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Section III.5. Rings of Polynomials and

Formal Power Series

Note. Since we are ultimately interested in polynomial equations, we need to in-

troduce polynomials and they must be somewhere. We deal with polynomials as

elements of a ring. We are mostly interested in polynomials in a single indetermi-

nate, but will also define polynomials in several indeterminates.

Theorem III.5.1. Let R be a ring and let R[x] denote the set of all sequences of

elements of R, (a0, a1, . . .), such that ai = 0 for all but a finite number of indices i.

(i) R[x] is a ring with addition and multiplication defined by

(a0, a1, . . .) + (b0, b1, . . .) = (a0 + b0, a1 + b1, . . .)

(a0, a1, . . .)(b0, b1, . . .) = (c0, c1, . . .)

where

cn =
n∑

i=0

an−ibi = anb0 + an−1b1 + · · ·+ a0bn =
∑

k+j=n

akbj.

(ii) If R is commutative (respectively, a ring with identity/a ring with no zero

divisor/an integral domain) then so is R[x].

(iii) The map R → R[x] given by r 7→ (r, 0, 0, . . .) is a monomorphism (one to one

homomorphism) of rings.
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Note. The proof of Theorem II.5.1(i) and commutativity in (ii) are straightforward

as proved in Fraleigh as Theorem 22.2.

Note. If 1R is the identity in R then (1R, 0, 0, . . .) is the identity in R[x]. We may

denote (r, 0, 0, . . .) ∈ R[x] simply as r.

Definition. Ring R[x] of Theorem III.5.1 is the ring of polynomials over R. Ele-

ments of R[x] are called polynomials.

Theorem III.5.2. Let R be a ring with identity and denote by x the element

(0, 1R, 0, 0, . . .) of R[x].

(i) xn = (0, 0, . . . , 0, 1R, 0, 0, . . .) where 1R is the (n + 1)-st coordinate.

(ii) If r ∈ R, then for each n ≥ 0, rxn = xnr = (0, 0, . . . , 0, r, 0, . . .) where r is the

(n + 1)-st coordinate.

(iii) For every nonzero polynomial f ∈ R[x] there exists integer n ∈ N ∪ {0} and

elements a0, a1, . . . , an ∈ R such that

f = a0x
0 + a1x

1 + a2x
2 + · · ·+ anx

n.

The integer n and elements ai are unique in the sense that

f = b0x
0 + b1x

1 + b2x
2 + · · · bmxm

where bi ∈ R implies m ≥ n, ai = bi for i = 1, 2, . . . , n, and bi = 0 for

n < i ≤ m.
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Note. The proof of Theorem III.5.2 is routine and is left as an “exercise.”

Note. We adopt an obvious notation (the same notation used by Fraleigh). We

denote f = a0x
0 + a1x

1 + a2x
2 + · · ·+ anx

n as

f = a0x
0 + a1x

1 + a2x
2 + · · ·+ anx

n =
n∑

i=0

aix
i.

Thus we have (
n∑

i=0

aix
i

)(
m∑

j=0

bjx
j

)
=

m+n∑
k=0

ckx
k

where ck =
∑

i+j=k aibj. For f =
∑n

i=0 aix
i ∈ R[x], the ai are coefficients of f . a0

is the constant term. A polynomial of the form f = r where r ∈ R is a constant

polynomial (Fraleigh does not count 0 degree polynomials as “polynomials”). If

an 6= 0 and am = 0 for m > n in polynomial f , then an is the leading coefficient

of f . If R has identity 1R and the leading coefficient of f is 1R, then f is a monic

polynomial.

Note. Recall that for n ∈ N, we have

(N ∪ {0})n = (N ∪ {0})× (N ∪ {0})× · · · (N ∪ {0})

and the elements of this set are n-tuples of nonnegative integers. So (N ∪ {0})n is

an additive abelian monoid (a “group without inverses”).

Note. The following is analogous to Theorem III.5.1, but for polynomials of several

indeterminates.
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Theorem III.5.3. Let R be a ring and denote by R[x1, x2, . . . , xn] the set of all

functions f : (N ∪ {0})n → R such that f(u) 6= 0 for at most a finite number of

elements u ∈ (N ∪ {0})n.

(i) R[x1, x2, . . . , xn] is a ring with addition and multiplication defined by

(f + g)(u) = f(u) + g(u) and (fg)(u) =
∑

v+w=u

v,w∈(N∪{0})n

f(v)g(w),

where f, g ∈ R[x1, x2, . . . , xn] and u ∈ (N ∪ {0})n.

(ii) If R is commutative (respectively, a ring with identity/a ring without zero

divisors/an integral domain) then so is R[x1, x2, . . . , xn].

(iii) The map R 7→ R[x1, x2, . . . , xn] given by r 7→ fr where fr(0, 0, . . . , 0) = r

and f(u) = 0 for all other u ∈ (N ∪ {0})n is a monomorphism (one to one

homomorphism) of rings.

