
IV.3. Projective and Injective Modules 1

Section IV.3. Projective and Injective Modules

Note. In this section we define projective modules in terms of modules, homomor-

phisms, and exact pairs of module homomorphisms. Since this definition depends

only on modules (the “objects” of interest) and homomorphisms (the “morphisms”

on the objects), the idea of projective modules will be useful in the category setting.

Just as we had dual statements in the category setting that resulted by reversing

the “arrows” in a statement (see Section I.7. Categories: Products, Coproducts,

and Free Objects), the dual of projectivity is injectivity and the idea of an injective

module.

Note. Recall that for A, B, C modules over a ring R and f : A → B, g : B → C

R-module homomorphisms, that is A
f→ B

g→ C, the pair of homomorphisms is

exact if Im(f) = Ker(g).

Definition IV.3.1. A module P over a ring R is projective if given any diagram

of R-module homomorphisms (below left) with bottom row A
g→ B → 0 exact

(that is, g is an epimorphism [onto]), there exists an R-module homomorphism

h : P → A such that the diagram (below right) is commutative (that is, gh = f).

https://faculty.etsu.edu/gardnerr/5410/notes/I-7.pdf
https://faculty.etsu.edu/gardnerr/5410/notes/I-7.pdf
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Note IV.3.A. Suppose R is a ring with identity and A, B are R-modules. Then by

Exercise IV.1.17(a) there are submodules A1 and B1 of A and B, respectively, such

that A1 and B1 are unitary, A = A1 ⊕A2 and B = B1 ⊕B2 with RA2 = RB2 = 0.

Suppose for unitary R-module P we have R-module homomorphism f : P → B.

By Exercise IV.1.17(b), f(R) ⊂ B1. Let g be an R-module homomorphism with

g : A → B. Then by Exercise IV.1.17(c), if g is an epimorphism then both

g|A1
: A1 → B1 and g|A2

: A2 → B2 are epimorphisms. Consider the three diagrams:

Let h : P → A be the R-module homomorphism such that gh = f . Again by

Exercise IV.1.17(b) we have h(P ) ⊂ A1. So the claim gh = f , or g(h(P )) =

f(P ) ⊂ B1 is the claim that for all p ∈ P we have g(h(p)) = f(p) or, since

h(p) ∈ A1, f(p) ∈ B1, and g : A1 → B1, we have g|A1
(h(p)) = f(p). So the

elements of A2 and B2 (the “nonunitary” parts of A and B, if you like) play no

role in the claim that gh = f . So if we can chow that h1 : P → A1 exists such

that for epimorphism g1 : A1 → B1 (in the above diagram on the right) we have

g1g1 = f , then we can take h = h1 to give the desired function f to establish that

P is projective (and conversely, we can take g1 = g|A1
if we are given the diagram

on the left and/or center above); notice there is no claim of surjectivity except for

g. That is, without loss of generality, we can show that unitary R-module P is

projective by assuming R-modules A and B are unitary.
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Note. Our first result gives us a family of examples of projective modules by

showing that every free module over a ring with identity is projective.

Theorem IV.3.2. Every free module F over a ring with identity is projective.

Note IV.3.B. Theorem IV.3.2 holds if we drop the condition of R having an

identity and require F to be a free module in the category of all left R-modules, as

considered in Note IV.2.D and Exercise IV.2.2. The proof is the same as given for

Theorem IV.3.2, but with Exercise IV.2.2 replacing the use of Theorem IV.2.1 (and

dropping “unitary,” of course). This is the sense in which the following corollary

is stated. We can insert the condition that R has an identity in the corollary and

use the definition of “free R-module” based on Theorem IV.2.1.

Corollary IV.3.3. Every module A over a ring R in the homomorphic image of

a projective module.

Note IV.3.C. The next result classifies projective R-modules in terms of short ex-

act and split exact sequences, and in terms of direct sums. Recall that a short exact

sequence is one of the form 0 → A
f→ B

g→ C → 0 where f is a monomorphism, g

is an epimorphism, and Im(f) = Ker(g) (see Note IV.1.I). A short exact sequence

is split exact if there is R-module homomorphism h : C → B with gh = 1C (or one

of the other equivalent conditions given in Theorem IV.1.18). Part (iii) of the next

result refers to a free module F . This may be a free module either in the sense of
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Theorem IV.2.1 (though this case requires R to have an identity and module P of

the next result to be unitary) or in the sense of Note IV.2.D/Exercise IV.2.2.

Theorem IV.3.4. Let R be a ring. The following conditions on R-module P are

equivalent.

(i) P is projective;

(ii) every short exact sequence 0 → A
f→ B

g→ C → 0 is split exact (hence

B ∼= A⊕ P );

(iii) there is a free module F and an R-module K such that F ∼= K ⊕ P .

Note. Z6 is a free Z6-module (with basis {1̄}, say). By Exercise IV.1.1, Z2 and

Z3 are Z6-modules. Since Z6
∼= Z2 ⊕ Z3 then by Theorem IV.3.4 (iii) ⇒ (i), we

have that Z2 and Z3 are projective as Z6-modules. We saw in Note IV.2.H that

Z3
∼= {0̄, 2̄, 4̄} is not a free Z6-module (since there can be no linearly independent

subset of {0̄, 2̄, 4̄}; similarly Z2
∼= {0̄, 3̄} is not a free Z6-module). So we see by

example that the R-module K and P for which F = K ⊕ P (in (iii) of Theorem

IV.3.4) need not themselves for free R-modules.

