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Section IV.1. Modules, Homomorphisms,

and Exact Sequences

Note. In this section, we define a module (and vector space) and develop basic

properties and definitions, such as homomorphisms, isomorphisms, submodules,

products, sums, and exact sequences.

Definition IV.1.1. Let R be a ring. A left R-module is an additive abelian group

A together with a function mapping R×A→ A (the image of (r, a) being denoted

ra) such that for all r, s ∈ R and a, b ∈ A:

(i) r(a+ b) = ra+ rb;

(ii) (r + s)a = ra+ sa;

(iii) r(sa) = (rs)a.

If R has an identity 1R and

(iv) 1Ra = a for all a ∈ A,

then A is a unitary R-module. If R is a division ring, then a unitary R-module

is called a left vector space. Right R-modules are similarly defined by a function

mapping A×R→ A with the obvious analogues.

Note. We will use the term “R-module” and adopt the notation of left R-modules,

with corresponding results for right R-modules following similarly. With the nota-

tion of Definition IV.1.1, we will refer to “R-module A.”
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Note IV.1.A. Notice that an R-module is similar to a vector space where the

scalars come from ring R and the vectors from abelian group A. However, Hunger-

ford defines a “vector space” where the “scalars” come from a division ring (so

all nonzero scalars have multiplicative inverses, but the scalars may not be com-

mutative under multiplication). In analysis, you only study vector spaces over

fields (usually either R or C). In fact, Fraleigh’s undergraduate text (A First

Course in Abstract Algebra, 7th edition, Pearson 2002), Gallian’s undergraduate

text (Contemporary Abstract Algebra, 8th edition, Cengage Learning 2012), and

David Dummit and Richard Foote’s graduate level Abstract Algebra, 3rd edition

(Wiley 2003), each define vector spaces over fields, so Hungerford’s approach is

maybe nonstandard.

Note IV.1.B. In R-module over A where 0R is the additive identity in R, 0A is

the additive identity in A, r ∈ R, and a ∈ A then we have

r0A = 0A and 0Ra = 0A.

Hungerford denotes all of these, as well as 0 ∈ Z and the trivial module {0}, as

“0.” We also have for all r ∈ R, n ∈ Z, and a ∈ A:

(−r)a = −(ra) = r(−a) and n(ra) = r(na).

Example IV.1.A. Every additive abelian group G is a unitary Z-module with na,

where n ∈ Z and a ∈ A, defined as

na =


a+ a+ · · ·+ a︸ ︷︷ ︸

n times

if n ≥ 0

(−a) + (−a) + · · ·+ (−a)︸ ︷︷ ︸
|n| times

if n < 0.



IV.1. Modules, Homomorphisms, and Exact Sequences 3

Example. If S is a ring and R is a subring of S, then S is an R-module with ra

defined as the product of r and a in S.

Example. Let R and S be rings and ϕ : R → S be a ring homomorphism. Then

every S-module A can be made into an R-module by defining for each x ∈ A, rx

as ϕ(r)x. The R-module structure of A is said to be given by pullback along ϕ.

Example. Let R be a ring with unity and n ∈ N. Define Rn = {(a1, a2, . . . , an) |

ai ∈ R}. Define

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , ab + bn)

and α(a1, a2, . . . , an) = (αa1, αa2, . . . , αan) for all α ∈ R. Then Rn is an R-module

called the free module of rank n over R.

Definition IV.1.2. Let A and B be modules over a ring R. A function f : A→ B

is an R-module homomorphism provided that for all a, c ∈ A and r ∈ R:

f(a+ c) = f(a) + f(c) and f(ra) = rf(a).

If R is a division ring, then an R-module homomorphism is a linear transformation.

