal ideal of RP .
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Note. For commutative ring R with identity, prime ideal P of R, and S = R−P ,

the quotient ring RP = S−1R (i.e., the localization of R at P ) has a unique maximal

ideal PP = S−1P by Theorem III4.11(ii). Therefore, by Definition 4.12, RP is a

local ring.
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