Note. We have now completed the part of the section necessary to cover Section

IV.6. Modules over a Principal Ideal Domain. So if the priority is to cover Chapter

VII, “Linear Algebra,” in a graduate-level Linear Algebra class, then the remainder

of this section can be skipped.

https://faculty.etsu.edu/gardnerr/5410/notes/IV-6.pdf
https://faculty.etsu.edu/gardnerr/5410/notes/IV-6.pdf
https://faculty.etsu.edu/gardnerr/5410/notes-linear-algebra.htm
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Proposition IV.3.5. Let R be a ring. A direct sum of R-modules
∑

i∈I Pi is

projective if and only if each Pi is projective.

Note IV.3.D. Recall that the “dual” of a statement in category theory results by

“reversing arrows” in diagrams (see Section I.7. Categories: Products, Coproducts,

and Free Objects and particularly the definition of “coproduct”). In this spirit,

we “might say” the dual of an epimorphism mapping A → B is a monomorphism

mapping B → A. This is imprecise (and incorrect if we think in terms of inverse

functions, but that’s not the intent) but is motivated by the fact that B → A is an

epimorphism if and only if B → A → 0 is exact, and A → B is a monomorphism

if and only if 0 → A → B is exact. We mimic the definition of projective module,

but with an attempt at duality.

Definition IV.3.6. A module J over a ring R is injective if given any diagram of

R-module homomorphisms (below left) with top row exact (i.e., g is a monomor-

phism), there exists an R-module homomorphism h : B → J such that the diagram

(below right) is commutative (that is, hg = f).

Note IV.3.E. The observations of Note IV.3.A concerning projective R-modules

https://faculty.etsu.edu/gardnerr/5410/notes/I-7.pdf
https://faculty.etsu.edu/gardnerr/5410/notes/I-7.pdf
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hold for injective modules as well. That is, without loss of generality, we can show

that unitary R-module J is injective by assuming R-modules A and B are unitary.

Note. Recall that in categories the dual concept of a direct sum (also called a

“coproduct”) is a direct product. Some (but not all) of the results on projective

modules have dual results on injective modules. The dual of Proposition IV.3.5 is

the following, the proof of which we leave as Exercise IV.3.A.

Proposition IV.3.7. A direct product of R-modules
∏

i∈I Ji is injective if and

only if Ji is injective for every i ∈ I.

Note IV.3.F. It is to be shown in Exercise IV.3.13 that there is no dualized version

of the concept of a free module (such a module, if it exists, would be called “co-

free”). Since Theorem IV.3.2 and part (iii) of Theorem IV.3.4 refer to free modules

in the projective module setting, they do not have duals in the injective module

setting. However, Corollary IV.3.2 does have a dual version in which it is claimed

that every module can be embedded in an injective module. This is proved in

Proposition IV.3.12, after presenting the proofs of four preliminary lemmas. The

dual version of parts (i) and (ii) of Theorem IV.3.4 is also given below in Proposition

IV.3.13. This proof is not needed in the remainder of the course, so we just state

the lemmas and give a little commentary.

Lemma IV.3.8. Let R be a ring with identity. A unitary R-module J is injective
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if and only if for every left ideal L of R, any R-module homomorphism L → J may

be extended to an R-module homomorphism R → J .

Definition. An abelian group D is divisible if given any y ∈ D and 0 6= n ∈ Z,

there exists x ∈ D such that nx = y.

Note. It is to be shown in Exercise IV.3.4 that Q is divisible but Z is not. In

Exercise IV.3.7 it is to be shown that the homomorphic image of a divisible group

is divisible (part (a) and the direct sum of abelian groups is divisible if and only if

each summand is divisible (parts (b) and (c)).

Lemma IV.3.9. An abelian group D is divisible if and only if D is an injective

(unitary) Z-module.

Note. Divisible abelian groups (and hence injective unitary Z-modules, by Lemma

IV.3.9) are classified in Exercise IV.3.11: Every divisible abelian group is a direct

sum of copies of Q and copies of Z(p∞) for various primes p (see Exercise I.1.10

where Z(p∞) is defined as the subgroup of Q/Z given by

Z(p∞) = {a/b ∈ Q/Z | a, b ∈ Z, b = pi for some i ≥ 0}.

Lemma IV.3.10. Every abelian group A may be embedded in a divisible abelian

group.



IV.3. Projective and Injective Modules 8

Lemma IV.3.11. If J is a divisible abelian group and R is a ring with identity,

then HomZ(R, J) is an injective left R-module.

Proposition IV.3.12. Every unitary module A over a ring R with identity may

be embedded in an injective R-module.

Proposition IV.3.13. Let R be a ring with identity. The following conditions on

a unitary R-module J are equivalent.

(i) J is injective;

(ii) every short exact sequence 0 → J
f→ B

g→ C → 0 is split exact (hence

B ∼= J ⊕ C);

(iii) J is a direct summand of any module B of which it is a submodule.
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