R-module monomorphism/epimorphism/isomorphism, are defined in the obvious

way. The kernel of a homomorphism is Ker(f) = {a ∈ A | f(a) = 0}. The image

of f is {b ∈ B | b = f(a) for some a ∈ A}.
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Note IV.1.C. By Theorem I.2.3 (considering the R-module homomorphism f as

a group homomorphism applied to the additive abelian groups A and B), we have

the following two properties:

(i) f is an R-module monomorphism if and only if Ker(f) = {0};

(ii) f : A → B is an R-module isomorphism if and only if there is an R-module

homomorphism g : B → A such that g ◦ f = gf = 1A and f ◦ g = fg = 1B.

Example. If R is a ring then R[x] is an R-module and f : R[x] → R[x] where

f(p(x)) → xp(x) is an R-module homomorphism but not a ring homomorphism

(because f(p(x)q(x)) 6= f(p(x))f(q(x))).

Note IV.1.D. For a given ring R, the class of all R-modules and R-module ho-

momorphisms form a category. Similarly (and more important to the content of

Section IV.2. Free Modules and Vector Spaces) for a given ring R with a unit,

the class of all unitary R-modules and R-module homomorphisms form a cate-

gory. This allows us to define ring epimorphisms and monomorphisms “strictly in

categorical terms.” That is, these mappings can be defined without reference to

elements of the R-module, but instead in terms of the morphisms. This is to be

shown in Exercise IV.1.2, for example, where R-module homomorphism f is shown

to be a monomorphism if and only if every pair of R-module homomorphisms, g

and h, such that fg = fh, we have g = h. Notice this only involves properties of

morphisms (as just claimed, the morphisms are the R-module homomorphisms in

the category of all R-modules).

https://faculty.etsu.edu/gardnerr/5410/notes/IV-2.pdf
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Definition IV.1.3. Let R be a ring, A an R-module and B a nonempty subset

of A. B is a submodule of A provided B is an additive subgroup of A and rb ∈ B

for all r ∈ R and b ∈ B. A submodule of a vector space over a division ring is a

subspace.

Example IV.1.B. If R is a ring and f : A → B is an R-module homomorphism,

then Ker(f) is a submodule of A and Im(f) is a submodule of B. If C is any

submodule of B then f−1(C) = {a ∈ A | f(a) ∈ C} is a submodule of A.

Example. For the R-module Rn defined above, Rm is a submodule of Rn for all

1 ≤ m ≤ n.

Example. Let I be a left ideal of the ring R, A an R-module and S a nonempty

subset of A. In Exercise IV.1.3(a) you are to show that IS = {
∑n

i=1 riai | ri ∈

I, ai ∈ S, n ∈ N} is a submodule of A.

Definition IV.1.4. If X is a subset of a module A over a ring R, then the

intersection of all submodules of A containing X is the submodule generated by X

(or “spanned” by X).
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Definition. If X is finite and X generates module B, then B is finitely generated.

If |X| = 1 then B is a cyclic module generated by X = {z}. If {Bi | i ∈ I} is a

family of submodules of A, then the submodule of A generated by X = ∪i∈IBi is

the sum of modules Bi, denoted B1 +B2 + · · ·+Bn if set I is finite.

Theorem IV.1.5. Let R be a ring, A an R-module, X a subset of A, {Bi | i ∈ I}

a family of submodules of A and a ∈ A. Let Ra = {ra | r ∈ R}. Then the following

hold:

(i) Ra is a submodule of A and the map R→ Ra given by r 7→ ra is an R-module

epimorphism.

(ii) The cyclic submodule C generated by a is {ra+ na | r ∈ R, n ∈ Z}. If R has

an identity and C is unitary, then C = Ra.

(iii) The submodule D generated by X is{
s∑

i=1

riai +
t∑

j=1

njbj

∣∣∣∣∣ s, t ∈ N; ai, bj ∈ X; ri ∈ R;nj ∈ Z

}
.

If R has an identity and A in unitary, then

D = RX =

{
s∑

i=1

riai

∣∣∣∣∣ s ∈ N; ai ∈ X; ri ∈ R

}
.