Note. Think of the n-tuples as exponents on x1, x2, . . . , xn. For example, if n = 3

and R = Z with f((0, 0, 0)) = 4, f((1, 1, 1)) = 2, f((1, 0, 5)) = −2, and f(u) = 0

for all other 3-tuples u, then f corresponds to the polynomial in 3 indeterminates

of 4 + 2x1x2x3 − 2x1x
5
3.

Definition. The ring R[x1, x2, . . . , xn] of Theorem III.5.3(i) is the ring of polyno-

mials in n indeterminates. For n ∈ N and each i = 1, 2, . . . , n denote

εi = (0, . . . , 0, 1, 0, . . . , 0) ∈ (N ∪ {0})n

where 1 is the ith coordinate of εi.
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Theorem III.5.4. Let R be a ring with identity and n ∈ N. For each i = 1, 2, . . . , n

let xi ∈ R[x1, x2, . . . , xn] be defined as xi(εi) = 1R and xi(u) = 0 for u 6= εi.

(i) For each integer k ∈ (N ∪ {0})n, xk
i (kεi) = 1R and xk

i (u) = 0 for u 6= kεi.

(ii) For each

(k1, k2, . . . , kn) ∈ (N ∪ {0})n, xk1
1 xk2

2 · · ·xkn
n (k1ε1 + k2ε2 + · · ·+ knεn) = 1R

and xk1
1 xk2

2 · · ·xkn
n (u) = 0 for u 6= k1ε1 + k2ε2 + · · ·+ knεn.

(iii) xs
ix

t
j = xt

jx
s
i for all s, t ∈ N ∪ {0} and all i, j = 1, 2, . . . , n.

(iv) xt
ir = rxt

i for all r ∈ R and all t ∈ N.

(v) For every polynomial f in R[x1, x2, . . . , xn] there exists unique elements ak1,k2,...,kn
∈

R indexed by all (k1, k2, . . . , kn) ∈ (N∪ {0})n and nonzero for at most a finite

number of (k1, k2, . . . , kn) ∈ (N ∪ {0})n such that

f =
∑

ak1,k2,...,kn
xk1

1 xk2
2 · · ·xkn

n ,

where the sum is over all (k1, k2, . . . , kn) ∈ (N ∪ {0})n.

Definition. A polynomial of the form axk1
1 xk2

2 · · ·xkn
n ∈ R[x1, x2, . . . , xn] is a mono-

mial.

Definition. Let ϕ : R → S be a homomorphism of rings, f ∈ R[x1, x2, . . . , xn],

and s1, s2, . . . , sn ∈ S. By Theorem III.5.4(v), we know that

f =
m∑

i=0

aix
ki1
1 xki2

2 · · ·xkin
n
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with ai ∈ R and kij ∈ N (we omit all xi with 0 exponent). Define

ϕ(f(s1, s2, . . . , sn)) =
m∑

i=0

ϕ(ai)s
ki1
1 ski2

2 · · · skin
n ∈ S.

Note. Since the ai and ki in the previous definition are uniquely determined by

Theorem III.5.4(v), so ϕ(f(s1, s2, . . . , sn)) is well-defined.

Theorem III.5.5. Let R and S be commutative rings with identity and ϕ : R → S

is a homomorphism of rings such that ϕ(1R) = 1S. If s1, s2, . . . , sn ∈ S then there

is a unique homomorphism of rings ϕ : R[x1, x2, . . . , xn] → S such that ϕ|R = ϕ

and ϕ(xi) = si for i = 1, 2, . . . , n. This property (that is, the mapping properties

of ϕ and ϕ; Hungerford calls this “a universal mapping property”) completely

determines the polynomial ring R[x1, x2, . . . , xn] up to isomorphism.

Corollary III.5.6. If ϕ : R → S is a homomorphism of commutative rings and

s1, s2, . . . , sn ∈ S, then the map R[x1, x2, . . . , xn] → S, where f =
∑m

i=0 aix
ki1
1 xki2

2 · · ·xkin
n

is mapped to ϕ(f) = ϕ(f(x1, x2, . . . , xn)) =
∑m

i=0 ϕ(ai)s
ki1
1 ski2

2 · · · skin
n , is a homo-

morphism of rings.

Note. Theorem III.5.5 and Corollary 5.6 hold for rings of polynomials in an infinite

number of indeterminates as well (see Exercise III.5.4).
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Definition. If ϕ : R → S is a homomorphism of commutative rings then the

map R[x1, x2, . . . , xn] → S, where f =
∑m

i=0 aix
ki1
1 xki2

2 · · ·xkin
n is mapped to ϕ(f) =

ϕ(f(x1, x2, . . . , xn)) =
∑m

i=0 ϕ(ai)s
ki1
1 ski2

2 · · · skin
n , of Corollary III.5.6 is the evalua-

tion homomorphism (or substitution homomorphism).

Note. Another application of Theorem III.5.5 is to show that (R[x1])[x2] ∼=

(R[x2])[x1] ∼= R[x1, x2] That is, a ring of polynomials in x2 over ring R[x1] is

isomorphic to a ring of polynomials in x1 and x2 over ring R. More generally, we

have the following.

Corollary III.5.7. Let R be a commutative ring with identity and n a positive

integer. For each k (with 1 ≤ k < n) there are isomorphic rings

R[x1, x2, . . . , xk][xk+1, xk+2, . . . , xn] ∼= R[x1, x2, . . . , xn]

∼= R[xk+1, xk+2, . . . , xn][x1, x2, . . . , xk].

Note. We now address a ring of “formal power series.” Fraleigh starts with formal

power series and then deals with polynomials in the setting of formal power series.

The remainder of this section is not needed for the rest of the material to be covered,

so we may skip this if we are short of time.
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Proposition III.5.8. Let R be a ring and denote by R[[x]] the set of all sequences

of elements of R.

(i) R[[x]] is a ring with addition and multiplication defined by

(a0, a1, . . .) + (b0, b1, . . .) = (a0 + b0, a1 + b1, . . .)

and

(a0, a1, . . .)(b0, b1, . . .) = (c0, c1, . . .)

where cn =
∑n

i=0 aibn−i =
∑

k+j=n akbj.

(ii) The polynomial ring R[x] is a subring of R[[x]].

(iii) If R is commutative (respectively, a ring with identity/a ring with no zero

divisors/an integral domain), then so is R[[x]].

Definition. The ring R[[x]] = {(a0, a1, . . .) | ai ∈ R} where addition and multi-

plication are defined in Proposition III.5.8, is the ring of formal power series over

ring R.

Note. If R has an identity then the polynomial x = (0, 1R, 0, . . .) ∈ R[[x]] is an

indeterminate in R[[x]]. So we have for (a0, a1, . . .) ∈ R[[x]] that (a0, a1, . . .) =∑∞
i=0 aix

i.
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Proposition III.5.9. Let R be a ring with identity and f =
∑∞

i=0 aix
i ∈ R[[x]].

(i) f is a unit in R[[x]] if and only if its constant term a0 is a unit in R.

(ii) If a0 is irreducible in R, then f is irreducible in R[[x]].

Note III.5.A. Intuitively, we might expect a nonconstant polynomial in R[x] not to

have an inverse (since it doesn’t seem that the “reciprocal” of a polynomial would be

a polynomial). If R has zero divisors, then a nonconstant polynomial may have an

inverse. For example, in Z4[x] we have (1̄+2̄x)(1̄+2̄x) = 1̄+4̄x+4̄x2 = 1̄. However,

if R is an integral domain, then the units of R[x] are the constant polynomials

where the constant is a unit of R (see Exercise IV.22.25(a) in John Fraleigh’s A

First Course In Abstract Algebra, 7th Edition, Pearson, 2002). Similarly, we’ll

show in Corollary III.6.4 that if F is a field then the units in F [x] are precisely the

nonzero constant polynomials.

Note. Recall from Section III.4 that a local ring is a commutative ring with identity

which has a unique maximal ideal.

Corollary III.5.10. If R is a division ring, then the units in R[[x]] are precisely

those power series with nonzero constant terms. The principal ideal (x) consists

precisely of the nonunits in R[[x]] and is the unique maximal ideal of R[[x]]. Thus

if R is a field, R[[x]] is a local ring.
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Note III.5.B. It might seem surprising that a formal power series could be a unit

when it does not consist only of a constant term, given the observation in Note

III.5.A. However, if we consider the power series for ex we see that it is a unit

since, when it is multiplied by the power series for e−x, we get 1. The formal power

series associated with ex is
(
1, 1, 1

2! ,
1
3! , . . . ,

1
n! , . . .

)
and the formal power series as-

sociated with e−x is
(
1,−1, 1

2! ,
−1
3! , . . . ,

(−1)n

n! , . . .
)
. These formal power series satisfy

the equations in the proof of Proposition III.5.9(i), as follows:

1 = a0b0 = (1)(1)

0 = a0b1 + a1b0 = (1)(−1) + (1)(1)

0 = a0b2 + a1b1 + a2b0 = (1)(1/2) + (1)(−1) + (1/2)(1)

0 = a0b3 + a1b2 + a2b1 + a3b0 = (1)(−1/6) + (1)(1/2) + (1/2)(−1) + (1/6)(1)

0 = a0b4 + a1b3 + a2b2 + a3b1 + a4b0

= (1)(1/24) + (1)(−1/6) + (1/2)(1/2) + (1/6)(−1) + (1/24)(1)

...

In fact, a polynomial can have a formal power series as an inverse (though the

polynomial itself would have to be interpreted as a formal power series, so that it

is in the same ring as its inverse, namely R[[x]]). With f = 1 − x ∈ R[[x]] and

g = 1 + x + x2 + x3 + · · · ∈ R[[x]] we have fg = 1, for example.
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