(iv) The sum of the family {Bi | i ∈ I} consists of all finite sums bi1 + bi2 + · · ·+ bin

with bik ∈ Bik.

Note. The proof of Theorem IV.1.5 is straightforward and left as an exercise.
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Theorem IV.1.6. Let B be a submodule A over a ring R. Then the quotient

group A/B is an R-module with the action of R on A/B given by

r(a+B) = rB for all r ∈ R, a ∈ A.

The map π : A → A/B given by a 7→ a + B is an R-module epimorphism with

kernel B.

Definition. The map π : A → A/B in Theorem IV.1.6 is the canonical epimor-

phism (or canonical projection) of module A onto module A/B.

Note IV.1.E. The canonical epimorphism of modules closely resembles the canon-

ical epimorphism of a group and a quotient group (see Section I.5. Normality, Quo-

tient Groups, and Homomorphisms), so it is not surprising that many results which

hold for quotient groups also hold in the module setting (the group homomorphisms

just need to be confirmed to be module homomorphisms). The next four results

(Theorem IV.1.7, Corollary IV.1.8, Theorem IV.1.9, and Theorem IV.1.10) corre-

spond to the group results given in Theorems I.5.6 to I.5.12.

Theorem IV.1.7. If R is a ring and f : A → B is an R-module homomorphism

and C is a submodule of Ker(f), then there is a unique R-module homomorphism

f̃ : A/C → B such that f̃(a + C) = f(a) for all a ∈ A; Im(f̃) = Ker(f)/C. f̃

is an R-module isomorphism if and only if f is an R-module epimorphism and

C = Ker(f). In particular, A/Ker(f) ∼= Im(f).

https://faculty.etsu.edu/gardnerr/5410/notes/I-5.pdf
https://faculty.etsu.edu/gardnerr/5410/notes/I-5.pdf
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Corollary IV.1.8. If R is a ring and A′ is a submodule of the R-module A and B′

a submodule of the R-module B and f : A → B is an R-module homomorphism

such that f(A′) ⊂ B′, then f induces an R-module homomorphism f : A/A′ →

B/B′ given by a + A′ 7→ f(a) + B′. f is an R-module isomorphism if and only if

Im(f) +B′ = B and f−1(B′) ⊂ A′. In particular if f is an epimorphism such that

f(A′) = B′ and Ker(f) ⊂ A′, then f is an R-module isomorphism.

Theorem IV.1.9. Let B and C be submodules of a module A over a ring R.

(i) There is an R-module isomorphism B/(B ∩ C) ∼= (B + C)/C;

(ii) if C ⊂ B, then B/C is a submodule of A/C, and there is an R-module iso-

morphism (A/C)/(B/C) ∼= A/B.

Theorem IV.1.10. If R is a ring and B is a submodule of an R-module A,

then there is a one-to-one correspondence between the set of all submodules of A

containing B and the set of all submodules of A/B, given by C 7→ C/B. hence

every submodule of A/B is of the form C/B, where C is a submodule of A which

contains B.

Theorem IV.1.11. Let R be a ring and {Ai | I} a nonempty family of R-modules,∏
i∈I Ai the direct product of the abelian groups Ai, and

∑
i∈I Ai the direct sum of

the abelian groups Ai.

(i)
∏

i∈I Ai is an R-module with the action of R given by r{ai} = {rai}.
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(ii)
∑

i∈I Ai is a submodule of
∏

i∈I Ai.

(iii) For each k ∈ I, the canonical projection πk :
∏
Ai → Ak (Theorem I.8.1) is

an R-module epimorphism.

(iv) For each k ∈ I, the canonical injection ιk : Ak →
∑
Ai (Theorem I.8.4) is an

R-module monomorphism.

Definition. The module
∏

i∈I Ai of Theorem IV.1.11(i) is called the (external)

direct product of the family of R-modules {Ai | i ∈ I} and
∑

i∈I Ai is the (external)

direct sum of the set. If the index is finite, say I = {1, 2, . . . , n}, then we claim

that the direct product and direct sum coincide (recall that the direct product

and direct sum of a finite collection of groups are distinguished only based on the

notation used, multiplicative versus additive; see Definition I.8.3 in Section I.8.

Direct Products and Direct Sums) and is written as A1 ⊕A2 ⊕ · · · ⊕An. The map

πk :
∏

i∈I Ai → Ak of Theorem IV.1.11(iii) is the canonical projection. The map

ιk : Ak →
∑
Ak of Theorem IV.1.11(iv) is the canonical injection.

Theorem IV.1.12. If R is a ring, {Ai | i ∈ I} a family of R-modules, C an

R-module, and {ϕi : C → Ai | i ∈ I} a family of R-module homomorphisms, then

there is a unique R-module homomorphism ϕ : C →
∏

i∈I Ai such that πiϕ = ϕi

for all i ∈ I.
∏

i∈I Ai is uniquely determined up to isomorphism by this property.

In other words,
∏

i∈I Ai is a product in the category of R-modules.

https://faculty.etsu.edu/gardnerr/5410/notes/I-8.pdf
https://faculty.etsu.edu/gardnerr/5410/notes/I-8.pdf
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Theorem IV.1.13. If R is a ring, {Ai | i ∈ I} a family of R-modules, D an

R-module, and {ψi : Ai → D | i ∈ I} a family of R-module homomorphisms, then

there is a unique R-module homomorphism ψ :
∑

i∈I Ai → D such that ψιi = ψi

for all i ∈ I.
∑

i∈I Ai is uniquely determined up to isomorphism by this property.

In other words,
∑

i∈I Ai is a coproduct in the category of R-modules.

Note IV.1.F. Let A and B be R-modules. If f : A → B and g : A → B are

R-module homomorphisms then we can define f + g : A → B where f + g maps

a 7→ f(a) + g(a). In Exercise IV.1.7, you are asked to show that the set of all

R-module homomorphisms mapping A → B, denoted HomR(A,B), is an abelian

group under this addition.

Theorem IV.1.14. Let R be a ring and A,A1, A2, . . . , An R-modules. Then

A ∼= Ai ⊕ A2 ⊕ · · · ⊕ An if and only if for each i = 1, 2, . . . , n there are R-module

homomorphisms πi : A→ Ai and ιi : Ai → A such that

(i) πiιi = 1Ai
for i = 1, 2, . . . , n;

(ii) πjιi = 0 for i 6= j;

(iii) ι1π1 + ι2π2 + · · ·+ ιnπn = 1A.
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Theorem IV.1.15. Let R be a ring and {Ai | i ∈ I} a family of submodules of

an R-module A such that

(i) A is the sum of the family {Ai | i ∈ I};

(ii) for each k ∈ I, Ak ∩ A∗
k = 0. where A∗

k is the sum of the family {Ai | i 6= k}.

Then there is an isomorphism A ∼=
∑

i∈I Ai.

Note. We leave the proof of Theorem IV.1.15 as an exercise.

Definition. Let R be a ring and {Ai | i ∈ I} a family of submodules of an R-

module A. If A and {Ai} satisfy (i) and (ii) of Theorem IV.1.15 then A is the

(internal) direct sum of {Ai | i ∈ I}. This is denoted A =
∑

i∈I Ai (but see the

following note).

Note IV.1.G. The internal direct sum of Theorem IV.1.15 has a subtle difference

from the external direct sum in Theorem IV.1.11. With A as the internal direct

sum of Ai, each Ai is a submodule of A and A is isomorphic to the external direct

sum
∑

i∈I Ai. With the external direct sum
∑

i∈I Ai, the Ai are not submodules of∑
i∈I Ai but instead their isomorphic images ιi(Ai) are submodules of the external

direct product (where the ιi are the canonical injections). Hungerford says “this

distinction if unimportant in practice” (see his page 175) so, like him, we adopt

the notation A =
∑

i∈I Ai to indicate a direct sum, internal or external.
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Definition IV.1.16. A pair of module homomorphisms, A
f→ B

g→ C, is exact

at B provided Im(f) = Ker(g). A finite sequence of module homomorphisms,

A0
f1→ A1

f2→ A2
f3→ · · · fn−1→ An−1

fn→ An, is exact provided Im(fi) = Ker(fi+1) for

i = 1, 2, . . . , n− 1. An infinite sequence of module homomorphisms,

· · · fi−1→ Ai−1
fi→ Ai

fi+1→ Ai+1
fi+2→ · · ·

is exact provided Im(fi) = Ker(fi+1) for all i ∈ Z.

Example. For A and B modules, the sequences

{0} −→ A
ι−→ A⊕B

πB−→ B −→ {0} and {0} −→ B
ι−→ A⊕B

πA−→ A −→ {0},

are exact, where there are unique homomorphisms mapping {0} to an R-module

(namely, 0 7→ 0A, say) and mapping A to {0} (namely, a 7→ 0 for all a ∈ A), ι is

the canonical injection and π is the canonical projection.

Example. If C is a submodule of D, then the sequence

{0} −→ C
i−→ D

p−→ D/C −→ {0}

is exact where i is the inclusion map (see page 4) and p is the canonical epimorphism

(see Theorem IV.1.6).

Definition. If f : A → B is a module homomorphism then A/Ker(f) is the

coimage of f , denoted Coim(f). B/Im(f) is the cokernel of f denoted Coker(f).
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Example. If f : A→ B is a module homomorphism then the following sequences

are exact:

{0} → Ker(f) → A→ Coim(f) → {0}

{0} → Im(f) → B → Coker(f) → {0}

{0} → Ker(f) → A
f−→ Coker(f) → {0}

where the unlabeled mappings are inclusions (for the first two mappings on the left)

and projections (for the last two mappings on the right). Notice that Coim(f) =

A/Ker(f) and Coker(f) = B/Im(f), so the first projection is is the canonical

epimorphism of Theorem IV.1.6.

Note IV.1.H. The sequence {0} → A
f−→ B is an exact sequence if and only

if f is a monomorphism (and so Ker(f) = {0}, by Theorem I.2.3). Similarly

B
g−→ C → C = {0} is exact if and only if g is onto (that is, an epimorphism). If

A
f−→ B

g−→ C is exact then gf = f ◦ f = 0 (the 0 function mapping A→ {0C}).

If A
f−→ B

g−→ C → {0} is exact, then

Coker(f) = B/Im(f) by definition of Coker(f)

= B/Ker(g) since Im(f) = Ker(g) by definition of “exact”

= Coim(g) by definition of Coim(g)

∼= C since g must be onto (an epimorphism).

Definition. An exact sequence of the form {0} → A
f−→ B

g−→ C → {0} is a

short exact sequence.
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Note IV.1.I. In the short exact sequence above, f must be a monomorphism and

g must be an epimorphism Note IV.1.H. Hungerford comments that a short exact

sequence is a way of presenting a submodule of B (A ∼= Im(f) ⊆ B since f is one

to one) and its quotient module B/Im(f) (which is isomorphic it B/Ker(g) ∼= C).

Note. Recall from Section 0.3. Functions, a diagram is commutative if we can

follow two different directed paths through the diagram from object A to object B

and if the compositions of the corresponding maps are equal.

Lemma IV.1.17. The Short Five Lemma.

Let R be a ring and

0−→A′ f ′−→B′ g′−→C ′−→0

0−→A
f−→B

g−→C −→0

↓
α

↓
β

↓
γ

a commutative diagram of R-modules and R-module homomorphisms such that

each row is a short exact sequence. Then

(i) if α and γ are monomorphisms then β is a monomorphism;

(ii) if α and γ are epimorphisms then β is an epimorphism;

(iii) if α and γ are isomorphisms then β is an isomorphism.

Note. Lemma IV.1.17 is called the “Short” Five Lemma because it deals with

short exact sequences. A related result is given in Exercise IV.1.12:

https://faculty.etsu.edu/gardnerr/5410/notes/0-1-6.pdf
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The Five Lemma.

Let

B1−→B2−→B3−→B4−→B5

A1−→A2−→A3−→A4−→A5

↓
α1

↓
α2

↓
α3

↓
α4

↓
α5

be a commutative diagram of R-modules and R-module homomorphisms, with

exact rows. Then

(a) if α1 is an epimorphism and α2, α4 are monomorphisms then α3 is a monomor-

phism;

(b) if α5 is a monomorphism and α2, α4 are epimorphisms then α3 is an epimor-

phism.

Note IV.1.J. Another result related to the Short Five Lemma had a bit of celebrity

in the 1980 Rastar Films’ It’s My Turn, staring Jill Clayburgh and Michael Douglas.

Clayburgh portrays an algebraist and there is a seen where she is explaining the

Snake Lemma. The scene is available on YouTube at (accessed 12/17/2023). The

Snake Lemma deals with the existence of an exact sequence including kernels and

cokernals of the mappings in the Short Five Lemma. This is, to my knowledge,

the only big-budget movie with a lead character who is an algebraist. The image

below is from the YouTube website.

https://www.youtube.com/watch?v=etbcKWEKnvg
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Jill Clayburgh as Dr. Kate Gunzinger, presenting the Snake Lemma

The Snake Lemma. Let R be a ring and

0−→A′−→B′−→C ′

A −→B −→C −→0

↓
α

↓
β

↓
γ

a commutative diagram of R-modules and R-module homomorphisms

such that each row is an exact sequence. Then there is an exact se-

quence

Ker(α) → Ker(β) → Ker(γ)
δ−→ Coker(α) → Coker(β) → Coker(γ).

If in addition, fA : A → B is a monomorphism then so is the homo-

morphism kα : A′ → B′, and if gB′ : B′ → C ′ is an epimorphism then

so is bβ : Coker(β) → Coker(γ). Under these added conditions, we can

extend the exact sequence on the left to include “0 →” and on the right

to include “→ 0.”
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A proof of the Snake Lemma is given in Supplement. A Proof of The Snake Lemma.

The name the “Snake Lemma” comes from how the exact sequence relates to the

diagram given in the statement of the result. In cartoon form, we have:

Recall that Coker(α) = A′/Im(α), Coker(β) = B′/Im(β), and Coker(γ) = C ′/Im(γ).

Definition. Two short exact sequences are isomorphic if there is a commutative

diagram of module homomorphisms

0−→A′−→B′−→C ′−→0

0−→A −→B −→C −→0

↓
f

↓
g

↓
h

such that f , g, and h are R-module isomorphisms.

https://faculty.etsu.edu/gardnerr/5410/notes/Snake-Lemma.pdf
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Theorem IV.1.18. Let R be a ring and 0 → A1
f→ B

g→ A2 → 0 a short

exact sequence of R-module homomorphisms. Then the following conditions are

equivalent:

(i) There is an R-module homomorphism h : A2 → B with gh = 1A2
;

(ii) There is an R-module homomorphism k : B → A1 with kf = 1A1
;

(iii) the given sequence is isomorphic (with identity maps on A1 and A2) to the

direct sum short exact sequence {0} → A1
ι1−→ A1 ⊕ A2

π2−→ A2 → {0}; in

particular B ∼= A1 ⊕ A2.

Definition. A short exact sequence that satisfies the equivalent conditions of

Theorem IV.1.18 is split or is a split exact sequence.
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